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Abstract—Pedestrian dead reckoning (PDR) is widely used
for indoor localisation. Its principle is to recursively update the
location of the pedestrian by using step length and step heading.
A common method to estimate the heading in PDR is to use
magnetometer measurements. However, unlike outdoor environ-
ments, the Earth’s magnetic field is strongly perturbed inside
buildings making the magnetometer measurements unreliable
for heading estimation. This paper presents a new method to
reduce heading estimation errors when magnetometers are used.
The method consists of two components. The first component
uses a machine learning algorithm to detect whether a heading
estimate is within a specific error margin. Only heading estimates
within the error margin are retained and passed to the second
component, while the other estimates are discarded. The second
component uses data fusion to average the heading estimates
from multiple people walking in the same direction. The rationale
of this component is based on the observation that magnetic
perturbations are often highly localised in space and if multiple
people are walking in the same direction, then only some of their
magnetometers are likely to be perturbed. Data fusion between
users can be carried out in a distributed manner by using a
consensus algorithm with information sharing over wireless links.
We tested the performance of our method using 92 datasets.
The method is shown to provide an average heading estimate
error of approximately 2°, which is more than 6-fold lower
than the error of the heading estimate based only on raw
magnetometer measurements (without any filtering and fusion).
Assuming highly accurate step-length observation, the improved
heading estimation leads to an average localisation accuracy of
55c¢m, which is an 80% improvement over PDR localisation using
only raw magnetometer measurements.

I. INTRODUCTION

Indoor localisation has many applications, such as location
enabled services, indoor navigation, emergency response and
many others. Although many network-based techniques have
been proposed for indoor localisation [1], [2], they require
infrastructure support which may not be always available,
such as in emergency situations. Pedestrian Dead Reckoning
(PDR) is an infrastructure-free localisation method which de-
termines the position of people using inertial sensors, such as
accelerometers, gyroscopes and magnetometers. The principle
of PDR is to update the position of the subject after a step has
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been taken. The update can be performed recursively using the
last known position, the step length and the estimated heading.
The step length can be estimated relatively accurately [3],
however the estimation of heading in the indoor environment is
highly problematic. Gyroscope and magnetometer are typically
employed for this purpose: the former can be used for a short
time as it accumulates errors, while the magnetic field is highly
perturbed in indoor environments due to structural elements of
the building, electric systems, industrial and electronic devices
[4]. A number of methods have been proposed to address the
problem of heading estimation. For example, Kalman filter
(KF) is used in [5] to fuse measurements from gyroscope
and magnetometer so as to increase the heading estimation
accuracy, whereas methods [1], [6], [7] exploit the magnetic
field or WiFi fingerprinting to improve the location estimate.

In this paper, we propose a self-contained method, which

uses only magnetometer measurements to reduce the heading
estimation error. The method consists of two components.
The aim of the first one is to detect whether a heading
estimate obtained from the magnetometer measurements is
within a specific error threshold. We show that this detection
can be performed by machine learning using magnetometer
measurements alone. Only the heading estimates that are
selected as reliable by the detector are retained and passed
to the second component. This other component exploits the
observation that magnetic perturbation can be highly localised
in space to improve the heading evaluation by fusing estimates
from multiple subjects [8]. We exploit consensus algorithms
[9], [10] to perform the fusion in a distributed fashion.

The contributions of the paper are as follows:

¢ We performed experiments to measure the magnetic fields
in several areas of the university campus. We used these
datasets to analyse the impact of magnetic perturbation
on heading estimation. The key conclusion is that heading
errors are highly localised in space.

o We proposed to use machine learning to detect whether
the magnetometer measurements would result in a head-
ing estimate within an error threshold. This detection
method is self-contained and uses only magnetometer
measurements.

« Given that heading estimation error is highly localised in



space, we proposed to use consensus algorithms to fuse
in a distributed way the heading estimates of multiple
people walking in the same direction. The distributed
fusion of heading observations from multiple people does
not appear to have been explored before.

e We conducted 92 experiments to evaluate the perfor-
mance of our method. The results exhibited an average
heading estimation error of 2.06°. This is a 6-fold error
reduction compared to the heading estimation error based
only on raw magnetometer measurements, which was
12.63°. The performance gain in terms of localisation
accuracy was 80%.

The rest of the paper is organised as follows. Section II
reviews related works while Section III presents the concept of
spatial diversity. The two components of the proposed method
are described in Sections IV and V. Experimental evaluation is
presented in Section VI and Section VII concludes the paper.

II. RELATED WORKS

Many of the existing indoor positioning methods rely on
an infrastructure and need reference points for identifying
user locations. They use RF beacon tags [11]-[13] to per-
form triangulation [14] or fingerprinting to match Wi-Fi RSS
measurements [1], [6], GSM signals [15], geomagnetic field
[7] or ambient measurements [16] with an a-priori map. The
accuracy of the position estimate in these methods depends on
the physical environment, the quality of the map database and
on the matching algorithms.

PDR [17], [18] is an infrastructure-free method, which relies
on inertial sensors to track pedestrians with step detection and
step orientation. Heading estimation is the major challenge
in PDR and different techniques have been developed to
face intrinsic sensor errors. Gyroscope and magnetometer are
integrated to improve the heading estimation accuracy but the
former accumulates an error known as drift and can be used
for a short time [5], the latter suffers from perturbation due to
indoor environments [4]. Hybrid solutions exploit the combi-
nation of PDR and other technologies as WiFi [19]-[22] and
UWRB [23] in order to take advantage of both techniques. The
main drawback of these approaches is that they mostly suffer
from slow convergence and large cumulated errors which are
detrimental to the time critical indoor missions. Combining
PDR with proximity sensing via sound beaconing to estimate
relative positions [24] or deriving proximity information from
Bluetooth visibility of devices [25] enhance the quality of PDR
too.

A variety of new applications that rely on indoor position in-
formation of mobile nodes are emerging and their performance
can be significantly improved by using cooperative algorithms
[26]. If we consider an indoor environment where infrastruc-
ture based localisation is not applicable, an efficient solution
can be a collaborative approach where users participate in
the localisation process and share location-related information
in order to improve the positioning performance. The higher
is the degree of cooperation, the larger is the amount of
information available for the estimation and thus the accuracy

obtained in the localisation of the users [27]. However privacy
and node selection are critical issues that considerably affect
the performance of this approach.

In CLIPS [28], each user has a RSS reference map to de-
termine a set of feasible coordinates using Wi-Fi beaconing.
Then users employ dead reckoning over a floor map to
remove invalid candidates and share the estimated coordinates.
This approach provides accurate localisation and much lower
position fix delay compared with a non-collaborative scheme.
The work [29] proposes a cooperative localisation algorithm
assuming that each mobile node is equipped with a ranging
device to allow TDoA (Time Difference of Arrival) distance
measurement between mobile nodes. Exploiting the “stop-
and-go” behaviour of mobile nodes each subject can estimate
its position based on the estimated positions of neighbour-
ing nodes that have remained in their previous positions.
People-Centric Navigation (PCN) [30] utilises the feature of
“group activity” for a collaborative PDR. Measuring mobile
phone’s acceleration, heading and RSS of Bluetooth radios,
PCN detects similarity among subjects and corrects PDR
traces of the group members. EZ [31] does not require any
knowledge of the physical layout and any user participation
for the localisation process. Each user collects and reports
to a localisation server RSS measurements corresponding to
APs of unknown locations. The server uses this data to
learn the characteristics of the propagation environment and
to localise the users with a genetic algorithm. The paper
[32] presents a method that enables the Bluetooth usage for
collaborative localisation. It allows detecting and correcting
caching delays and time-synchronization errors by tracking
pairwise clock offsets between neighbours. In [33] a Wi-Fi
based indoor positioning system is integrated with a human-
centric collaborative feedback model that adjusts the posi-
tioning results. The work [34] proposes a consensus-based
approach for distributed localisation based on RSS peer-to-
peer measurements. Consensus algorithm is designed so as to
account for the different degree of reliability of the location
information provided by different neighbouring nodes.

III. UNDERSTANDING THE NATURE OF HEADING
ESTIMATION ERROR

This section aims to provide evidence that the heading
estimation error is highly localised in space, as this property
underpins the indoor localisation approach that will be pre-
sented in the following section.

We conducted an experiment in a 8.1m X 6.3m room.
Magnetometer measurements were collected from 264 points
arranged in a grid with a spacing of 45cm. For each point,
a Samsung Galaxy S III phone was placed with a heading
of hy = 280°. An app on the phone collected magnetometer
measurements at 100Hz for 20 seconds. We repeated the same
experiment with a different reference heading of he = 100°.

After obtaining the magnetometer readings for both the
reference headings, we computed for each grid point the
heading estimate and the average estimation error by averaging
the error over the samples. Figure 1 shows the heat map
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Fig. 1: Heading Error Map. The black colour at the bottom left corner represents a space outside the room.

of estimation error for, respectively, the reference headings
hi1 = 280° and ho = 100°. The red and blue zones, indicate,
respectively, areas of high and low estimation error. The black
colour at the bottom left corner represents a space outside the
room where no measurements were done. A few observations
can be made: (1) Heading estimation error can be very high in
some areas. (2) The two heat maps are fairly similar but the
heading errors in two reference directions can be different at
the same location. (3) The heading estimation error is rather
localised with large values occurring at only certain pockets
of space.

This indoor scenario was particularly challenging as the
sensing devices (placed on the floor of the room) were highly
disturbed and provided very noisy measurements resulting in
some cases in extremely high estimate errors. Nevertheless,
the interesting aspect is the highly localised nature of the
heading error that is highlighted in the maps of Figure 1.
This spatial diversity motivates us to investigate the fusion
of multiple estimates from subjects walking in the same di-
rection. Clearly, it is not desirable to include highly erroneous
heading estimates in the fusion process, we therefore propose
to detect these unreliable heading measurements and discard
them before fusion is performed as discussed in the following
section.

IV. DETECTING ERRONEOUS HEADING ESTIMATES

As mentioned earlier, our proposed system consists of two
components. The first component detects erroneous heading
estimates and the second component fuses heading estimates
from multiple subjects.

The detection of the unreliable heading estimates is per-
formed using as inputs the magnetometer measurements
in the directions {z,y,z} at time ¢ here denoted as
{ma(t), my (1), m. (1)}

The instantaneous heading of the subject at time t is

computed as [35]:

h(t) = tan~? (my(t)> . (1

My (1)

Magnetic perturbations in indoor environments may result
in highly erroneous heading estimates. We propose to use
machine learning to detect such unreliable estimates. Before
describing the machine learning method, we first present the
data collection campaign. Note that for brevity, we will drop
the time index ¢ from now onwards.

A. Data Collection Campaign

Magnetometer measurements were collected from 12 corri-
dors in 6 buildings within the University of New South Wales
campus in Sydney. Table I shows the experimental details. For
some buildings, multiple corridors were selected from different
floors or with different orientations, see Experiments 1 to 4 in
Table I for example. The true heading for each direction of a
corridor is identified from a map assuming that the corridor is
parallel to the boundary walls of the building. We performed
spatial sampling of the magnetic field by placing smartphones
uniformly along the length of the corridor. The number of
locations sampled in a corridor varied between 5 and 28, and
the spacing between them varied from 2 to 3.9m, depending
on the length of the corridor. At each location, magnetometer
readings were recorded at 100Hz for 20 seconds.

B. Data Preprocessing

The machine learning algorithm used to detect erroneous
headings relies on the fact that the Earth’s main magnetic
field can be assumed as stationary and known in a given
area. We use the International Geomagnetic Reference Field
(IGRF) [36] for Sydney as a reference. Each IGRF datum
is a triplet (H,F,I) where H and F' are respectively, the
horizontal and total magnetic field, and I is the inclination

Degree



TABLE I: Experiment details, UNSW, Sydney

Dataset Number
D Building (True Heading) of Spacing(m)
locations
Electrical Engineering
1 Building, Level 3 (99.20°) 16 3.30
Electrical Engineering
2 Building, Level 3 (9.96°) 6 3.90
3 Electrical Engineering 18 9
Building, Level 1 (99.20°)
4 Electrical Engineering 10 2
Building, Level 1 (9.96°)
Robert Webster Building,
5 Level 2 (189.96°) > 2:30
Quantum Computation and
Communication Technology
6 Building, Ground Floor 17 220
(9.09°)
School of Chemistry, Level 3
7 (279.05°) 5 2.30
School of Mathematics and
8 Statistics, Level 1 (9.28°) 3 3.60
9 Burrows Theatre (156.80°) 7 2
School of Mathematics and
10 Statistics, Level 2 (99.20°) 20 3
Robert Webster Building,
u Level 3 (189.7°) 13 3.30
Robert Webster Building,
12 Level 3 (279°) 28 3.30

angle. These three quantities are related to the magnetic field
strength {m,, m,,m,} at each point by:

F=\/m2+m2+m?2 (2a)
H = /m2+m2 (2b)
I =tan~! (%) (2¢)

Since the reference IGRF is known, we calculate the differ-
ence between the IGRF computed from measured magnetic
field and the reference IGRF to obtain the error in the
IGRF components Fe,, Herr and I.,.. We append these error
figures to the raw magnetic field measurements to obtain a
vector M with 6 elements:

M = [mﬁﬁmyamzaFeT‘T7HeT7"aI€TT‘]' 3

We will refer to this as the extended magnetic field measure-
ment vector M.

C. Machine Learning

1) Time Window and Class Definition: Due to measurement
errors, the instantaneous heading estimate fluctuates over time.
Therefore, we propose to average the instantaneous heading
estimates within a time window of 0.5s> to obtain a mean
heading estimate h. Let hirue be the true heading, the absolute
heading error is e = |71 — htrue|- For a given threshold v, we

2We used a time window of 0.5s because it is the average time to walk
one step.

say that a mean heading h is without perturbation if e < 7,
otherwise we say that it is perturbed. Formally, we define two
classes Cy and C;. The class C; (resp. C) contains all the
mean headings that are without perturbation (perturbed).

2) Feature Selection: Feature selection is an important step
in machine learning [37]. Its aim is to select the features
that are pertinent to accurately classifying the input data. We
employ Correlation Feature Selection (CFS), which is a pre-
processing step on the datasets to extract the important features
to be used in model construction. By definition, a good feature
subset is one that contains features highly correlated with
(predictive of) the class, yet uncorrelated with (not predictive
of) each other [38]. CFS exploits the information-theoretical
concept of entropy to identify the best features.

We obtain our potential features using the following method.
For each time window, we collect all the extended magnetic
field measurement vectors M evaluated over the considered
time interval. We then compute the 11 time-domain features
listed in Table II for each element of M. We thus get, for each
time window, 66 different time domain features as M has 6
elements.

We apply CFS to all the 12 datasets listed in Table I
using a threshold ~ of 15°. The features selected by CFS
for each dataset are given in Table III. Our observations and
interpretations are:

o Each dataset has its own set of best features. In other
words, there is not a common set of features that we can
use for all datasets. This suggests that we are not able to
use the same features for all the buildings. Moreover,
this inference also holds for different corridors in the
same building. These conclusions have also been con-
firmed by classification performance of machine learning
algorithms and will be described in Section IV-C3. The
previous observation is also consistent with the conclu-
sions in Section III that heading estimation error is highly
localised in space.

e Mean was most often the selected feature among all
datasets.

Unfortunately CFS does not give us a common set of fea-
tures that can be applied to all the datasets, but we really need
that for our classification algorithm. We solve this impasse by
selecting as features the means of the 6 elements of M over a
time window. We will show in the following that this choice
gives good classification accuracy.

3) Classification  performance: We  denote  our
choice of features for the time window j as
M; = [mg, My, Mz, Herr, Ferr, Ierry] where the bar denotes

the mean quantity over the time window. For each time
window, we determine whether the mean heading error is
below the threshold « or not. This allows us to label each
mean heading estimate as class Cy or C;. Again, we use
v = 15°.

We use the following five classification algorithms for
our evaluation: Support Vector Machine, Logistic Regression,
Naive Bayes, Decision tree and Multilayer Perceptron. The
Weka [39] machine learning software is used for performance



TABLE II: Time Domain Statistical Features

Feature ME LOBF STD ROC MN MX R MAD RMS SK K
S%ope of the Standard Rate o ) Mean Root .
Definition | Mean Line of Best o of Minimum | Maximum| Range Absolute Mean | Skewness | Kurtosis
Fit deviation Change Deviation Square
TABLE III: Features selected by CFS method
Dataset ID my my my Herr Ferr Terr
1 ME, RMS ME, STD ME
2 ME, MX, MN ME ME
3 ME ME, RMS MAD MX
4 ME, RMS RMS STD R
5 ME, RMS, MN
6 ME, RMS ME SK
7 ME ME, MX, R RMS
8 ME RMS
9 RMS ME, MX, MN
10 ME ME, MX, MN MX MN R
11 ME, RMS ME ME
12 ME ME, RMS ME R

analysis. For each dataset, we use 10-fold validation to create

error with variance o7 ;

2
2,7

Fusion is conveniently applied to

training and test sets. We report the classification results for
each classifier and each dataset in Table IV. The deduction
is that Logistic Regression performs the best since it has
the highest average accuracy (98%) and the best worst case
accuracy (90%).

The above results were obtained from using the model learnt
from the training data in one corridor to classify test data of
the same corridor. We have also attempted to build a model
from data from a corridor in a building and test it on a different
corridor in the same or different building. The classification
accuracy for these tests for 4 different classification algorithms
are reported in Table V. An observation is that the classifica-
tion accuracy is much lower than those reported in Table IV.
These results again confirm that we cannot build a general
model that holds true for all the environments.

V. DISTRIBUTED FUSION OF HEADING ESTIMATES

In this section we propose to estimate the heading by fusing
the measurements collected by N users in L time windows
using a weighted average that accounts for the different degree
of reliability of measurements. Only measurements retained by
the first processing step are considered in the fusion. Fusion
relies on the fact that the direction of walking is the same
for the N users and it is slowly varying over time so that it
can be assumed as constant in the considered time interval®.
We denote the average heading estimate obtained by user ¢ =
1,...,N in time window j =1,..., L as ﬁi,j = Rirue + Wi j
where Nypye is the true heading and w; ; is the measurement

3The assumption of constant or slow-varying heading is made according to
the experiments carried out in this study where devices were moving always
in the same direction. Adaptive filtering can be employed for data fusion in
case of time varying heading.

the Cartesian components [Z; ;, ¥i ;] = [sin(h; ;), cos(h; ;)]
rather than to the heading ﬁm- directly, in order to avoid
ambiguity problems in averaging angle measurements. Below
we describe the fusion procedure that is used to draw the
global estimate & from {Z; ;}; a similar procedure is applied
to {7; ;} to get §. The heading estimate is finally obtained as
h =tan! (&/7).

We consider the fusion of the estimates Z; ; according to
the Best Linear Unbiased Estimator (BLUE) [40]:

N L -
Dim1 Zj:l xi;j/UiZ,j

N T .
Dokt 21 1/013,1

We propose to perform the above fusion as a cascade of two
steps, fusion over time and fusion over users, as described in
the following.

(%:

“4)

A. Fusion over Time

At first, each user performs a weighted average of the
measurements collected in the L time windows as

L - 2
N Zj:l wivj/o’i,j
TS .2
Yp1l/o ik
Note that weighting by the variance inverse allows to account
for the different degree of reliability at different windows. For
practical implementation, the variances 01.2’ ; are computed by

users as sample variances from the measurements collected in
window j.

&)

B. Fusion between Users by Distributed Processing

The estimates obtained locally by the N users are merged

as
N

IIAL’ = Zi:l Oéi@i, (6)



TABLE IV: Comparison of classifiers

Dataset ID Naive Bayes Logistic Multi Layer Perceptron SVM Decision Tree

1 97% 100% 81% 75% 90%

2 100% 100% 100% 100% 50%

3 89% 100% 89% 67% 92%

4 100% 100% 100% 60% 85%

5 80% 100% 60% 40% 50%

6 82% 94% 85% 76% 91%

7 60% 100% 100% 40% 40%

8 60% 100% 80% 80% 60%

9 85% 100% 100% 57% 78%

10 90% 90% 83% 60% 83%

11 92% 100% 85% 81% 73%

12 88% 96% 96% 69% 82%
Average accuracy 82% 98 % 88% 63% 71%
Worst Case accuracy 60% 90% 60% 40% 40%

TABLE V: Classification accuracy when training and test data come from two different corridors

Training Dataset Test Dataset Naive Bayes | Logistic | Multi Layer Perceptron | Decision tree

EE, Level 1 (99.20°) EE, Level 3 (99.20°) 63% 69% 69% 56%

EE, Level 3 (9.96°) EE, Level 1 (9.96°) 67% 67% 67% 67%
Robert Webster, Level 3 (189.7°) | Robert Webster, Level 2 (189.7°) 40% 80% 100% 80%
Robert Webster, Level 3 (279°) Robert Webster, Level 3 (189.7°) 60% 60% 60% 60%
Mathematics, Level 1 (99.20°) Mathematics, Level 1 (9.28°) 60% 50% 40% 60%

by a linear combination with weights {a;}¥ ;. In order to
guarantee the equality with (4), the weights must be set
to a; = o™ 2 672/(3, 052, where o? =var(i;) =
1/, 0. j2. We will consider both o; = a$P" and the simple
average solution using «; = 1. For implementation of (6),
we observe that our aim here is to develop an infrastructure-
less solution that can be exploited in all kinds of scenario:
a central unit introduces costs and might be not available
in certain environments or in case of disaster. Thereby, we
propose to implement the fusion (6) by a distributed approach
based on consensus [9], [10], [34]; this is an iterative process
that consists on estimate exchanges on a peer-to-peer basis
among the users of a network in order to reach a consensus for
the evaluation of a certain quantity of interest [9]. The network
in our scenario is the set of users that are walking in the
same direction and have overcome the perturbation detector;
we can model the network as a graph G = (V, ) where the
nodes V = {1, ..., N} are the users and the edges £ CV x V
are the communication links among the nodes. Let A = [a;;]
be the NV x N symmetric adjacency matrix, with a;; = 1 if
(i,7) € € (i.e., if node j communicates with node 7); a;; =0
for any (i,j) ¢ &£. The neighbours of a user ¢ are denoted
by N; = {k € V: (i,k) € £} and d; = |N;| is the node
degree. The Laplacian matrix of the graph is L = D — A with
D = diag(ds,...,dn). In the consensus approach each node
updates at each iteration its local estimate and exchanges it
with its neighbours until an agreement is reached. At iteration

n the estimate at user ¢ is updated as follows:

Bi(n+1) =25(n) +eW; Y (@r(n) — #i(n)),
keN;

where ¢ is the step size, selected as 0 < € < 2/Apa(WL),
to guarantee convergence, with A,,q.(-) denoting the max-
imum eigenvalue of the argument matrix and W =
diag(W1,...,Wx) [10]. At step ¢ = 0 the estimates are
initialized as #;(0) = &;, i.e. each user utilises its own local
estimate in the first iteration. According to [10], if weights
W, are chosen as W; = o2 consensus converges to the global
BLUE solution (4): Z;(c0) = Z. On the other hand if W; =1,
consensus converges to (6) with o; = 1/N, i.e. to the average
of the estimates at different users: £;(c0) = + Zfil Z;. The
two approaches are referred to as weighted average consensus
(WAC) and average consensus (AC), respectively.

At the end of consensus processing the users that have taken
part in the distributed algorithm spread the final estimate to
the users that have been excluded by the perturbation detector.
In this way we can take advantage from spatial diversity, since
we need just one user with uncorrupted estimate in order to
spread it to the other users. In the worst case scenario where
all users do not overcome the perturbation detector (i.e., they
all experienced bad measurements), users can employ their
previous estimate as the current heading until at least one
of them overcome the perturbation detector and spread the
estimate to the others. If this scenario happens in the first time
instant of the algorithm the users fuse their estimates even if
they are all corrupted.

)
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TABLE VI: Datasets for system evaluation

Scenario o1 True Number of
ID UNSW Buildings heading Experiments
1 Library, 3rd Floor 188.98° 12
Old Main Building, °
2 Ground Floor 21923 12
Old Main Building, °
3 Ground Floor 9946 12
Robert Webster Building, °
4 LG Floor 99.26 10
Robert Webster Building, °
5 LG Floor 279.18 10
ABS Building, 1st Floor 99.26° 12
ABS Building, 1st Floor 279.15° 12
Electrical Engineering °
8 Building, 2nd Floor 98.90 12

VI. RESULTS AND SYSTEM EVALUATION

In this section, we evaluate the performance of the proposed
heading estimation algorithm using new experimental data.
The details of the experimental scenario are described in
Section VI-A. We then apply the algorithm and evaluate
the performance in terms of heading estimation accuracy
in Section VI-B. The localisation performance is studied in
Section VI-C.

A. Testbed

In order to ensure diversity in environmental conditions,
especially with respect to magnetic perturbation, experiments
were conducted in 5 different buildings at University of New
South Wales campus. One or two corridors were chosen
from each of these buildings to create a set of experimental
scenarios indexed from 1 to 8. The building names and the

orientation of the corridor are summarised in Table VI. The
true headings of the corridors were obtained from a map by
assuming that the corridors are parallel to the boundary walls
of the building. The number of experiments per scenario is
indicated in the last column of Table VI. The total number is
92.

In each experiment, three subjects walked from one end
to the other end of the chosen corridor. The three subjects
started walking from the end of the corridor at different times.
They followed lines on the flooring to walk in a straight line
parallel to the corridor maintaining a separation of roughly Sm
one another. The separation was selected so as to have a good
chance of experiencing different degrees of perturbation at dif-
ferent users. Each subject carried either a HTC1X or HTC1X+
device in his hand and held the phone almost horizontally
during the walk. We will refer to these three subjects by their
position in the walk, as Back, Middle and Front. In order
to minimise effects due to differences between people and
between phone types, the subjects assumed different positions
and held different phones in the different experiments. We
used two different sampling frequencies, 16Hz and 50Hz for
data collection.

B. Heading Accuracy

The heading error reduction provided by the proposed
method strongly depends on the value of the threshold ~.
We define the optimum threshold, v°Pt, as the threshold that
minimises the heading error estimate. To find v°P*, the heading
estimate error is evaluated for several values of v and for
all the considered scenarios. The 7°P* is then selected as the
one that minimises the average error for all scenarios. From
Figure 2, it can be observed that for most of the scenarios,
~°PY = 5° is the optimum threshold and for «y greater than 60°,



TABLE VII: Comparison of algorithms in terms of heading error (°)

Building (True Heading) | "Gl (R | PPOCERR | wac ac | M et | Cpetectar
Library (188.98°) 12.95 4.57 4.80 4.10 2.18 2.22
Old Main (279.23°) 12.91 7.99 10.29 6.47 2.31 1.63
Old Main (99.46°) 14.71 11.11 6.91 5.62 241 2.68
Robert Webster (279.18°) 10.34 3.56 5.54 2.80 1.00 1.04
Robert Webster (99.26°) 13.45 4.76 8.88 7.22 2.15 2.18
ASB (99.26°) 10.47 291 2.50 3.58 1.66 1.67
ASB (279.15°) 12.19 5.57 9.47 9.70 4.07 3.86
EE (98.90°) 14.15 4.25 7.32 4.78 1.23 1.19
Average Error 12.65 5.59 6.96 5.53 2.13 2.06
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Fig. 3: Consensus Algorithm Comparison

the average error of fusion converges to the Naive fusion value
[8]; this is due to the fact that for large ~, all the measurements
are assessed as data without perturbation and used for fusion.
Another important observation from Figure 2 is that the value
of the final heading estimate error for v°P! is almost always
less than 2.5° thanks to the fusion approach.

Table VII presents the performance of our technique for
~°Pt = 5° in case of window size equal to 8 samples for
a 16Hz of sampling rate. The estimate with only perturba-
tion detection is a simple average of the heading measure-
ments. We observe that the average heading error over all
experiments when we implement neither detector nor fusion
(raw PDR) is 12.65°. Using only the perturbation detector
reduces the average heading error to 5.59°(55.8% improve-
ment), while using only the fusion components reduces the
error to 5.53°(56.2%). However, when both the components
are combined, we achieve a significant error reduction. The
minimum average heading error is 2.06° (83.7%) achieved
by the AC combined with the detector to filter perturbed
data. The results obtained in all the experiments highlight that
both the components are extremely important for the heading
estimation.

Results in Table VII show that the performances of AC
and WAC are similar. We would expect the WAC method
to overcome the average consensus since WAC weights the
estimates according to a reliability metric. To address this
point, in Figure 3 we evaluate the performance of WAC using
two different methods for weighting computation: in plain
WAC, weights are computed using the sample variance of user
1 in window 7 as ai i in WAC-Oracle, the Mean Square Error
(MSE) of the heading measurement is used in place of the
sample variance, accounting also for bias. Note that WAC-
Oracle requires the true heading to be available to calculate
the MSE, hence the name Oracle. It can be seen that WAC-
Oracle provides a performance gain over AC. Thereby, the
main problem is related to the measurement bias that occurs
in the selected scenarios and that is not accounted for in the
weighting of BLUE (which assumes unbiased observations).
A possible way to deal with this is performing first AC and
then WAC using as reference for computing the weights the
estimate at convergence of AC: the global average provided by
AC can be used to identify and properly weight users affected
by bias.

C. Localisation Accuracy

In this section, we investigate how the improvements in
heading estimation increases the localisation accuracy of a
given trajectory. We assume that heading and position are
estimated at each pedestrian step. The average localisation
accuracy, F, over the entire trajectory of M steps is obtained
as the Root Mean Square Error (RMSE) of the position
estimate as:

M
E— D@ — 2 + (i — y;)?
M

®)

where (x;,y;) is the true location and (z},y;) is the location
estimate for the ‘" step.

In our experiments, the subjects were instructed to walk at
a constant speed taking constant step lengths to the best of
their abilities. The average walking speed was 1m/s and they
were taking two steps per second on average. We, therefore,
compute the heading estimate and update the new position

every 0.5 seconds assuming a step length of 0.5m. For one of
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Fig. 4: Error Comparison in Old Main Building, (True
Heading=279.23°)

the experiments, Figure 4 compares the position updates when
the heading was estimated using the proposed method (circle
markers) with the positions computed by individual heading
estimates based on raw data without filtering and fusion
(triangle, cross and square markers). The x-axis represents the
width of the corridor while y-axis represents the length. As
the three pedestrians walked one after the other, their starting
positions were separated by roughly 5m along the length of
the corridor.

In Figure 4, it is evident that the estimated positions are
very close to the true when heading is estimated using the
proposed method. For all experiments combined, the average
localisation accuracy with the proposed heading estimate is
55cm, while individual estimates using raw PDR provide an
average accuracy of 275cm. Therefore, for our data set, the
proposed PDR method was able to improve the localisation
accuracy by about 80%.

VII. CONCLUSION AND FUTURE WORK

We have presented a new method for heading estimation
in PDR making use of magnetometer measurements. Our
method utilises two components in order to pre-filter perturbed
measurements and fuse the data collected by multiple users
to improve the heading estimate accuracy. We claim that

just making use of one of the two components leads to
an insufficient improvement in PDR localisation. In fact our
system reaches an error reduction of 83.7% in the heading
estimation and localisation error reduction of 80%.

In next step we will test our method in more dense networks
comparing the performances and the communication costs.
Furthermore the proposed system will be evaluated on real
time data in more complex environments and paths. Future
works will be addressed to further reduce the heading error
associating other sensors to the magnetometer and exploiting
new metrics for the WAC.
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