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Abstract—The ongoing success of smartphones and tablet
computers, combined with the widespread deployment of cellular
network infrastructure, has paved the way for ubiquitous Internet
access. Access to mobile services has become a commodity for
many commuters on public transport vehicles. On their daily
trips to work and back, however, people often experience varying
throughput rates due to the different capacities of network cells
and the channel quality to the cell site. Links with reduced
or no throughput are clearly unfavorable when users need to
download large files or engage in synchronous communication
activities. We thus introduce the notion of opportunistic personal
bandwidth maps (OPBMs) in this paper. OPBMs allow the user
to schedule activities with high throughput demand to parts of
their journey where the bandwidth requirements are likely to be
met. Users create their own OPBM by means of opportunistically
monitoring their throughput during access to the cellular network
and consolidating these individual measurements. Due to the
opportunistic nature of our approach, no additional data transfers
are required. Our measurements for more than 70 commutes
show that the achievable throughput for road segments is highly
variable across different trips. Still, the availability of OPBMs
allows users to make decisions (e.g. to download a large file) when
traveling along the segment with highest expected throughput.

I. INTRODUCTION

Although cellular network operators are continuously up-
grading the capacity of their networks, it is extremely difficult
for them to guarantee a stable and consistent bandwidth to
every user at all times and locations. As a result of radio in-
terference, potential scheduling issues, and varying cell utiliza-
tion, the bandwidth available to each individual user commonly
fluctuates over time and space [1]. This uncertainty about
the available bandwidth makes it challenging to guarantee
quality of service for emerging real-time mobile applications
such as video streaming and synchronous voice chats. The
spatial dependency of network throughput has thus resulted in
the concept of bandwidth maps [2], which provide available
bandwidth estimates to users based on previous measurements.
A large number of throughput observations are recorded for
all locations of a given commute and consolidated into a
bandwidth map, which reveals the probability distribution
of bandwidth as a function of location. For scenarios with
highly mobile users, these bandwidth maps can be used to
support applications in many ways, e.g., by pre-fetching data
before entering a region with low bandwidth or postponing the
download of email attachments to maintain more bandwidth
for applications with real-time requirements. In simulations,
researchers have demonstrated the huge potential of bandwidth
maps for improving application performance [3]–[6].

While the potential applications of bandwidth maps are
discussed in numerous publications, little has been reported
on the practical methods for constructing such maps. Creating
a wide area bandwidth map that stores bandwidth probability
distributions for every single possible geographic location
is a challenging problem due to its scale. The degree of
spatio-temporal bandwidth dependency has been assessed by
Deshpande et al., who have shown that the noticeable variation
in bandwidth distribution already occurs when moving by only
20 meters [1]. A map that stores bandwidth distribution at
this granularity would need to record billions of bandwidth
observations to map the entire road network of a modern city.
To make the problem worse, the map needs to be dynamically
updated and maintained at all times due to possible changes
in the bandwidth distribution for some locations arising from
network upgrades or the construction of new roads. Finally, the
deployment of the resulting map to individual mobile devices
would be highly impractical because of its large size. We
have deliberately not considered an approach that follows the
participatory sensing paradigm [7] due to the low relevance of
other people’s maps for each individual user.

In this paper, we thus utilize smartphones to develop
personal bandwidth maps, which contain the routes frequently
travelled by the user and during the times the user commonly
travels along these routes. In particular, we show how the user’s
smartphone can opportunistically record the experienced band-
width in each location of the user’s commuting route. By com-
bining all recorded observations, the personalized bandwidth
map for the user can be constructed. The repetitive nature of
human mobility results in the collection of a large number
of bandwidth samples along frequently travelled routes, thus
improving the statistical significance of the personal bandwidth
map and keeping its storage requirement small. To the best of
our knowledge, we are the first to report the construction and
evaluation of such personal bandwidth maps for commercial
smartphones. We make the following contributions:

• We propose a method to assess the available band-
width based on opportunistically monitoring TCP
flows on a smartphone and detail its implementation
on an Android-based handset.

• We use our prototype implementation to construct a
bandwidth map for two specific routes in Sydney and
demonstrate the practicality of the proposed method.

• We analyze the bandwidth distributions of different
segments of the route and propose means to stochas-
tically model the bandwidth distribution.
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The rest of the paper is organized as follows. Related work
is analyzed in Section II. We present our proposed oppor-
tunistic location-based bandwidth measurement methodology
and implementation details in Section III. Field trials and data
collection are reported in Section IV, and we conclude our
paper in Section V.

II. RELATED WORK

From completely independent measurements, researchers
from different continents have discovered that distributions of
observed bandwidth from 3G networks are strongly correlated
to locations of a road network. Yao et al. [8] measured
bandwidth of three different mobile operators from a moving
vehicle repeatedly traveling through the same route in parts
of Sydney. When bandwidth observations were analyzed for
every 500 meter road segments, they found that the distribu-
tions of bandwidth observations were different for different
road segments for all three major cellular network providers.
Later, Deshpande et al. made the same observation in New
York [1], but this time they demonstrated that the phenomenon
holds even for 20-meter road segments. The implication of
this independently verified observation is that the uncertainty
in mobile bandwidth can be reduced using location-specific
bandwidth distributions for a given operator, instead of using
a general distribution. This has motivated researchers to study
the application of using bandwidth maps, which store band-
width distribution information for every single road segment
of a given route or road network.

Several new applications of bandwidth maps have been
considered by different research groups. Using simulations,
Yao et al. [8] demonstrated that access to a bandwidth map
could significantly improve the scheduling performance of
a multi-homed mobile router, which connects an onboard
vehicular WiFi network to the Internet via multiple mobile
networks. Sing et al. [3] and Curcio et al. [4] have inde-
pendently demonstrated that use of bandwidth maps leads to
smoother video streaming in mobile environments. Recently,
Siris and Kalyvas [6] proposed a new method to improve
mobile data offload performance using bandwidth maps. Fi-
nally, Hojgaard-Hansen et al. [5] have shown that mobile
network performance maps that store information beyond
bandwidth, such as round-trip-time, can be used to reduce TCP
overhead in mobile communications. Bandwidth estimation
is an active area of research. Researchers have used active
probing based techniques, which calculate the bandwidth by
explicitly transferring some data and measure the amount
of time taken to transfer that data. Popular techniques for
estimation include Packet Pairing [9, 10], Packet Trains [11]
and Self Loading [12]. However, we consider it unlikely that
users would be interested in applications that intentionally use
up data volume, because most mobile phone plans are limited
in their included traffic. The aforementioned active probing
methods are thus not suitable for the creation of personal
bandwidth maps. As an alternative, in this paper, we propose
a passive measurement approach.

While new applications of bandwidth map continue to
appear, to the best of our knowledge, practical methods for
constructing a bandwidth map are yet to be reported in
open literature. There are some commercial products, such as
rootmetrics [13], which allow users to download a network
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Fig. 1. Map for UNSW to NICTA with waypoint annotations.

testing application and report back network performance to
a central database if the users use the application to test the
network. Such data is then used to create a network coverage
map of a city for a given operator. However, these coverage
maps only report the average performance of the operators to
help users compare different operators for locations where they
use mobile network most frequently. Our proposed OPBMs are
different from these centralized measurements in nature, as our
method measures bandwidth passively and transparently each
time the user browses the Internet. The bandwidth map we
propose can be created from such passive user data and it can
provide information useful for both humans and machines. Ad-
ditionally, in contrast to centrally collected network coverage
maps, OPBMs provide information at a much finer granularity.

III. OPBM CONSTRUCTION

We propose a scheme for bandwidth estimation, which is
based on opportunistic throughput measurements. The method-
ology has specifically been chosen to allow for its implemen-
tation on a mobile phone, where it executes as a background
process and collects data from users traveling on any means of
individual or public transportation. The construction of a user’s
OPBM is a two-step process. First, using this opportunistic
bandwidth measurement scheme, we collect many bandwidth
measurements during the user’s travel on individual or public
transport. In a second step, we use these bandwidth samples
to construct the OPBMs for personal use. When traveling in
a city, there is high possibility that different routes share a
number of sub-routes, e.g., individual road segments. We thus
perform our analysis on the granularity of these segments of
a route. This decision makes it possible to use measurements
made for same segment across different routes, and thus to
aggregate readings collected at different times.

A. Road Segments

When searching for a route on Google Maps1, the resulting
route is typically divided into segments, generally spanning
from 10 to 500 meters within city (larger on big highways). We
propose to use this waypoint-based segmentation of the road
segments in different routes of a city. For our experiments, we
have used two routes in Sydney, one from The University of
New South Wales (UNSW) to National ICT Australia (NICTA)
and another from NICTA to UNSW, which takes a slightly
different route. Figure 1 shows these two routes returned by
Google Maps, super-imposed on each other. The route in green
line is from NICTA to UNSW and dotted blue line shows
the route from UNSW to NICTA. We label the waypoints

1http://maps.google.com.au



from UNSW to NICTA as A through M and NICTA-UNSW
waypoints are labeled as 1-10. As a result we get 12 segments
and 9 road segments for both routes respectively. The exact
coordinates of the waypoints are also given in Appendix A.
This waypoint-based division is possible even if the user is
traveling on other means of transport, e.g., by bus.

B. TCPDUMP-based Passive Bandwidth Measurement

In this work, we focus on TCP based traffic due to over-
whelming use of TCP in today’s Internet-based applications.
The proposed passive bandwidth measurement is based on
capturing all TCP packets downloaded during a trip. After
computing the bandwidth for all road segments in the trip,
the captured TCP packets are discarded. We have found that
most smartphone browsers launch multiple TCP connections
in parallel to speed up the download of a page, which typ-
ically contains multiple objects. Monitoring TCP throughput
of individual TCP connections would therefore not provide
accurate estimates of the available bandwidth on any given
road segment, because multiple TCP connections could overlap
at the same time. Our methodology thus addresses such
TCP connection overlaps. Another observation we made is
that users tend to spend some time consuming the contents
of a page once downloaded before starting new downloads.
Therefore, we can expect that there would be periods when
there is no active traffic. Our methodology takes these idle
periods into consideration when calculating the bandwidth for
a given road segment. To explain the proposed bandwidth
computation algorithm, we use the following notations:

• mi: total number of TCP packets downloaded in ith

road segment

• dij : number of bytes in jth packet received in ith road
segment

• ni: number of idle periods in ith road segment

• tij : duration of jth idle period in ith road segment

• Ti: trip duration of ith road segment

The estimated bandwidth for ith road segment is then
derived as shown in Equation (1).

Bi =
8×

∑mi

j=1 dij

Ti −
∑ni

j=1 tij
bps (1)

Once a new sample is available for a given road segment in
the bandwidth map, the distribution parameters, such as mean
and standard deviation of bandwidth, are updated. This way,
the bandwidth map can be kept up-to-date as the user travels
through the same road segments over and over again.

Let us make an example. Consider a set of TCP flows
(some of which can be parallel) 1, 2, ..., n. Flow i starts at time
si and finishes at time fi > si. Two flows i and j overlap if
[si, fi] ∩ [sj , fj] 6= ∅. Each TCP flow i has m total packets
where m varies for each TCP flow. The objective is to find
the combined throughput for all TCP flows. To this end, we
sort the TCP flows on their start times such that si < sj as
shown in Figure 2. As all the packets are TCP packets, flows
can be differentiated by unique socket addresses even between
same machines. We scan all the data transferred in these flows

-
Time

s1 f1

s2 f2

si fi si fi

sn fn

Fig. 2. Example for the sorting of TCP flows.

and time taken to transfer this data and we exclude the idle
time between these flows. Our algorithm maintains an active
set A as well counters for the total transferred data D and
the total time T . A contains the identifiers for active TCP
connections. D is total data downloaded by the device using
TCP connections in A, and T is the time for which these TCP
connections stay active. Our algorithm examines each packet
and looks for the start of TCP flows. Whenever it encounters
the first three-way handshake it record the timestamp and puts
the socket address into A. It keeps on capturing data packets
which belong to any of the TCP flows in A. We record the
timestamp of the first packet of the first TCP flow in A. Then
we keep examining the remaining data packets and keep record
of number of bytes downloaded in D. Whenever we encounter
a FIN packet, we remove the corresponding socket address
from A. Once the last active flow in A has ended, we use its
timestamp to calculate the total session time and add it to T .
Finally, we calculate the estimated bandwidth by dividing the
total data transferred by the session duration.

C. Implementation Details

To implement the algorithm of Equation (1), we need
to derive all the parameters of the algorithm first. This is
achieved using the well-known TCPDUMP tool. We use it
to capture each TCP packet downloaded during the trip, for
which it records the size, the timestamp, and all TCP flags.
Android does not have a built-in TCPDUMP utility, so we have
used the freely available version from [14]. Our application
records location information every 500 ms. From this collected
location information, we match (using the closest match) the
user’s current GPS position to known road segment separators
(i.e., pre-loaded waypoints) and derive time boundaries for
each road segment. Once the time interval for a given road
segment is determined, we identify all packets (using their
timestamps) that were received within this road segment,
which allows us to compute the numerator of Equation (1).
The calculation of the denominator in Equation (1), however,
involves the identification of idle periods. Since no TCP
connection is active during idle periods, we make use of TCP
flags to this end. The start of a TCP connection is identified by
detecting the SYN flag in a packet. Similarly, the end of a TCP
connection is identified by a FIN packet. Since all TCP packets
for a given TCP connection carry a unique socket number, we
can easily match a FIN to its corresponding SYN for same
TCP connection, which allows us to work out how many and
which TCP connections are active at any given time. An idle
period starts when the number of active TCP connections in
the system becomes zero and ends as soon as a new TCP
connection starts. We trace the time interval of all idle periods
(tij) for all road segments, which allows us to compute the
denominator of Equation (1).
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Fig. 3. Number of parallel active TCP connections for the first two segments.

IV. FIELD TRIALS AND ANALYSIS

We have implemented our previously described algorithm
for an Android-based mobile phone and used it for collecting
bandwidth data for the two routes introduced in Section III-A.
This section provides the details of these field trials and a
subsequent analysis of the collected data.

A. Trials and Data Collection

We have 12 and 9 segments for the UNSW-NICTA and
NICTA-UNSW routes (cf. Figure 1) respectively. Two volun-
teers were recruited to conduct the tests, one of whom was
driving a car, while the other was using the Android phone in
the passenger seat. The user had to start the application at the
start of the trip and they were asked to use a number of Internet
applications. At the end they stop the application when the
vehicle had reached the destination. After each trip, the output
of these two files along with the preloaded route information
files were analyzed to compute the bandwidth for each of the
road segment. The data connection used was provided by the
Australian operator OPTUS, and the 3G service used was a
mix of HSDPA and UMTS during these trips. We have made
a total of 74 trips for each routes, and as a result collected 74
data points for each road segment of both routes. These trips
were made on 13 consecutive days, on both weekdays and
weekends. On any of these days, our volunteers chose time of
their convenience and drove from UNSW to NICTA and the
back. The average time of each round trip was 30 minutes.
This way, they made around 6 trips everyday. During these
trips, the passenger was asked to use YouTube, Facebook, and
Web browsing, all of which use TCP for their data transfer.

As mentioned in section III-C, Android optimizes TCP
throughput by starting multiple parallel TCP connections.
Figure 3 shows the number of parallel TCP flows for the first
two segments on the first trip of the UNSW-NICTA route. This
graph shows the data from one trip only and makes clear that
multiple concurrent TCP flows as well as some idle periods
exist. The two vertical lines at 133 and 309.8 seconds indicate
the times when the vehicle crossed a waypoint. The figure
confirms that periods exist during which multiple parallel TCP
connections are used for Internet activity, as well as times when
there are no active TCP connections at all. When calculating

TABLE I. BANDWIDTH (KBPS) STATISTICS OF UNSW-NICTA ROUTE
FROM EACH SEGMENT OVER ALL 74 TRIPS

Seg. No. Mean ST.Dev W p-value
A-B 212.01 262.08 0.733 0.000
B-C 315.9 174.48 0.982 0.423
C-D 198.82 135.6 0.93 0.0002
D-E 372.36 322.47 0.740 0.000
E-F 242.77 222.28 0.861 0.000
F-G 253.31 295.65 0.630 0.000
G-H 240.21 218.34 0.856 0.000
H-I 226.39 239.05 0.813 0.000
I-J 312.79 339.48 0.756 0.000
J-K 229.32 152.42 0.918 0.0002
K-L 191.5 159.22 0.905 0.000
L-M 419.19 280.16 0.739 0.000

the amount of time, we exclude these idle periods. For some
trips, some road segments recorded zero bandwidth due to not
receiving any TCP packet at that time as can also be seen
for trip 43 in Figure 5b. We exclude these zero bandwidth
measurements from our subsequent analysis.

B. Analysis

In order to build the personal bandwidth maps, the band-
width readings for all the traveled road segments need to
be stored in an efficient way. Although memory restrictions
rarely exist on current smartphones, the analysis of all stored
TCP connection information can be time-consuming when a
large number of samples have been collected. As a result,
we store both the raw data (in order to calculate statistics
after further data have been added) as well as their processed
representations, as outlined below.

1) Mean and Standard Deviation: We have tabulated the
mean and standard deviation of all individual segments for
both routes in Tables I and II. From the tables, it can be
seen that the standard deviation is relatively high, which
points out the limited use of the mean value for making
bandwidth predictions. Further analysis whether the data can
be approximated using a normal distribution (by analyzing
their W and p-value according to [15]), has shown that the data
does not follow a Gaussian distribution and that additional data
points are required to model it properly. The results of the tests
for both routes can also be seen in the tables. By looking at
Figures 5a and 5b, one can furthermore deduce that the mean
value is not a good representative of expected bandwidth for
particular segment because of the high bandwidth variability
for the same segment at different times. Therefore we need
a better representation of this bandwidth data to estimate the
probable future bandwidth expectation for a segment.

TABLE II. BANDWIDTH (KBPS) STATISTICS OF NICTA-UNSW
ROUTE FROM EACH SEGMENT OVER ALL 74 TRIPS

Seg. No. Mean ST.Dev W p-value
1-2 330.48 369.6 0.806 0.000
2-3 288.04 202.88 0.943 0.002
3-4 157.51 297.84 0.702 0.002
4-5 212.82 176.06 0.910 0.000
5-6 219.08 159.81 0.940 0.001
6-7 213.61 193.31 0.764 0.000
7-8 197.71 174.84 0.802 0.000
8-9 175.08 163.48 0.865 0.000
9-10 203.73 198.89 0.589 0.000
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Fig. 4. Bandwidth statistics obtained in form of box-plots over all 74 trips
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Fig. 5. Visualization of raw bandwidth measurements for a high-throughput segment (L-M) and a low-throughput segment (C-D) across all 74 conducted trips.

2) Box and Whisker Representation: Given the observed
bandwidth variations, it is clear and consistent with previous
findings [1] that mobile bandwidth is extremely difficult to
predict. Solely relying on two data points, namely mean and
standard deviation, is clearly insufficient. Instead, we have
plotted the bandwidth data collected for two routes over all
74 trips in the form of box-plots in Figure 4. They present
a very interesting view of overall bandwidth data and at the
same time give us an insight towards storing them in a compact
manner. In the box-plots shown in the figure, the x-axis shows
the segment and the y-axis represents the bandwidth in Kb/s
for each of the 74 trips conducted during the field trials. It is
interesting to compare the input data for segments C-D and L-
M, as visualized in Figure 5. One can see that box and whisker
representation for C-D shows that the 75th percentile is 250
Kb/s, its median lies at 150 Kb/s, and the 25th percentile value
is 95 Kb/s, despite its comparably high observed maximum
value of 550 Kb/s. In comparison to segment L-M, where the
median values is 310 Kb/s at the 75th percentile ranges at 410
Kb/s, segment C-D is thus of less favorable throughput. As
a general observation, the distance between first quartile and
median is often highly different from the distance between
third quartile and median, confirming the insufficiency of

modelling the distributions using mean and standard deviation.

Using the box-plot representation, we can make the deci-
sion to schedule the tasks with high bandwidth requirements,
such as synchronous video chats or downloads of large files
can be scheduled in segments with a high expected throughput.
Like the segment between waypoints L and M, one can see
that segments B-C and D-E have also very high median and
75th percentile values with a small difference between them.
It shows that these segments are also more likely to have
higher bandwidths in subsequent trips. In contrast segments
A-B and J-K show more resemblance to C-D in terms of
bandwidth statistics and one should not prefer these segments
for bandwidth-intensive tasks. Similar deductions can be drawn
about the segments of NICTA to UNSW route by looking at
Figure 4b. Segments 1-2 and 2-3 are segments with better
bandwidth possibility and segments 3-4 and 9-10 should not
be preferred for bandwidth intensive tasks.

We can differentiate between a positive and a negative
variation of the readings by considering the 25th and 75th
percentile marks. While the standard deviation combines both
higher and lower bandwidth readings into a single value, these
additional data points allow for modelling the distributions at



a finer granularity. Let us assume a scenario where bandwidth
for a segment is mostly low and only very high for few trips.
As a result, the mean will rise measurably, but so will the
standard deviation. By looking at the size of the interquartile
range, more accurate predictions can be made.

Therefore, we propose to use box-plots as the representa-
tion for our OPBMs, which store five values for each segment.
These are minimum, 25th percentile, median, 75th percentile
and maximum. We argue that the box-plot representation is
better suited for the purpose of modelling the distribution of
the encountered bandwidth measurements and gives us a better
insight to expected bandwidth for a segment as compared to
when we store simple mean and standard deviation.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a practical implementation
of personalized bandwidth maps. Instead of utilizing through-
put probing sequences, we have opportunistically collected
statistics about the TCP traffic generated by the users passively
whenever they surf the Internet. This allows us to create
personalised maps without incurring additional bandwidth
overheads. We have conducted a field study in the city of
Sydney, Australia, where a team of volunteers were driving
a car along two pre-defined routes for more than 70 times
in order to collect the bandwidth data that was used in our
evaluation.

Our findings show that available bandwidth varies sig-
nificantly, yet trends can be determined for individual route
segments. By analyzing the collected throughput measure-
ments by means of box-and-whisker plots, patterns for some
segments became clear. Considering the requirement of only
five parameters, the memory footprint of our approach is small.

We argue that OPBMs are better at capturing the expected
network performance than maps that characterise radio charac-
teristics. While there certainly exists some correlation between
signal quality and bandwidth, there are several other factors
such as network load and operator scheduling policies which
may influence the available bandwidth. OPBMs allow us to
capture the cumulative effect of all these factors on network
performance.

In future we plan to build a complete system which does
the task scheduling along with building bandwidth maps.
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APPENDIX A
WAYPOINT COORDINATES

TABLE III. WAYPOINT COORDINATES USED IN THE FIELD TRIALS.

UNSW-NICTA NICTA-UNSW
Waypoint Longitude Latitude Waypoint Longitude Latitude
A 151.23033 -33.91993 1 151.19611 -33.89507
B 151.22639 -33.91942 2 151.19746 -33.89713
C 151.22332 -33.90901 3 151.19928 -33.89666
D 151.22239 -33.90887 4 151.20116 -33.90145
E 151.22362 -33.90378 5 151.20976 -33.9008
F 151.22256 -33.90156 6 151.21029 -33.90023
G 151.21492 -33.90094 7 151.21494 -33.90085
H 151.21029 -33.90023 8 151.22266 -33.90146
I 151.20976 -33.9008 9 151.2265 -33.91943
J 151.20014 -33.90175 10 151.23033 -33.91993
K 151.19823 -33.89499
L 151.19743 -33.89505
M 151.19611 -33.89507




