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Abstract—Energy-harvesting wearable devices generate power
by converting natural phenomena such as human motion into
usable electricity. We conduct an experimental study to validate
the feasibility of detecting steps from the power generation
patterns of a wearable piezoelectric energy harvester (PEH). Four
healthy adults took part in the study, which includes walking
along straight and turning walkways as well as descending
and ascending stairs. We find that power generation exhibits
distinctive peaks for each step, making it possible to accurately
detect steps using widely used peak detection algorithms. Using
our PEH prototype, we successfully detected 550 steps out of 570,
achieving a step detection accuracy of 96%.

I. INTRODUCTION

Step detecting wearable devices are increasingly being used

for health monitoring [1], [2] and indoor positioning appli-

cations [3]–[7]. These devices use accelerometers to detect

steps as human acceleration exhibits distinctive peaks when

each step is taken. Step detection accuracies close to 100%

can be achieved by using simple peak-detection algorithms

that continuously monitor the accelerometer signal [8]. Figure

1 shows a real accelerometer trace from a wearable device

carried by a subject walking along a straight indoor walkway.

The peaks, which correspond to steps, are unmistakable.

While high step detection accuracy is considered a remark-

able feature of the wearables, their power supply remained

heavily dependent on batteries, which must be recharged or

replaced. It is only recently that technological advancements

in energy harvesting materials are creating some real oppor-

tunities for the wearables to generate some power of their

own by converting natural phenomena such as human motion

into usable electricity [9], [10]. This is a very important

development, which may ultimately help realise battery-less

wearable devices in the future.

The focus of our study is to propose and validate the

concept of step detection directly from the patterns of power

generation in wearable devices if human motion is used as the

basis of energy harvesting. The concept is intuitive because

if steps are known to show distinctive acceleration peaks,

they are also expected to produce power peaks if power

generation is based on motion (acceleration). The concept is

also immensely beneficial from energy conservation points of

view, because if steps can be detected directly from the power

generation patterns, then no power needs to be allocated to the

accelerometer to measure acceleration. Finally, the proposed

concept can help simplify the circuit board of the device by

removing the accelerometer from it, which can further save the

overall device power consumption as well as the form factor.

All these benefits will contribute to realising health-tracking

wearable Internet of things that are completely self-powered

and too small to be noticeable.

To validate the concept, we have built a wearable prototype

fitted with a piezoelectric energy harvester (PEH) to generate

power from vibrations caused by motion. Four subjects vol-

unteered to walk along straight and turning paths as well as

descending and ascending stairs while wearing the prototype.

We logged power generation data in terms of the AC voltage

output of the PEH 1000 times per second during these walks

and analysed these traces later to study their step detection

potential. We find that, like acceleration, power traces also

exhibit distinctive peaks for steps, which can be detected

accurately using the widely used peak detection algorithms.

The contributions and outcomes of our study can be sum-

marised as follows:

• We conduct the first experimental study to validate the

concept of step detection from the power generation

patterns in energy-harvesting wearable devices.

• We collect PEH power generation traces from four sub-

jects under different walking scenarios including stairs,

covering a total of 570 steps. The traces reveal that PEH

power generation has distinctive peaks for human steps.

• We demonstrate that widely used peak detection al-

gorithms can detect steps from PEH power generation

patterns with an accuracy of 96%.

The rest of the paper is structured as follows. Section II

provides a review of peak-detection algorithms widely used

for detecting steps from accelerometer signals. The proposed

PEH-based step detection, including the prototype develop-

ment, data collection experiments, and threshold determina-

tion, is explained in section III. Results are presented in

Section IV. We conclude the paper in Section VI.
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Fig. 1. The raw output patterns of an accelerometer from a wearable device
attached to the waist of a subject walking along straight walkway for 11 steps.

II. ACCELEROMETER-BASED STEP DETECTION

Step detection is usually defined as the automatic identi-

fication of the moments in time at which footsteps occur.

In the literature, steps are usually detected by using the

output of the accelerometer sensor. The accelerometer sensor

records the acceleration in three different axes ax(t),ay(t),
and az(t). The overall magnitude of the three axes, a(t) =√
ax(t)2 + ay(t)2 + az(t)2, is usually used to represent the

accelerometer signal for step detection. Figure 1 shows the

raw output patterns of an accelerometer from a wearable

device attached to the waist of a subject walking along straight

walkway for 11 steps. The peaks, which correspond to steps,

are unmistakable as numbered.

One of the widely used methods for step detection is the

peak detection. Several studies [3]–[7], [11], [12] showed that

the peak detection method is precise enough to detect user

steps. In this method, a step is detected when a local maxima

(local peak) is detected. A local maxima is a data point that

is larger than its two neighboring as shown in Figure 1.

However, because of the irregular human movements and also

the hardware noise , not all the detected peaks are valid steps.

Some peaks could be very low in the amplitude and/or very

close to each other. Two thresholds are used to filter out these

peaks and recognize the valid steps:

1) The minimum peak height, T1.

2) The minimum distance between every two consecutive

peaks, T2.

T1 is determined based on the amplitude of the signal and

T2 is determined based on the distance in time between every

two consecutive peaks. Using these thresholds, the peaks that

represent valid steps are only those peaks higher than T1 and

separated by at least T2.

III. PROPOSED PEH-BASED STEP DETECTION

In this paper, we propose the power generation pattern of

energy-harvesting wearable devices as a new source for step

detection.
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Fig. 2. A piezoelectric cantilevered beam.
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(a) Block Diagram of our prototype’s components (up) and external appearance
(down).
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Fig. 3. Prototype Development: (a) Block Diagram of our prototype’s
components (up) and external appearance (down). and (b) The internal
appearance of the prototype.



(a) Device placement on the subject’s body. (b) Experimentation while turning walkways scenario.

Fig. 4. Experiments Design: (a) Device placement on the subject’s body, and (b) Experimentation while turning walkways scenario.

Our objective is to investigate (a) whether the output pattern

of a piezoelectric energy harvester (PEH) exhibits distinctive

peaks for steps, which can be used for step detection, and (b) if

it does, how much accuracy could be achieved for PEH-based

step detection.

A. PEH Overview

PEH is the most favourable vibration energy harvesting

transduction mechanisms due to their simplicity and com-

patibility with MEMS [13]. The piezoelectric effect was

discovered in natural quartz crystals, but today’s piezoelectric

transducers are typically made from patented, proprietary

ceramics.

Figure 2 shows a typical usage configuration of a piezo-

electric cantilevered beam to implement a PEH. One end of

the beam is fixed to the device, while the other is set free to

oscillate (vibrate). When the piezoelectric material is subjected

to a mechanical stress due to any source of environmental

vibrations, it expands on one side and contracts on the other.

Positive charges accumulate on the expanded side and negative

charges on the contracted side, generating an AC voltage as

the beam oscillates around the neutral position.

The amount of voltage is proportional to the applied stress,

which means that each step taken by the human is expected to

produce some peaks that would enable step detection from the

voltage signal. In most applications, AC voltage is rectified to

produce a DC, which can be used to power different devices,

such as an accelerometer, a gyroscope, or a microphone.

However, the focus of our study is to investigate whether the

AC signals can be used directly to detect steps in a walking

signals.

B. PEH Prototype

In order to investigate PEH-based step detection, we built

a prototype to collect the output of a PEH. Our prototype in-

cludes a product called Volture from MIDÉ [14], which imple-

ments a piezoelectric energy harvester providing AC voltage as

its output. We added a 3-axis accelerometer (MMA7361LC)

to the prototype for comparison purposes. An Arduino Uno

has been used as a micro-controller device for sampling the

data from both the Volture and the accelerometer. A sampling

rate of 1 KHz has been used for data collection. The sampled

data has been saved on an 8GB microSD card which has been

equipped to the Arduino using microSD shield. A nine volt

battery has been used to power the Arduino. The data logger

also includes two switches, one to switch on/off the device

and the other to control the start and stop of data logging.

The hardware platform and the internal appearance of the data

logger are shown in figures 3(a) and 3(b), respectively.

C. Data Collection Experiments

Our data has been collected from the National ICT Australia

(NICTA) building. Four subjects, two male and two female,

between 26 to 35 years of age, volunteered to participate in this

research study. The subjects were asked to place the prototype

at their waist as shown in Figure 4. Four different walking

scenarios have been considered in our experiment design:

• Straight walkways (7.5 meters long).

• Turning walkways (a square path of 4 × 4 meters, 16

meters in total).

• Ascending Stairs.

• Descending stairs.

Each of these walking scenarios have been done two times

by each subject. All subjects performed all the walking sce-

narios at normal walking speed. A switch has been used to

start and stop data collection at the beginning and end of each

scenario. Subjects were asked to stop and wait a few seconds

after and before each scenario. To allow a natural walking

style, the subjects were not asked to count their steps. Instead,

one more volunteer was responsible to monitor the walking of

each subject and count the actual number of steps have been

taken in each scenario. Using this way, we had the ground truth

values which are used in the performance evaluation stage. In

total, we have 570 steps from all subjects, experiments and

scenarios.
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Fig. 5. The raw output patterns of a piezoelectric energy harvester (PEH) from
a wearable device attached to the waist of a subject walking along straight
walkway for 11 steps.

D. Thresholds Determination

Figure 5 shows the raw output pattern of a PEH from a

wearable device attached to the waist of a subject walking

along straight walkway for 11 steps. We clearly see the step

occurrences in the output pattern of a PEH output signals.

This confirms that, like acceleration, power traces also exhibit

distinctive peaks for steps, which can be detected accurately

using widely used peak detection algorithms. Note that some

steps are observed to be higher than other steps in both

the accelerometer and PEH outputs as the signals have been

collected for a waist placement. As a result, the steps taken

by the leg that is closer to the device have bigger effect on

the output signals.

As explained in Section II, in order to detect a valid step,

two thresholds are required. The minimum peak height ,T1,

and the minimum distance between every two consecutive

peaks, T2. T1 is determined based on the amplitude of the

signal and T2 is determined based on the distance in time

between every two consecutive peaks. These thresholds are

usually determined experimentally.

PEH and accelerometer have different output signals. In

our prototype, accelerometer gives acceleration in m/s2 but

PEH gives AC voltage in volt. As shown in Figures 1 and

5, the amplitude (the range of the output) is different for

accelerometer than PEH. T1 has been found experimentally

in our data to be 11 m/s2 for accelerometer and 0.2 volt
for PEH. T2 has been found to be 0.4 millisecond for both

accelerometer and PEH. This is due to the fact that, at normal

walking speed, human approximately takes two steps per

second.

IV. RESULTS

In this section, we investigate the performance of PEH-

based step detection and compare it to accelerometer-based

step detection. Table I shows the experimentally determined

thresholds for both the accelerometer and PEH signals based

on our data.
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Fig. 6. The accelerometer and PEH output patterns with the detected steps
marked on both of them, when a turning walkways scenario is considered.

TABLE I
EXPERIMENTALLY DETERMINED THRESHOLDS FOR STEP DETECTION

ALGORITHM FOR BOTH ACCELEROMETER AND PEH.

Accelerometer Thresholds T1 = 11 m/s2

T2 = 0.4 ms
PEH Thresholds T1 = 0.2 volt

T2 = 0.4 ms

Figure 6 shows the identified steps using the previously

determined thresholds for both accelerometer (overall mag-

nitude) and PEH signals when square walking scenario and

waist placement of the device are considered. The accuracies

of the step detection algorithm in both the accelerometer and

PEH cases are calculated using Equation 1.

Accuracy = (1− |Actual − Estimated|
Actual

)× 100%, (1)

where Actual is the actual step count and Estimated is

the estimated step count.

Tables II, III, IV, and V show the accuracies (%) of

PEH-based step detection for the four considered scenarios:

straight line, turning walkways, ascending, and descending

stairs, respectively. These tables also show the actual number



TABLE II
PEH-BASED STEP DETECTION ACCURACIES FOR STRAIGHT WALKWAYS

SCENARIO FOR EACH SUBJECT AND OVER ALL THE SUBJECTS.

Subject
No.

Experiment
No.

Actual #
of steps
(Ground
Truth)

Estimated #
of steps

Accuracy
(%)

S1 E 1 12 12
E 2 12 12 100

S2 E 1 12 12
E 2 12 12 100

S3 E 1 11 12
E 2 12 12 100

S4 E 1 12 12
E 2 13 14 96.15

Accuracy (%) overall subjects 99.04

TABLE III
PEH-BASED STEP DETECTION ACCURACIES FOR TURNING WALKWAYS

SCENARIO FOR EACH SUBJECT AND OVER ALL THE SUBJECTS.

Subject
No.

Experiment
No.

Actual #
of steps
(Ground
Truth)

Estimated #
of steps

Accuracy
(%)

S1 E 1 24 24
E 2 24 24 100

S2 E 1 25 25
E 2 25 25 100

S3 E 1 21 21
E 2 21 21 100

S4 E 1 27 27
E 2 27 27 100

Accuracy (%) overall subjects 100

of steps (ground truth), the estimated number of steps for each

individual subject per each experiment.

Our analysis shows that PEH-based step detection can be

achieved with 99.08% and 100% accuracy for straight and

turning walkways, respectively. However, the accuracies for

ascending and descending stairs scenarios are 92.97% and

93.42%, respectively.

By looking at the step counts for each scenario, we found

that only one placement in the straight walkway scenario

shows overcount. On the other hand, in ascending and de-

scending stairs, the results were more inclined to undercount

than overcount. Figures 7 and 8 show the accelerometer-based

and PEH-based step detection for ascending stairs of subject 3,

experiment 2 and for descending stairs of subject 2, experiment

2, receptively. Some steps have been missed by the PEH-

based step detection due to the irregular shape of the signal in

these scenarios, leading to some false negative errors. These

false negative errors could be due to the use of a universal

threshold which might not be a correct choice because of

the different styles of motion between normal walking and

ascending/descending stairs.

In total, over all subjects and all walking scenarios, 550

steps out of 570 have been successfully detected achieving

a 96% step detection accuracy when PEH patterns are used,

compared to 100% accuracy when the accelerometer is used.

All of our results were based on a waist placement of

TABLE IV
PEH-BASED STEP DETECTION ACCURACIES FOR ASCENDING STAIRS

SCENARIO FOR EACH SUBJECT AND OVER ALL THE SUBJECTS.

Subject
No.

Experiment
No.

Actual #
of steps
(Ground
Truth)

Estimated #
of steps

Accuracy
(%)

S1 E 1 17 15
E 2 17 17 94.12

S2 E 1 17 17
E 2 17 17 100

S3 E 1 18 16
E 2 18 13 80.56

S4 E 1 18 17
E 2 18 18 97.22

Accuracy (%) overall subjects 92.97

TABLE V
PEH-BASED STEP DETECTION ACCURACIES FOR DESCENDING STAIRS

SCENARIO FOR EACH SUBJECT AND OVER ALL THE SUBJECTS.

Subject
No.

Experiment
No.

Actual #
of steps
(Ground
Truth)

Estimated #
of steps

Accuracy
(%)

S1 E 1 17 17
E 2 17 15 94.12

S2 E 1 17 15
E 2 17 13 82.35

S3 E 1 18 18
E 2 18 18 100

S4 E 1 18 18
E 2 18 17 97.22

Accuracy (%) overall subjects 93.42

the prototype on the subjects’ body. Previous studies [15]–

[17] have shown that different placement of the accelerom-

eter sensor on the subject’s body affects the step detection

accuracy. To investigate this criteria for PEH signals, we have

conducted a simple experiment to compare waist placement

to hand placement of the prototype. One volunteer was asked

to hold our prototype in her hand and walk along straight

walkway for 11 steps.

Figure 9 shows the PEH’s output signals for waist and hand

placement of the device. One observation is that the steps have

less contribution to the peaks of the signal. The reason for

this is because, in hand holding position, the leg movement

is not contributing to the signal’s output, making the step

occurrences are not clear. This means that, for hand placement,

PEH-based step detection will be more challenging. Further

experimentation is still needed in this direction.

V. RELATED WORK

Step detection algorithms have been widely used for health

monitoring and indoor positioning applications [3]–[7]. In

these applications, steps are usually detected by using the

output of the accelerometer sensor. Three different algorithms

have been discussed in the literature for step detection:

peak detection, zero-crossing detection, and moving variance

detection.
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Fig. 7. Showing the false negative errors of PEH-based step detection when
ascending stairs scenario of subject 3, experiment 2 is considered.

1) The peak detection algorithm is one of the widely

used methods for step detection [3]–[7]. It searches for

the peaks and valleys of the waveform by selecting

thresholds in order to identify a distinct step. The step

is detected when a valid maximum peak and a valid

minimum peak are detected in sequence in a certain

interval.

2) The zero crossing detection algorithm determines the

number of steps by counting the number of times the

signal crosses the zero level and dividing it by two [4],

[18]. The division by two is due to the observation

that the signal crosses the zero level twice in each step

during the walking mode.

3) The moving variance detection algorithm implements

the moving variance filter while keeping in view that

acceleration variance has a trend to increase with

respect to the step length [18]. Then the local mean

acceleration is calculated for each sample of the overall

acceleration. This followed by applying after to make

the foot activity more prominent. Finally, a step is

detected when the acceleration variance is above a

certain threshold level.
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Fig. 8. Showing the false negative errors of PEH-based step detection when
descending stairs scenario of subject 2, experiment 2 is considered.

Ayub et al., [18] have shown that the zero crossing detection

algorithm is more robust than the moving variance detection

algorithm for step detection. On the other hand, Kang et al.,

[4] have shown that the zero crossing and the peak detection

algorithms are precise enough to detect user steps.

In our work, we have used the peak detection algorithm to

demonstrate the feasibility of detecting steps from the output

voltage of a PEH wearable. However, it would be interesting

to study the performance of the two other algorithms when

the PEH signal is used for step detection. To the best of

our knowledge, this is the first study to demonstrate that step

detection is viable using PEH wearables.

VI. CONCLUSION

In this paper, we have proposed the concept of step detection

directly from the patterns of power generation in wearable

devices if human motion is used as the basis of energy

harvesting. This proposal is particularly beneficial from energy

conservation points of view, because if steps can be detected

directly from the power generation patterns, then no power

needs to be allocated to accelerometer to measure acceleration.

By doing so, the accelerometer can be removed from the

design leading to further save of the overall device power

consumption as well as the form factor.

Using experimental data, we have shown that steps can be

accurately detected from PEH power generation patterns with
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Fig. 9. Comparing PEH’s output patterns for two different placement of the
prototype on the person’s body: waist placement (up) and hand placement
(down).

an accuracy of 96% on average. We believe that the proposed

idea will contribute towards the realisation of more pervasive

and permanent step detection. To our knowledge, this is the

first study investigating the viability of step detection using

piezoelectric energy harvesting signals. More experimentation

is still needed to study the effect of different device placements

on the results.

Although this is a specific research focused on step detection

only, the positive outcomes imply that PEH signals may have

a wide range of applications for sensing and tracking human

health. For example, it may be possible to identify a ”waking

signature” of person that could help realise various appli-

cations including user authentication or detecting abnormal

walking behaviour. Investigations of these applications remain

the focus of our on-going efforts [19]–[21]
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