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Abstract—Accurately estimating the heading of each step is
critical for pedestrian dead reckoning (PDR) systems, which
use step length and step heading to continuously update the
current location based on a previous known location. While
magnetometer is a key source of heading information, poor
accuracy of consumer grade hardware coupled with frequent
presence of manmade magnetic disturbances makes accurate
heading estimation a challenging problem in smartphone-based
PDR systems. In this paper we propose the concept of multi-
pedestrian sensor fusion where sensor data from multiple pedes-
trians walking in the same direction are fused to improve
the heading accuracy. We have conducted experiments with 3
subjects walking together in the corridors of 4 different buildings.
Based on the magnetometer data collected from these subjects,
we find that multi-pedestrian fusion has the potential to improve
magnetometer-based heading error by 42% compared to the case
when no fusion is used. We further show that a very basic fusion
algorithm that simply takes the average of 3 individual heading
estimations can yield a 27.77% error reduction.

Index Terms—Heading Estimation, Pedestrian Dead Reckon-
ing, Multi-Sensor Data Fusion, Indoor Localization.

I. INTRODUCTION

PDR, which uses step length and heading estimation to com-
pute current location relative to a previously known location, is
a viable positioning alternative to GPS in indoor environments.
While magnetometer is considered as a key source of heading
information for PDR, it is known to exhibit large errors
when used indoors due to presence of significant magnetic
disturbances caused by metallic infrastructure. Because these
perturbations are likely to be highly localised, in this paper, we
propose the concept of multi-pedestrian sensor fusion where
sensor data from multiple pedestrians walking in the same
direction are fused to improve the heading accuracy. The key
hypothesis is that pedestrians experiencing high perturbation
will benefit from those experiencing no or minor perturbations
if their devices could share their sensor data in real-time.
Emerging device-to-device communication standards, such as
WiFi-Direct!, are definitely opening up such data sharing
possibilities.

To test this hypothesis, we collected magnetometer read-
ings from three pedestrians walking in the same direction in
the corridors of 4 different buildings. Our study reveals the
following interesting results:

Uhttp://www.wi-fi.org/discover-and-learn/wi-fi-direct

e When pedestrians use their individual heading estima-
tions, i.e., when no fusion is used, the average heading
error from the true heading is 12.45 degrees.

o A simple averaging of all three individual estimations,
which is called Naive fusion in this paper, reduces the
error to 8.99 degrees, which yields an improvement of
27.77%.

« If, however, we were able to filter out the highly perturbed
data, which is called Oracle fusion in this paper, we could
potentially reduce the error to 7.21 degrees or achieve up
to 42% error reduction.

The rest of our paper is organized as follows. In the next
section, we describe the data collection methodology followed
by the multi-pedestrian fusion analysis in Section III. Related
work is reviewed in Section IV before concluding the paper
in Section V.

II. DATA COLLECTION

We performed multiple experiments to collect the data for
our study. In order to ensure diversity in environment con-
ditions (especially magnetic perturbation), experiments were
conducted in 4 different building on our university (UNSW)
campus. In each building, we chose different corridors to
provide different heading directions.

Each experiment consisted of three subjects carrying an
android smartphone. The subjects held the smartphone hor-
izontally in their hand and walked along the corridor of the
building. They ensured that they walked parallel to the corridor
of the building, thus having the same heading, by following
the line between the floor tiles. The smartphones record the
magnetometer readings at 16Hz. Table I shows the building
name and true heading used in each experiment. The true
headings are estimated by assuming that the corridor is parallel
to the face of the building.

The three subjects walked in a line parallel to the corridor,
one after another, with a gap of 5 meters between them.
This means that, at a given time, the three subjects were
always at different locations. The motivation for doing this
is to test whether the magnetic perturbation at different places
are independent. We identify the three subjects as “Back”,
“Middle” and “Front”.

After obtaining the magnetometer readings, we use the two
horizontal components m, and m, to compute the estimated



TABLE I
INDOOR LOCATIONS FOR DATA COLLECTION, UNSW, SYDNEY

Buildings True heading
188.
Library, 3rd Floor 88.99
9.35
278.
Electrical Engineering Building, 2nd Floor 92 39
Robert Webster Building, LG Floor 9927
279.18
Old Main Building, Ground Floor 279.24
99.46

heading with respect to the magnetic North from

m
h = tan"1(—2) (1)
My
We will use these heading estimations for multi-pedestrian
data fusion in the next section.

III. MULTI-PEDESTRIAN DATA FUSION

In order to motivate multi-pedestrian data fusion, we plot
the estimated headings from the three subjects in Figure 1 for
an experiment conducted in the Library building. The figure
also shows the true heading which is 188.99 degrees. The
figure shows that the estimated headings deviate from the
true heading due to man-made magnetic perturbation. Note
also that, at a given time, each magnetometer experienced a
different amount of perturbation. Consider the time interval
between 11.44 to 13.64 seconds, bounded by the two vertical
bars in Figure 1. In this interval, the Front subject experienced
a large perturbation in heading estimation while both the
Middle and Back subjects did not. If there was a method to
tell that the Front heading estimation was erroneous, then we
could discard it and replace it by the average of the other two
heading estimates to obtain better heading estimation. This is
the key idea behind Oracle fusion. In this section, we will
compare the performance of two different fusion strategies.
We first describe the fusion strategies.

A. Fusion methods

We define two different fusion methods, Naive and Oracle.
We assume that all the subjects exchange their estimated
heading using wireless communication such as WiFi. We
assume there are n subjects. At a given sampling time, subject
i calculates its heading estimates h;. After the exchange of
heading estimates, each subject has the data: hq, ho, ..., hy,.
The method is applied for each sampling time.

For Naive fusion, each subject computes the simple average
L 3" | hy of all estimated headings. Note that Naive fusion
works well if the estimated headings are perturbed by random
zero-mean noise but its performance under other types of
perturbations can be poor.

The Oracle method is used here to quantify the best possible
improvement provided by data fusion. The method assumes
that each subject knows the true heading hr and uses a given
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Fig. 1. Library, 3rd Floor, True heading=188.99

TABLE II
LIBRARY, 3RD FLOOR, TRUE HEADING=188.99,NAIVE
Participant | Average error (No Fusion) | Naive Fusion error
Front 23.34
Middle 9.35 8.91
Back 10.48
Average 14.42 8.91

threshold ~. It also assumes each subject has all the estimated
headings from all subjects: H = {h, ..., h,}. Each subject
eliminates all the estimated headings in H that exceed an error
threshold ~ from the true heading hr, or in other words, each
subject determines the set H= {hi € H:h; € [hr —~,hr+
~]}. If the set # is non-empty, then the Oracle method returns
the simple average of the heading estimates in . Otherwise, if
H is empty, the Oracle method uses the subject’s own heading
estimate, i.e. subject ¢ uses h;.

B. Results and discussions

For each building, we have collected multiple sets of data
at different times of the day where each data set contains
approximately 900 magnetometer samples for each subject.
For a given data set, we applied the two fusion methods to
each sample to obtain the fused headings. The heading error is
calculated as the absolute difference between the true and the
estimated headings. For each data set, we obtain one heading
error data by averaging the 900 error data computed for the
900 samples.

Table II shows the results of applying Naive fusion to one
of the experiments conducted on the third floor of the Library
building. It compares Naive fusion against the average heading
error of each subject when no data fusion is used. The last row
of the table shows the results of averaging over all subjects.
Note that the results of Naive fusion is independent of the
subject. It can be seen that Naive fusion reduces the average
error from 14.42 degrees to 8.91 degrees.

Table IIT shows the results of applying Oracle fusion to the
same dataset. The different + values used are shown in the
first column. In columns 2-4, we show the average heading



TABLE III
LIBRARY, 3RD FLOOR, TRUE HEADING=188.99,O0RACLE

Oracle (Perfect fusion)

~ Aevrergarge Ag/rergarge Aevrergarge 1 above | 2 above | 3 above

Back | Middle | Front || 7 v v
1 9.55 8.71 19.97 4 133 843
10 | 5.67 5.69 5.17 499 385 91
12 5.39 5.42 5.07 625 287 53
15 4.80 4.78 4.74 699 189 7
20 | 4.56 4.56 4.56 675 82 0
25 4.72 4.72 4.72 562 42 0
30 | 5.75 5.75 5.75 408 4 0
35 6.78 6.78 6.78 221 0 0
40 | 8.24 8.24 8.24 62 0 0
45 8.70 8.70 8.70 19 0 0
50 | 8.85 8.85 8.85 5 0 0
60 | 8.90 8.90 8.90 0 0 0
70 | 8.90 8.90 8.90 0 0 0
80 | 8.90 8.90 8.90 0 0 0
90 8.90 8.90 8.90 0 0 0
100 | 8.90 8.90 8.90 0 0 0
120 | 8.90 8.90 8.90 0 0 0
140 | 8.90 8.90 8.90 0 0 0
150 | 8.90 8.90 8.90 0 0 0

error for each subject for different values of 7. Note that
each subject can have a different average error because if all
the heading estimates at a given time exceed the threshold
v, each subject uses its own heading estimate as the output
of the Oracle method. In column 5, we show for each value
of 7, the number of sampling times where exactly 1 of the
estimated headings is above the threshold -y, or equivalently,
the number of sampling times that the set #H has exactly 2
elements. Columns 6 and 7 are similarly defined. For v =1,
we find that, for a lot of sampling times, all the three heading
estimates have an error greater than . This is due to low value
of error threshold . As the threshold ~ increases, the number
of sampling times that all three heading estimates are above
the threshold become lower.

An interesting observation that can be made from columns
2—4 in Table III is that, as « increases, the average heading
error for each subject decreases and then increases again. This
means that there is an optimal threshold ~ that gives the
minimum estimation error. This observation is also found in
the data from the other experiments. In Figure 2, we plot the
average heading error for each subject against the v for an
experiment conducted in the Robert Webster Building.

In Table IV, we compare the fusion methods over all the
10 data sets from the four buildings. Four different methods
are used: no fusion, Naive fusion, Oracle fusion with a fixed
threshold of 10 and Oracle fusion with the optimum threshold
that gives the minimum heading error. Percentage improve-
ments, compared to the case when no data fusion is used, are

Back
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Fig. 2. Heading error for Oracle fusion in Robert Webster Building, LG Floor,
True heading=99.27.

shown in brackets. The last row shows the average error and
percentage improvements over all the 10 experiments.

It can be seen from Table IV that Naive fusion is useful and
can deliver improvement of 27.77% on average. For Oracle
fusion with a fixed threshold ~, the improvement is —24.77%.
This means a fixed v does not deliver good results. Finally,
the Oracle fusion with optimum threshold delivers the best
improvement of 42.04%.

IV. RELATED WORK

Some approaches are currently in use to improve head-
ing estimation such as sensor fusion by Kalman Filter [1]-
[3], magnetometer fingerprinting [4]-[7], and magnetometer
filtering [8]-[10]. Kalman filter is a sophisticated filter and
uses magnetometer, accelerometer and gyroscope to estimate
pedestrian’s heading. In magnetometer fingerprinting, different
algorithms are used to match the observed magnetometer
reading with a pre-surveyed database. In magnetometer filter-
ing, the perturbed data are filtered to improve its accuracy.
Our proposed fusion algorithms rely only on smartphone’s
magnetometer without using any infrastructure.

V. CONCLUSION

While magnetometer is considered as a key source of head-
ing information for PDR, it is known to exhibit large errors
when used indoors due to presence of significant magnetic
disturbances caused by metallic infrastructure. Since these
perturbations are highly localised, it may be possible that not
all pedestrians are affected (equally) at the same time, opening
up the possibility of reducing error by fusing sensing data
among multiple pedestrians walking in the same direction.
In this paper, we have experimentally quantified the error
reduction potential of such multi-pedestrian sensor fusion. Our
study reveals that there is opportunity for significant error
reduction (42.04%), but only 27.77% is achievable with a
Naive averaging. This calls for research in more advanced
fusion models to achieve the full potential of multi-pedestrian
sensor fusion.



TABLE IV

COMPARISON OF THE FUSION ALGORITHMS OVER 10 DATA SETS FROM

FOUR BUILDINGS

Building, Day, (True Heading)

No-fusion

Naive fusion(%)

Oracle fusion, v=10(%)

Oracle fusion, Optimum (%)

Library, Day 1, (188.99)

14.42

8.91(38.21)

5.51(61.77)

4.64(67.82)

Library, Day 2, (188.99)

21.20

12.01(43.37)

14.56(31.35)

10(52.84)

Library, Day 1, (9.34)

17.94

15.92(11.28)

55.85(-211)

14.56(18.86)

Library, Day 2, (9.34)

12.18

4.92(59.60)

39.53(-224)

5.97(50.98)

Electrical Engineering Building, Day 1, (278.99)

11.61

11.08(4.52)

8.80(24.16)

8.32(28.31)

Electrical Engineering Building, Day 2, (98.9)

9.75

5.77(40.82)

5.26(46.01)

5(48.71)

Robert Webster Building, Day 1, (99.27)

9.61

8.72(9.25)

7.20(25.07)

6.7(30.31)

Robert Webster Building, Day 2, (279.18)

11.75

10.70(8.96)

6.35(45.96)

6.24(46.88)

Old Main Building, Day 1, (279.24)

6.60

5.69(13.75)

4.54(31.29)

4.53(31.39)

Old Main Building, Day 2, (99.26)

9.36

6.18(34.24)

7.68(18.24)

6.18(34.24)

Average

12.45

8.99(27.77)

15.53(-24.77)

7.21(42.04)
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