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ABSTRACT
Cellular operators are considering large-scale small cell de-
ployment in urban traffic hot spots to combat the loom-
ing capacity crisis in their networks. However, connecting a
large number of small cells to the network core using cur-
rent backhaul technology is costly. In this paper, we propose
message ferrying as a low-cost backhaul solution that uses
mobile phones of vehicle occupants as an army of ferries to
transfer network data between small cell base stations and
nearby switching centres. There are a number of challenges
in the design and deployment of such a system. Use of phone
memory for network data transfer without interfering with
user applications is one such challenge that we study in this
paper. Although the memory capacity in mobile phones
has increased significantly over the years, it is considered a
volatile ferrying resource as it is claimed and released dy-
namically by user applications. If message ferrying is to be
transparent to the user, base stations must be able to predict
memory availability over a sufficiently long horizon to ensure
that data carried in the phone do not get wiped out during
transit due to dynamic memory claim by user applications.
We experiment with real phones by logging memory avail-
ability for extended hours under different usage scenarios.
By applying autoregressive models on memory usage traces,
we are able to predict the minimum memory available over
a 7.5-minute horizon with 94% accuracy.

Categories and Subject Descriptors
C.2.1 [Ccomputer-Communication Networks]: Net-
work Architecture and Design—Store and forward networks,
Network topology, Wireless communication; D.4.2 [Software]:
Storage Management—Main memory
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1. INTRODUCTION
Cellular operators are constantly looking for new ways to

increase their network capacity. Although acquisition and
more efficient use of additional spectrum would increase the
capacity of existing macro cells, it is now widely believed
[3] that the spectrum reuse through small cells deployed at
specific locations (hot spots) where mobile traffic is concen-
trated is the most scalable way to meet the capacity crisis
in mobile networks. However, connecting the outdoor small
cells, also known as metro cells, to the core network with
existing backhaul solutions, e.g., fibre, microwave, satellite,
and leased lines, is expensive and can easily make up 80% of
metro cell total cost of ownership [1]. The small cell evolu-
tion is inevitably shifting the mobile bottleneck from the ra-
dio access to the backhaul [3], demanding novel approaches
to cellular backhaul.

In this paper, we propose to employ the well-known con-
cept of message ferrying [16] as a low-cost data transporta-
tion option for small cell backhaul. In the proposed architec-
ture, mobile devices of vehicle occupants act as an army of
ferries to continuously transfer data back and forth between
small cells and nearby switching centres, creating a virtual
ferry-based backhaul for small cells (see Figure 1). The ba-
sic ingredients required to realise this approach are already
in place. For example, current mobile phones are equipped
with large memory capacity providing ample storage to ferry
data. Typical small cells are deployed on street furniture,
such as lamp posts, making it practical for the small base
stations to easily reach the mobile devices inside passing
vehicles despite having short communication ranges. Since
mobile phones are designed to detect and connect to avail-
able base stations automatically and quickly, ferry discovery
and association is not an issue. Finally, over the years, we
have gathered considerable knowledge and experience with
fundamental mechanisms of delay and disruption tolerant
networks [11, 2, 4, 14], which serves as a strong foundation
for developing the proposed ferry-based cellular backhaul.

Despite the feasibility, there are a number of challenges
in the design and deployment of such a system. Because
personal user data is carried in third party devices, pri-
vacy and security of such message ferrying would have to



be addressed satisfactorily. Advanced protocol mechanisms
must be developed to ensure that ferry-based backhaul can
meet the end-to-end quality of service requirements of cellu-
lar networks, especially for video traffic. Finally, if message
ferrying using unused storage space in mobile phones is to
be transparent to the user, base stations must be able to
predict memory availability over a sufficiently long horizon
to ensure that data carried in the phone do not get wiped
out during transit due to dynamic memory claim by user
applications. While all these challenges are real and must
be addressed systematically, in this paper, we carry out a
detailed study of the issue of phone memory predictability
and leave the other issues as future work.

We experiment with real phones by logging memory avail-
ability for extended hours under different usage scenarios.
By applying autoregressive models on memory usage traces,
we are able to predict the minimum memory available over a
7.5-minute horizon with 94% accuracy. The memory avail-
ability question is going to be relevant to any application
where message ferrying using mobile phones is proposed.
As such the analysis in the paper is of wider applicability
although it is done with the focus on the backhaul applica-
tion.

The remaining of the paper is structured as follows. We
present the proposed message ferrying architecture for small
cell backhaul in Section 2. Details of our phone memory ex-
periments and the results are provided, respectively, in Sec-
tions 3 and 4. We discuss related work in Section 5 followed
by our conclusion in Section 6.

2. ARCHITECTURE
Small cells are deployed at traffic hot spots as well as

next to every switching centre enabling a centre to act as a
message ferrying hub for all nearby small cells (Figure 1).
As soon as the mobile phones inside cars come within the
wireless communication range of the small cells, they auto-
matically connect with the cell base stations using existing
cellular signalling. The base stations employ appropriate
scheduling algorithms to upload or download data to and
from the phone storage. For example, when a phone trav-
els from hot spot to a switching centre, the hot spot base
station downloads data items to be ferried into the phone
storage, which is then uploaded to the base station at the
switching centre completing the ferrying task. Thus, the
continuous flow of mobile phones at both directions creates
a bi-directional backhaul link for the cellular network. For a
given road segment, the capacity of such ferry-based back-
haul can be roughly estimated by multiplying the vehicular
volume with the amount of available memory space that
could be expected in a phone assuming sufficient local radio
capacity exists in the small cells. Figure 2 shows daily traffic
volumes in some of the Sydney roads. For these statistics,
we find [5] that with only a 5% use of the phone memory,
message ferrying could deliver giga bits per second capacity
and transfer tens of peta bytes per week between two points
on these roads.

While most data can be transported over the ferry-based
backhaul, the operators may lease a low-speed low-cost back-
haul link connecting the hot spot small cell to the switching
centre directly to carry urgent interactive traffic not tolerant
to the scale of delay characteristic of message ferrying. The
leased link can also serve as a backup for unexpected disrup-
tions in the message ferrying link or as a low-delay ‘control

Figure 1: Proposed message ferrying architecture
for realizing cellular backhaul.

channel’ to improve the quality of service of applications
supported by the higher-delay message ferrying link. The
combination is particularly useful for delivering high quality
video as a few initial video segments could be transported
quickly over the leased link to avoid starting delay and the
rest can be carried over the message ferrying link.

There are a number of challenges in the design and de-
ployment of such a system:

• Local spectrum: We would require an abundance of
short-range high capacity local spectrum within small
cells to ensure that small cell radio capacity does not
become a bottleneck for message ferrying. Early small
cell deployments are using the same low frequency (be-
low GHz) spectrum used for the macro cells, which is
costly and offers limited data rates. Spectrum author-
ities, however, are planning to release significant new
high frequency (above GHz) spectrum, which is cur-
rently underutilised, for small cell use at an exception-
ally low licensing cost [12]. At the same time, there
have been some recent breakthroughs that will soon
allow mobile devices to transmit and receive data at
an extraordinarily high rate for a short distance using
frequency bands in the range of hundreds of GHz to
terahertz [9]. Finally, there is a move to develop a new
base station technology [12] that can efficiently use the
existing unlicensed bands, such as the ones used by
WiFi and radars, which are totally free of cost. These
developments will help building higher capacity back-
haul using message ferrying concept.

• Ferry trajectory and mobility: Unlike some previously
studied applications of message ferrying [7], there is
absolutely no control over the trajectory and mobility
of the ferries. Cars can suddenly leave the road to the
switching centre or get stuck in an unexpected traffic
jam causing serious disruptions to end-to-end QoS.

• Privacy and security: Given that personal user data
would be temporarily stored in a third-party device,
privacy and security may be a concern in choosing the
type of storage. Table 1 shows the storage capacity



Figure 2: Hourly traffic volume for (a) Paramatta
Road Eastbound (Station 02.273.E), (b) Cleveland
Street Eastbound (Station 02.038.E), and (c) En-
more Road Northbound (Station 02.062.N) col-
lected during the week commencing 15 August 2005
(Source: Roads and Maritime Services, Sydney,
Australia [13]).

available in smartphones from different manufacturers
as of 2014. Although there is an enormous amount of
internal and removable storage to boost the capacity
of message ferrying, they are ‘easily visible’ to the user.
We therefore consider RAM, referred to as ‘memory’
in this paper, as the most suitable storage type for
the proposed architecture. Note that RAM provides a
better obscurity compared to the other storage types,
but encryption may be employed for ultimate security.

• Storage volatility: One major issue with memory is
that it is claimed and released dynamically by user ap-
plications. If message ferrying is to be transparent to
the user, base stations must be able to predict memory
availability over a sufficiently long horizon to ensure
that data carried in the phone do not get wiped out
during transit due to dynamic memory claim by user
applications. However, to the best of our knowledge,
no memory prediction studies have been reported in
the literature so far. In the following section, we de-
scribe our experiments to study the predictability of
mobile phone memory.

Table 1: Smartphone storage capacity in GB.
Smartphone RAM Internal Removable
Samsung S4 4G 2 16 64
Samsung Galaxy Note 3 3 32 64
iPhone 5S 1 64 None
HTC One 4G 801S 2 64 None
HTC Desire 600 1 8 64
Sony Xperia Z 4G 2 16 32
Sony Xperia Z 4G 2 16 64

3. PREDICTION OF AVAILABLE MEMORY
We collected memory usage data on smartphones and used

time series analysis to predict memory usage.

3.1 Data Collection
We used two Samsung Galaxy smartphones, which we will

refer to as SP1 and SP2, for data collection. The phone SP1
(resp. SP2) is of model S3 (S4) with 1.8 GB (2 GB) RAM.
Both of them use Android 4.3. Three traces (or time se-
ries) of memory usage were collected from these two phones
using “MKSysMon” available from Google Play. One mem-
ory usage trace was collected from SP1 with a sampling pe-
riod of 3s; the trace contains 9819 samples, which is more
than 8 hours. The user of SP1 was asked to use the smart-
phone in the usual manner during data collection. The trace
SP1 covers stand by mode and commonly used applications
for messaging, calling, working with emails, watching video,
web browsing and so on. For smartphone SP2, two traces
were collected. The sampling period was 5s and each trace
contains 1180 samples, which is just over 1.5 hours. The
trace SP2-N (where N denotes normal) was collected while
the user used the phone normally like the SP1. In order to
understand the memory usage pattern for memory intensive
applications, the trace SP2-H (where H denotes high) was
collected as the user played the graphic intensive games, As-
phalt8 and Fifa2014, while running the same apps as SP2-N
in the background. A summary of the three traces is in
Table 2.

Table 2: Three memory usage traces collected.
Trace SP1 SP2-N SP2-H

Phone Model S3 S4 S4
Total RAM 1.8 GB 2 GB 2 GB

Sampling period 3s 5s 5s
# samples 9819 1180 1180

3.2 Methodology
For message ferrying, we would like to be able to predict

the amount of memory that will be available in the data
ferries within a certain time frame. Therefore, our aim is
to investigate whether we can use past data on available
memory to predict the amount of available memory in the
future. While there are many time series models available for
this purpose, we deploy a basic autoregressive (AR) model
in this paper. Finding the best prediction model will be
pursued in future works.

We consider each collected trace as a time series {yt}
where t = 1...., N where N is the number of samples in the



time series and yt denotes the amount of available memory
at the t-th sampling instance. We use AR model of order p
(where p is a parameter to be studied later on) for modelling.
This model has the following form:

yt = µ+ ρ1yt−1 + ρ2yt−2 + ...+ ρpyt−p + εt (1)

where µ and ρj are the coefficients of the AR model, and
εt is zero mean Gaussian white noise. For the estimation of
the AR model coefficients at sampling time n, we assume
that we have all the data at or before time instance n. This
is inevitably not the most efficient method for model esti-
mation because all past data has to be stored. Since our
aim is to study the feasibility of predicting memory usage,
we will leave efficient estimation methods, such as recursive
AR modelling, as future work. We use the ar function from
the MATLAB (System Identification Toolbox) to estimate
the AR model. Our intention is to use the identified AR
model to predict the available memory in the time window
[n+ 1, ..., n+h], i.e. a prediction horizon of h steps where h
is a parameter to be studied later on. Let µ̂, ρ̂1, .., ρ̂q denote
the estimated coefficient, then the predicted yn+1 (or 1-step
ahead prediction) is given by:

ŷn+1 = µ̂+ ρ̂1yn + ρ̂2yn−1 + ...+ ρ̂pyn−(p−1) (2)

The 2-step ahead prediction is :

ŷn+2 = µ̂+ ρ̂1ŷn+1 + ρ̂2yn + ...+ ρ̂pyn−(p−2) (3)

and so on. When h > p, the h-step prediction follows the
recursive model:

ŷn+h = µ̂+ ρ̂1ŷn+h−1 + ρ̂2ŷn+h−2 + ...+ ρ̂pŷn−(p−h) (4)

Such predictions can be computed by using the MATLAB
forecast function. Since we need a certain amount of data
to obtain an AR model, we can only use n in the range
[q,N − h] where q is the minimum amount of data for esti-
mating AR model; the upper limit of N − h is so that we
can predict the full h steps ahead and then compare with
collected data. The value of q should be at least 2p.

We consider a prediction horizon of up to 450 seconds (=
7.5 minutes). Therefore, for the trace SP1, h ranges from
1 to 150; while for SP2-N and SP2-H, h is between 1 and
90. We use the following metrics to measure the prediction
performance. Note that ∆ = N − h− q + 1.

• Mean Absolute Error (MAE)

MAE =
1

∆

N−h∑
n=q

MAEn where MAEn =
1

h

h∑
k=1

|ŷn+k − yn+k|

• Mean Absolute Percentage Error (MAPE)

MAPE =
1

∆

N−h∑
n=q

MAPEn where MAPEn =
1

h

h∑
k=1

| ŷn+k − yn+k

yn+k
|

• Mean Percentage Error of Predicting Minimum Avail-
able Memory (MMPE)

MMPE =
1

∆

N−h∑
n=q

m̃n where

m̃n =
|mink=1,..,h ŷn+k −mink=1,..,h yn+k|

mink=1,..,h yn+k

Figure 3: Available memory for SP1.

Figure 4: Available memory for SP2-N and SP2-H.

4. RESULTS
Figure 3 plots the amount of available memory (in MB)

for trace SP1, and Figure 4 shows the available memory for
traces SP2-N and SP2-H. It can be seen that sharp rises and
drops took place in all three traces. A rise occurred when
a new application or services was started, and a drop oc-
curred when some applications were closed or were sent to
the background. Note that the amount of available memory
for SP2-H is lower than that of SP2-N because memory in-
tensive applications were ran during the collection of SP2-H.

Figure 5 shows the empirical cumulative distribution func-
tion (CDF) of available memory for the three traces. We see
from Figures 3 and 4 that the amount of available memory
never falls below 200 MB for SP1, 500 MB for SP2-N and 230
MB for SP2-H. Thus, the CDF is zero for values lower than
these thresholds. The empirical CDF can therefore be used
to estimate the ‘storage failure probability’ for a given choice
of memory use for ferrying. For example for SP1, storage
failure probability is negligible if 200 MB or less is used, but
it can be as high as 50% for 250 MB. Figure 6 presents the
CDFs normalised to the mean available memory observed
for the entire trace. An important observation from Figure
6 is that there is a sharp cliff when the normalised available
memory is around 0.8. If we use A (in MB) to denote the
amount of available memory at this point, then there is a
high probability that A MB or less is available but there is
a very small probability that more than A MB is available.

To investigate whether the AR model can accurately pre-
dict future available memory, we use SP2-N and SP2-H and
vary the prediction horizon h from 1 to 90, which means up



Figure 5: Empirical CDFs of available memory.

Figure 6: CDF normalised to mean available mem-
ory.

to 450s. We use four values of p: 5, 15, 25 and 29. Figures 8
and 7 shows the MAPE for, respectively, SP2-N and SP2-H.
It is not surprising that lower MAPE is obtained with larger
p and lower h. For a prediction horizon h of 90 and p = 29,
the MAPE for SP2-N and SP2-H are, respectively, 1.2% (≈
7.7 MB) and 5.2% (≈ 19.6 MB). Generally, the MAPE for
SP2-H is higher than SP2-N for the same values of p and h.
This can be explained by the higher volatility of SP2-H.

Figure 9 compares MMPE with MAPE. MMPE is pre-
diction error of the minimum available memory and is more
related to our target. However, they are approximately the
same for SP2-N and MMPE is higher than MAPE for SP2-H
because of its high volatility. It can be also concluded that
in the worst case, SP2-H, the available memory has been
predicted by 6% error or 94% accuracy.

AR model estimation is computationally intensive, so we
want to investigate whether some simpler prediction meth-
ods can give similar level of performance. We use a simple
predictor where we use the mean available memory in the
past p sample instances as the predicted available memory
for the next h steps. We will call this method mean predic-
tor. For this investigation, we use the trace SP1, and choose
p = 20 and vary h from 1 to 150, which means up to 450
seconds for SP1.

Figure 10 compares the MAE for the AR predictor and the
mean predictor for SP1. It can be seen that the AR predictor
outperforms the mean predictor for all values of h. Note
that for this comparison, the MAE is calculated over the
‘legitimate’ section (i.e n ∈ [q,N − h]) of test data. We now

Figure 7: MAPE for SP2-N.

Figure 8: MAPE for SP2-H.

investigate what happens if we limit the test data to 9-64th
minutes of the trace SP1 where the volatility of available
memory is high. The results are shown in Figure 11. It
shows that for h ≤ 71, the AR predictor has lower MAE but
for h > 71, the mean predictor is better. This suggests that
the AR predictor, which assumes stationarity, cannot deal
with high level of fluctuations. We will investigate the choice
of prediction methods, taking into account both accuracy
and complexity, in future work.

5. RELATED WORK
Over the last decade, researchers have studied message fer-

rying or delay tolerant networking (DTN) for a diverse range

Figure 9: MAPE and MMPE for SP2-N and SP2-H



Figure 10: MAEs for AR and mean predictors for
legitimate section of trace SP1.

Figure 11: MAEs for AR and mean predictors for
9-64th minutes of trace SP1.

of applications, including e-mail delivery to disconnected vil-
lages [11], restoring connectivity between partitioned mobile
nodes [16, 7], collecting data from a sensor network [6], and
providing roadside-to-roadside (r2r) [8] data transfer service
using vehicles as mobile ferries. Among them, r2r is the
closest to the proposed ferry-based cellular backhaul ser-
vice considered in this paper. However, r2r message ferry-
ing studied in [8] considered WiFi-based devices, whereas
we consider cellular networks and mobile phones. As such,
we do not encounter the issues related to long scanning and
association times characteristic of WiFi networks. However,
because we consider users’ mobile phones as ferries to carry
network data, we face new challenges such as privacy and
transparency of phone memory usage by two different en-
tities, the user and the network. In this paper, we studied
the predictability of unused phone memory to analyse the
feasibility of transparent deployment of the proposed ferry-
based cellular backhaul. Although there are prior works on
predicting application [15] or energy [10] usage in a mobile
phone, to the best of our knowledge, prediction of minimum
available memory over a given horizon has not been studied
before.

6. CONCLUSION
In this paper, we proposed the idea of using mobile phones

of vehicle occupants as message ferries to realise low-cost
backhaul service in cellular networks. We discussed the fea-
sibility as well as key challenges facing the ultimate design

and deployment of such a service. Predictability of unused
phone memory is identified as one of the issues if the pro-
posed ferry-based backhaul is to remain transparent to the
users. We experimented with real phones and found that
standard autoregressive models can predict the minimum
memory available over a 7.5-minute horizon with 94% accu-
racy using the time series of memory usage. Given that the
memory availability is going to be relevant to any message
ferrying application that uses mobile phones, the analysis in
the paper has applicability beyond the proposed backhaul
application. Finally, we acknowledge that understanding
memory availability is necessary but not sufficient for the
viability of the proposed message ferrying system. Investi-
gations of other issues are the subject of future work.
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