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Abstract—A pedestrian activity classification (PAC) system
classifies pedestrian motion data into activities related to the usage
of specific building facilities, such as going up on an escalator or
descending a staircase. Recent studies confirm that use of PAC
significantly reduces indoor localization errors of a pedestrian
dead reckoning (PDR) system as exact facility locations in the
building can be retrieved from the floor map. However, classifi-
cation complexity may become an issue for resource constraint
mobile devices. We propose a novel PAC system that, instead of
using a single complex classifier based on a large set of features,
employs multiple simple classifiers each trained to classify only a
subset of the activities using a small number of features. As the
pedestrian moves around inside a building, the proposed adaptive-
PAC dynamically switches to the right (simple) classifier based
on the facilities that exist within the immediate proximity. By
always using a simple classifier, adaptive-PAC has the potential
to drastically reduce the average classification complexity for
PAC-aided PDR systems. Using experimental data, we quantify
and compare the performance of the proposed adaptive-PAC
against the conventional PAC. We find that for typical shopping
centers, adaptive-PAC reduces classification complexity by 91-
97% without any degradation in classification accuracy rates.

Keywords—Pedestrian Activity Classification, Indoor Localiza-
tion, Pedestrian Dead Reckoning.

I. INTRODUCTION

Pedestrian dead-reckoning (PDR) [1], which uses step
length and heading estimation to compute current location
relative to a previously know location, is a viable position-
ing alternative to GPS in indoor environments. PDR is also
completely self-sufficient in the sense that it does not require
any support from any type of infrastructure. As such, it can
be used to complement WiFi-based solutions [2] to cover
locations where WiFi coverage is not adequate for precise
localisation. The major problem of PDR systems, however,
is the error accumulation due to noise in the mobile sensors,
so the accuracy diverges from the truth over time.

Recent studies [3], [4] show that PDR error accumulation
can be significantly reduced by combining a PAC module to
the system. The task of the PAC is to continuously monitor
the accelerometer signal and detect the event when the user
is using one of the fixed building facilities, such as lifts,
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(a) A typical Architecture of a PAC-aided PDR system.
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Fig. 1. The concept of a PAC-aided PDR system. (a) A typical Architecture
and (b) An illustration using an indoor map.

escalators, stairs, ramps, etc. A typical architecture of PAC-
aided PDR system could be as shown in Fig. 1(a). Since
accurate locations of such facilities are available in the floor
map, the exact user location is derived instantly by the PAC
whenever such events are detected and correctly classified. Fig.
1(b) illustrates the idea of a PAC-aided PDR system using a
real map of a shopping center.

While PAC clearly has the potential to reduce PDR error,
its classification complexity may become an issue for resource
constraint mobile devices. This is especially the case for large
multi-story indoor complexes, which deploy many different
types of facilities for increased pedestrian convenience and
better management of pedestrian flow. For example, there are
at least eight distinct activities if we consider four different
facilities, lift, escalator, ramp, and stairs, because we need
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Fig. 2. Floor map (Level 1) of the Bankstown shopping center in Sydney.

to distinguish going up on a facility from going down. The
number of activities to classify is even larger if we want to
distinguish standing on an escalator from walking on it. The
list is further extended when standing or walking on the floor
need to be distinguished from walking and standing on any of
these facilities. Conventional PAC designs [3], [4], which train
a single classifier to detect and distinguish all these activities,
inevitably struggle with classifier complexity.

To address the classifier complexity problem in PAC,
we propose a novel solution, which we call adaptive-PAC.
Adaptive-PAC is based on the observation that at any time,
there is only a small subset of facilities in the immediate
proximity of the pedestrian that she can possibly use in the
near future. Thus we propose to train offline many simple
(Iess complex) individual classifiers each dedicated to classify
only a subset of facilities or activities and then switch them
dynamically during run time based on the current location
of the pedestrian. By always using a less complex classifier,
a PDR that uses an adaptive-PAC is expected to incur less
classification overhead than the one using a conventional non-
adaptive PAC.

We quantify the performance of the proposed adaptive-
PAC with experimental data collected from subjects using lifts,
escalators, ramps, and stairs in different buildings. We find that
spatial distribution of facilities on a given floor has a major in-
fluence on the actual overhead reduction that could be achieved
with adaptive-PAC. We surveyed a large shopping center and
find that, for the empirical facility distribution, adaptive-PAC
reduces classification overhead by 91-97% compared to a
conventional PAC. Apart from the huge complexity reduction,
the adaptive-PAC also reduces the number of features that
need to be extracted at each classification epoch, which further
reduces classification related overhead in a resource-constraint
mobile device. All these PAC overhead reductions are achieved
without any degradation in classification accuracy rates.

The contributions of this paper can be summarized as:

e  We propose the novel concept of adaptive-PAC, which
seeks to reduce classification related overhead in PAC-

aided PDR systems by training offline a set of simple
classifiers and dynamically switching to one of them
during run time.

e  We propose a methodology to select features for the
individual classifiers of an adaptive-PAC that mini-
mizes the number of features and complexity without
degrading classification accuracy rates.

e We conduct a field survey and demonstrate that for
typical shopping centers, adaptive-PAC reduces clas-
sification complexity by 91-97% without any degra-
dation in classification accuracy rates.

The rest of the paper is organized as follows. Related
work is reviewed in Section II. Section III examines the
key characteristics of the proposed adaptive-PAC system. The
methodology to compute and evaluate classification complex-
ity of adaptive-PAC is explained in Sections IV and V. We
conclude the paper in Section VI.

II. RELATED WORK

Pedestrian activity classification (PAC) is an emerging
field of research, born from the larger fields of ubiquitous
and context-aware computing [5]. Recognizing everyday life
activities is becoming a challenging application in pervasive
computing, with a lot of interesting developments in the health
care domain [6], the human behavior modeling domain and
recently the indoor positioning domain [3], [4], [7]. Based on
the targeted field of research, the corresponding set of activities
differs. For example, the activity set considered in [6] includes
lying, running, rope jumping, tooth brushing, etc, which can
be used for health monitoring purposes.

Recently, PAC for the purposes of correcting pedestrian
dead reckoning (PDR) errors in indoor environments has
attracted attention of several research groups. With a practical
implementation on a smartphone, Gusenbauer et al. [3] have
convincingly demonstrated that PAC, such as detecting whether
the pedestrian is using a stair or a lift, can reduce PDR
positioning error significantly when the user travels through
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TABLE 1. 16 POSSIBLE ACTIVITY SETS FOR N=4.
# of different | Activity Set
facilities (k)

0 Go = {SS, W7}

G111 = {SS,W,LT,L¢},

1 Gz = {SS, W, Ey, B, },

G13 :{SS,W,ST,SL},OT

Gia :{SS,W,R¢,R¢}.

Go1 = {SS,W7LT,L¢,E¢,EL}7

Ga2 = {SS,W,LT,LL,ST,Si},

2 Goz = {SS,W,Ly,L,, Ry, Ry},

Gy = {S5, W, Ey, E|, 54, Sy 1,

Gos = {SS, W, Er, B, Ry, Ry }, or

Gag :{SS,W,S},Si,RT,RL}.

G31 = {SS,W,LT,Li,ET,Ei,ST,SL},

3 Gsp = {SS,W,Ly,L,,E+,E|, Ry, R},
G33 :{SS,W,LT,L¢,ST,S¢,RT,RL},OT
Gsa = {SS, W, Ey, B, 54,8y, Re, Ry}

4 Gy ={SS,W,L+,L,,E+,E,S+,S,,R+, R, }.

multiple floors. The same observation was later confirmed by
Altun et al. [4], [8] with a simultaneous activity recognition
and dead reckoning implementation using inertial measure-
ment units (IMUs) attached to body parts. For a random walk
model, Hassan [9] has shown that the distance a pedestrian is
expected to travel before the PDR error is reset is reciprocal
of the density of activity switching points (ASPs), such as lifts
and escalators, in the indoor environment. The implication of
this finding is that the continuous unaided use of PDR can be
curbed drastically by identifying more ASPs. Khalifa and Has-
san [10] considered the problem of multiple lifts or escalators
existing near a pedestrian leading to the possibility of matching
to the wrong lifts (escalators) despite the classifier detecting the
activity correctly. They found that such mismatch probabilities
vary from location to location in the same building and can
be pre-computed offline, which could be later used by a PDR
system to make decisions about whether to accept the outcome
of an activity detection module or ignore it.

Prior work on PAC has principally focused on identifying
the key features that enable the most accurate classification
of the defined activity set. As such, they considered a single
classifier attempting to classify the input signal to one of the
activities from the set of all possible activities. For example,
authors of [3] have used a single support vector machine
(SVM) to classify many indoor activities, while [11] used a
single multi layer perceptron (MLP) to classify three indoor
activities. In contrast, our approach focuses on adaptively
selecting a classifier from the set of available pre-trained classi-
fiers depending on the probable set of activities that the user is
likely to perform in the near future. By reducing the elements
in the activity set for classification, the proposed adaptive-PAC
approach reduces the average classification complexity over
time. Work on such adaptive classification is rarely reported
in the literature with the exception of [12], where the authors
propose to adapt the sampling rate of the accelerometer based
on the probable activities in the near future. However, the focus
of the study in [12] is on minimizing the sampling frequency
of the sensors, while we seek to minimize the computation
complexity of the classifier.

III. CHARACTERISTICS OF ADAPTIVE-PAC

The main characteristic of adaptive-PAC that differentiates
it from the conventional non-adaptive PAC is the training of
a multitude of simpler classifiers instead of a single complex

TABLE II. ACTIVITY NOTATION.

Symbol used Refers to

L Lift

E Escalator

R Ramp

S Stairs

w Walking

SS Standing Still

F Unnamed Facility; ' € {L,E, R, S}

Fy Facility Up, e.g., R+ means Ramp Up

Fy Facility Down, e.g., R means Ramp Down

one. Each of these classifiers is dedicated to identify only a
specific subset of all possible activities depending on the types
of facilities available in the proximity of the pedestrian. For
a finite number of facility types available in a building, it is
possible to work out the complete set of classifiers that need
to be trained.

Let us assume the following. Any individual classifier will
have to detect standing (SS) and walking (W) on the floor
as two basic activities irrespective of which facilities are in
the proximity of the pedestrian. For each type of facility
available in the proximity, there are two additional activities,
going up and going down the facility, that a classifier will
have to recognise. Thus, each classifier in an adaptive-PAC
will have to recognise a total of 2(k + 1) activities, where
k represents the number of different types of facilities in the
proximity of the pedestrian. However, for a specific value of
k, we have () different activity sets, each requiring its own
classifier. Therefore, we need a total of Zg:o (],\j ) = oN
different classifiers in an adaptive-PAC. Table I shows all
possible activity sets for NV = 4 while Table II explains the
notation used to represent various activities.

Quantitative evaluation of complexity gain, i.e., savings
in classifier complexity, due to adaptive-PAC would require
knowledge of complexity for each of these individual classi-
fiers. This can be achieved by training each one of them with
relevant input data. In the following section, we explain our
methodology to obtain the complexity of individual classifiers
in an adaptive-PAC for N = 4, which includes lift, escalator,
ramp, and stairs.

IV. COMPLEXITY OF INDIVIDUAL CLASSIFIERS
A. Complexity of MLP-based Classification

In a separate investigation [11], we found that the floor
changing activities, such as riding a lift or an escalator, are
more accurately detected using Multilayer Perceptron (MLP)
than any other types of classifiers. In this work, therefore, we
use MLP as a basis for evaluating the complexity gain of the
proposed adaptive-PAC. A recent work [13] has shown that
complexity of MLP can be effectively modeled as a function
of the number of neurons in the input layer, V;, and number of
neurons in its output layer, N,, which is based on counting the
number of multiplications, additions and the logistic function
evaluations. A three-layer MLP classifier requires Ny, (N;+N,)
weights, where N, is the number of neurons in the hidden
layer. Adding the weights associated with the outputs of two
bias neurons, one as an input to the hidden layer and the
other joining the hidden layer to the output layer, gives a
total of Nj,(N; + N,) + Nj, + N, weights. Since the number
of multiplications and additions is twice the total number
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of weights and the number of evaluations of the logistic
function is Nj, + N,, the total number of operations required
to accomplish the classification process, i.e., the complexity of
MLP, is obtained as [13]:

Curp = 2Nup(N;i+ No)+3(Nin + N,)
(N; + N,)? + 1.5(N; + 3N,) (1)
where N, = w is typically selected as a default
parameter.

Note that N; and N, of an MLP classifier basically refers
to the number of features used for the classification process and
the number of activities to be classified, respectively. Values
of N, can be directly extracted from Table I as the number of
elements in the activity sets. To obtain NV;, we must train the
individual MLP classifiers with relevant input data, which is
explained in the following subsections.

B. Accelerometer Data Collection

We have collected accelerometer data for the mentioned 10
activities using facilities in actual buildings '. The data were
collected using an Android Galaxy Nexus smartphone coupled
with an application created to suit our studies. Four volunteers
(2 males and 2 females) were trained and asked to hold the
smartphone in the hand in front of the body while doing the 10
activities. While riding lift or escalator, the subjects were told
to simply stand on the moving platform and not walk around
or climb up or down. For escalators and ramps facilities, data
collection begins and ends at two end points of the escalator,
giving a trace length proportional to the length of the facility.
For most of the escalators, the traces were about 20sec long.
For lifts, it is harder to control the trace length as lifts are
stopped arbitrarily by other users in the building. Therefore,
our lift trace lengths varied widely ranging from a mere 5sec
(one floor) to 20sec (5 floors). To match the majority of traces,
all walking and standing activities traces are 20sec long. A
sampling rate of 100 Hz was used for data collection.

C. Feature Selection for Individual Classifiers

We use the non-adaptive PAC reported in [3] as our
benchmark. In that work, the authors used a total of 25 fea-
tures, including average acceleration for each axis (3 features),
variance for each axis (3 features), standard deviation for
each axis (3 features), inter-quartile range for each axis (3
features), root mean square for each axis (3 features), pair-
wise correlation among 3 axes (3 features), velocity for each
axis (3 features), distance for each axis (3 features), and
signal magnitude area (1 feature) to train a single classifier,
which was used throughout the PDR session. Using these 25
features with an MLP classifier in WEKA [14] with default
settings results in an overall accuracy rate of 86.25%. This
MLP classifier is used for k& = 4, i.e., when all four types
of facilities are within the proximity. For the remaining 15
classifiers, we adopt a feature selection method known as
sequential feedforward selection (SFS) [15], which allows us
to select a minimum number of features that achieves a target
accuracy, which is chosen as 86.25% in our case.

ITUNSW (http://www.unsw.edu.au/), NICTA ATP (http://www.woodhead.
com.au/projects/nicta-australian-technology- park-sydney-new-south-wales/),
Westfield Shopping center (http://www.westfield.com.au/parramatta), Centro
Bankstown shopping center (http://www.centrobankstown.com.au).
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Fig. 3.  An example of the SFS-based feature selection process for G11-
G14 Classifiers. Accuracy target of 86.25% is reached with only 7, 10, or 16
features depending on the activity set.

TABLE III. COMPLEXITIES AND ACCURACIES FOR EACH OF THE 16
INDIVIDUAL CLASSIFIERS OF THE ADAPTIVE-PAC SYSTEM.

# of | Activity No. of | Accuracy| MLP Config- | Complexity| Average
different Set Fea- (%) uration (IV;- using Com-
facilities tures Np-Ny) Eq.1 plexity
k)
0 Go 1 100 1-1-2 15 15
G111 16 86.77 16-10-4 442
1 G2 10 95.39 10-7-4 229 236
Gi3 7 88.93 7-5-4 137
G1a 7 86.62 7-5-4 137
G2 15 87.47 15-10-6 468
Gao 21 87.21 21-13-6 759
2 Gas 18 87.14 18-12-6 630 511
Gay 12 88.62 12-9-6 369
Gas 12 90.63 12-9-6 369
Gag 15 87.84 15-10-6 468
G31 18 87.29 18-13-8 739
3 G32 15 86.39 15-11-8 563 637
G3s 20 84.73 20-14-8 850
G3yq 14 86.48 14-11-8 541
4 Gy 25 86.25 25-17-10 1271 1271

SES is a simple greedy search algorithm that starts from
the empty set and adds features one by one so that every next
feature maximises some criterion [15]. In this paper, we used
this basic principle of SFS with the following variations. We
consider classification accuracy as the maximisation criterion,
but instead of evaluating the accuracy for a subset of features,
we ranked all 25 features in the beginning based on their
information gain (IG) using WEKA. At each step of adding
a new feature to the feature set, we chose the one with the
maximum gain in the hope that it would maximise accuracy
increase. We used the target accuracy of 86.25% as a stopping
criterion for the algorithm, i.e., we stop adding a new feature
to the feature set as soon as accuracy reaches or exceeds the
target.

Figure 3 shows an example of the SFS-based feature
selection process for G11 — G4 classifiers. We can see that
different classifiers need different number of features to meet
the target accuracy. For example, GG13, i.e., when only stairs
are in the proximity, needed only 7 features, while G1;
(lift) required 16 to meet the accuracy target of 86.25%.
We also noticed that although adding the next ranked feature
based on IG do not always increase accuracy, in general the
accuracy increases with adding more features to the feature set,
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validating the effectiveness of the proposed SFS-based feature
selection methodology.

Once the feature set is worked out, we can readily compute
the complexity using Equation (1), because the number of
elements in the feature set defines the parameter N; for the
MLP classifier. Table III shows the complexities for each
of the 16 classifiers. We note that the complexity over all
possible classifiers under the same value of £ may not be
uniform. To reduce the problem space, we report the average
complexity for each k (last column of Table III). We find
that average complexity increases monotonically with &, which
guarantees complexity reduction with adaptive-PAC except for
the extreme and unlikely situation where a pedestrian finds
all four facilities within her immediate proximity at all times
during the navigation of a large indoor complex. We further
find that complexity increases exponentially with k (see Figure
4), which implies that large complexity reductions are possible
with adaptive-PAC.

It is intuitively clear that the expected amount of com-
plexity reduction with adaptive-PAC would depend on the
probability mass function (pmf) P(k), which defines the
probability that exactly k different types of facilities are
available in the proximity of the pedestrian. In the following
section, we quantify the expected complexity of adaptive-PAC
for different types of probability distributions, including an
empirical distribution obtained by field survey.

V. EXPECTED COMPLEXITY OF ADAPTIVE-PAC

The complexity of non-adaptive PAC is basically defined
as Cpq = Cprrp(k = 4), which is obtained as 1271 (see Table
IIT). The expected complexity of the proposed adaptive-PAC
can be obtained as:

4

Ca =Y Curp(k)P(k) 2

k=0

From Equation (2), given that C;r,p(k) is monotonically
increasing, C, < Cp, for any distribution of P(k) except

07 T T T T

061 A

=3
n
T
I

-
=

Probability Mass Function

-
5]

Fig. 5. Different shapes of a Binomial distribution with N = 4. It decreases
monotonically for small values of p, while increases monotonically for large
values of p. It is non-monotonic for medium values of p.

when P(k = 4) = 1. Let us derive C, for some probable
distributions of P(k).

A. Uniform Distribution

For uniform distribution, we have P(k) = % for k =
0,1,2,3,4. This leads to C, = 534. Therefore, if the proba-
bility of having different number of facilities in the pedestrian
proximity is uniformly distributed, adaptive-PAC would reduce
the classification complexity from 1271 to 534 achieving a
58% reduction.

B. Binomial Distribution

For most practical cases, the distribution is likely to be
non-uniform. Binomial distribution can be used to capture
different types of pmf. Figure 5 shows how we can capture
monotonically increasing, monotonically decreasing, and non-
monotonic behaviours by selecting different values of param-
eter p, which defines the probability of a facility appearing in
the proximity of a pedestrian at any given time. The C, for a
Binomial pmf is derived as:

4
Ca(p) =123 EZJ 038 (i)p’“(l -0

Figure 6 shows that expected complexity of adaptive-
PAC reduces quartically against the Binomial parameter p.
Intuitively, p is proportional to the density of facilities, i.e.,
given a denser deployment of facilities, we could expect a
larger value for p, and vice-versa. Therefore, we can expect
more significant reductions in complexity when facilities are
sparsely deployed. We conducted a field survey to find out just
how sparsely the facilities are deployed in a typical shopping
center.
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C. Field Survey and Empirical Distribution

We surveyed a 2-story shopping centre in Sydney, Aus-
tralia, located in the suburb of Bankstown [16]. The floor maps
of Levels 1 and 2 of the center are shown in Fig. 2 and Fig. 7,
respectively. The maps mark the locations of the four facilities
considered in our research.

Because these maps are not drawn to scale, we conducted a
field survey to estimate the scale of the grids. We first identified
two facilities on the map joined by a horizontal straight line
path as marked on the map in Fig. 7). One of our volunteers
walked over the line between the two facilities and counted the
number of steps. This exercise was repeated three times and on
average it took 65 steps to walk between these two facilities,
which were 7 grids afar on the map. This gives a distance of 9
steps per grid. In a separate exercise, the volunteer measured
his average step length as 0.5 m, which is used to estimate
the grid length as 4.5m. Therefore, a proximity radius (r) of
1 grid beyond the current position (assuming a center location
on a grid) would give a radius of 1.5 grid, which is about 6.75
m or 13.5 steps. With r = 2, we would get 11.25m or 22.5
steps. As these are reasonable distances for the purposes of
switching classifier, we considered both » = 1 and r = 2 to
calculate the empirical pmf P(k).

For each of the two maps, we examined the proximity of
every grid location, excepting the non-accessible areas, and
counted the number of different facilities available there. For
Level 2 and a proximity radius of 2 grids, Table IV shows
the observed frequency of each of the 16 possible activity
sets and the resulting values for the observed P(k). For this
empirical distribution, we obtain C,, = 79 from Equation (2).
Table V shows the empirical distributions for both levels for
two different proximity radii. We can see that for all cases,
the distribution is monotonically decreasing, which is better
estimated with Binomial distribution when p is very small (see
Figure 5), or the facility deployment is sparse. The complexity
reductions achieved for the empirical distributions varied from
91% (Level 1, r =2) to 97% (Level 2, r = 1).

TABLE IV. THE OBSERVED FREQUENCY OF THE 16 POSSIBLE
ACTIVITY SETS IN LEVEL 2 OF THE BANKSTOWN SHOPPING CENTER FOR
A PROXIMITY RADIUS OF 2 GRIDS.

# of different facilities | Activity Set Frequency | P(k)
&)
0 Go 998 0.76
1 G2 63 0.20
Gis 51
G21 6
Gzz 19
2 Gas 0 0.04
G24 5
Gas 0
Gag 25
G31 0
3 G2 0 0
Ggg 0
G34 0
4 Gy 0 0

TABLE V. THE EMPIRICAL PMFS OBTAINED FOR THE BANKSTOWN

SHOPPING CENTER.

# of different | P(k) for | P(k) for P(k) for | P(k) for
facilities (k) level 1, r=1 level 1, r=2 level 2, r=1 level 2, r=2
0 0.83 0.61 0.90 0.76
1 0.17 0.34 0.09 0.20
2 0 0.05 0.01 0.04
3 0 0 0 0
4 0 0 0 0
[ Cl [ 53 [ 115 [ 40 [ 79

VI. CONCLUSION

In this paper, we propose a novel concept of adaptive-
PAC, which seeks to reduce activity classification complexity
of a PAC-aided PDR system. Adaptive-PAC is based on the
observation that at any time, there is only a small subset of
facilities in the immediate proximity of the user that she can
possibly use in the near future. It is, therefore, possible to
dynamically switch to a simple low-overhead classifier based
on the users current location. We have evaluated the potential
gain of adaptive PAC using experimental data and empirical
facility distribution of a shopping center. Our studies show
that adaptive-PAC reduces classification complexity by 91-
97% without any degradation in classification accuracy rates.
Apart from classification complexity reduction, the adaptive-
PAC also reduced the number of features that need to be
extracted at each classification epoch, which further reduces
classification related overhead in a resource-constraint mobile
device.
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