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Abstract—If users are known to perform specific activities
at specific locations within a building, then indoor positioning
could be achieved by monitoring user activities and matching
them to specific locations in a preloaded floor map. This is the
fundamental idea behind activity-based map matching (AMM).
For example, the user’s smartphone could use the accelerometer
readings to detect whether a user is using an escalator, and then
match the current location of the user to the nearest escalator.
AMM therefore could be used for frequently recalibrating
location estimators to ground-truth values. This is especially
useful for recalibrating pedestrian dead reckoning (PDR), which
can estimate indoor position if started from a known location,
but error grows unboundedly with time or distance traveled.
However, AMM is not perfect and could potentially cause
mismatches by matching the current location of the user to a
wrong location. In this paper we propose a methodology and
derive a closed-form expression for mismatch probability as
a function of PDR sensor error and proximity between two
facilities. By applying our methodology to a practical indoor
complex (Sydney airport) we find several interesting results: (1)
that mismatch probability is spatially non-uniform, i.e., it can
be different in different parts of the floor, (2) for some specific
facilities, mismatch probability can be very high (up to 80%),
and (3) if escalators could be distinguished from lifts with high
accuracy, we could reduce mismatch probability significantly (by
up to 68%).

Index Terms—Indoor Positioning, Pedestrian Dead Reckoning,
PDR Recalibration, Activity-Based Map Matching, Mismatch
Probability.

I. INTRODUCTION

A recent scheme, called pedestrian dead-reckoning (PDR)
[1], has demonstrated the ability to continuously estimate
indoor position of a mobile phone using its accelerometer and
compass if started from a known location. The key idea is
simple. Based on the accelerometer readings, it is possible to
count the number of steps a person has walked, and therefore
derive the displacement of the person. Using the compass,
the direction of each of these steps can be tracked. Merging
the displacement with the direction, the user’s location can be
estimated.

Conceptually, PDR is an elegant solution to indoor position-
ing because it is completely self-sufficient in the sense that it
does not require any support from any type of infrastructure.
The major problem with PDR, however, is that the dead-
reckoned trajectories are accurate in the beginning, but due
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to noise in the mobile sensors, the accuracy diverges from
the truth over time. As such, PDR cannot be used on its
own for long indoor trips. Some additional mechanisms are
required to occasionally obtain a position fix (also referred
to as ‘recalibration’). Following a recalibration, PDR can be
used once again to track location from the newly calibrated
location.

Three main approaches have been proposed in the litera-
ture to recalibrate PDR. One but all rely on some form of
infrastructure for the calibration.

• GPS-based: This approach uses the global positioning
system (GPS) when it is available. Some Outdoor local-
ization schemes like CompAcc [2] trigger periodic GPS
measurements to recalibrate the user’s estimated location.
A PDR system in [3] has used GPS as a means to
calibrate and validate the PDR technology. Unfortunately,
GPS is unreliable indoors, making it an inappropriate
solution for indoor.

• Indoor-reference-node-based: An alternative approach
uses reference nodes deployed in the infrastructure to
recalibrate the user’s estimated location. The system
proposed in [4] uses the radio-frequency identification
(RFID) technology to calibrate the PDR system by plac-
ing RFID tags in the environment. These tags act as fidu-
cial markers that update the PDR system by correcting
positional errors and sensor inaccuracy. Another system,
proposed in [5] utilizes WIFI access points (up to 30) for
collecting calibration information. In the system proposed
in [6], a camera was mounted on the head, pointing in
the superior direction with respect to the user. Large
number of markers were positioned on the ceiling and
walls, arranged in a high density pattern of about 1.7
markers per square meters. Position fix was achieved
by optical recognition of these markers. Unfortunately,
these solutions depend on infrastructure and some of them
cannot be easily achieved with smartphone (for example,
RFID solution would not work without an RFID reader
installed on the phone).

• Activity-based Map Matching (AMM): This recently
proposed approach [7] [8] is used for recalibrating PDR
systems by monitoring user activities and matching
their activities to specific locations in a preloaded floor
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map. These specific locations would be one of the
facilities in the building, such as an escalator, a lift,
a stair, a ramp, and so on, which force the pedestrian
to act differently than walking. Given that smartphone
accelerometer can be used to detect user activity [9]
[10], the combination of AMM and PDR provides an
opportunity for the mobile device to learn its location
without relying on any interactions with in-building
infrastructure. This provides a completely self-sufficient
indoor positioning and navigation solution, which could
be readily implemented in a modern personal mobile
device, such as an smartphone.

However, AMM is not perfect and potentially could
introduce errors of its own. One such error could occur due to
matching user location to an incorrect facility on the map. In
particular, this can happen if many of such facilities exist in a
building (such as many escalators within a large airport). For
example, if two escalators exist in ‘close’ proximity to each
other, matching the current pedestrian location to the nearest
escalator may actually match to the wrong one. We shall call
this type of error a mismatch. Therefore, we need a method
to compute mismatch probability of a given AMM solution
for a given indoor complex. To the best of our knowledge, no
such methods have been discussed in the literature yet. This
motivates our current work.

We make the following novel contributions:

• We propose a methodology to compute mismatch proba-
bility of AMM. Our methodology can be applied to both
continuous and discrete location cases.

• For continuous location, we derive a closed-form expres-
sion for mismatch probability as a function of PDR sensor
error and proximity between two facilities. The analytical
framework is validated by applying it to a real map with
discrete locations.

• Using the proposed methodology and publicly available
floor maps, we computed mismatch probability for a
practical indoor complex (Sydney Airport). We obtain
several interesting results:

1) Mismatch probability is spatially non-uniform, i.e.,
it can be different in different parts of the floor.
This is caused by non-uniform proximities between
facilities located in different parts of the building.

2) For some specific facilities, mismatch probability
can be very high (up to 80%).

3) If escalators could be distinguished from lifts with
high accuracy, we could reduce mismatch probabil-
ity significantly (by up to 68%).

The rest of the paper is organized as follows. An overview
of AMM is provided in Section II. We present our proposed
methodology to compute mismatch probability in Section III,
followed by a practical application of it in Section IV. We
conclude our paper in Section V.

II. OVERVIEW OF ACTIVITY-BASED MAP MATCHING

Activity-Based Map Matching (AMM) comprises of two
basic modules:

1) Activity Detection (AD): The main function of this
module is to detect what a person is doing at a particular
instant, for example detecting whether a person is going
upstairs, standing in a lift, or using an escalator.

2) Map Matching (MM): This module attempts to identify
the facility on the map the user is using based on his/her
detected activity, and then match the PDR estimated
position to the location of the identified facility.

Both modules can introduce errors of their own. AD can
introduce two types of errors. First, it can miss detecting an
activity when an activity actually takes place. Second, it may
confuse between two activities and incorrectly detect one when
actually the other has taken place, such as mistakenly detecting
a lift activity when actually the pedestrian has started using
an escalator (we will show later that both escalators and lifts
produce very similar accelerometer signals).

MM has another issue. AD may detect the activity correctly,
but knowing the activity does not yield the exact location of
the user in a large indoor complex deploying many facilities.
For example, the smartphone may use accelerometer readings
to correctly detect that the pedestrian is using an escalator,
but it cannot work out exactly which escalator is being used if
many escalators are available on the same floor. To identify the
most likely escalator, one approach proposed in the literature
[7] is to match the current estimated location of the user to
the nearest escalator. We shall call this approach the Nearest
Object Matching (NOM). However, the escalator determined
by NOM (the nearest escalator) may not be the actual escalator
the user is using. In this case, we say that a mismatch has
occurred.

The focus of this paper is to estimate the mismatch probabil-
ity for a given map and PDR sensor error. We will assume that
the real location of the user is known, which helps working
out whether a mismatch has occurred or not. In our work, we
shall use the locations of the facility given on the map as the
real positions of the user. The next section presents the details
of our proposed methodology.

III. METHODOLOGY FOR COMPUTING MISMATCH
PROBABILITY

We propose a methodology to compute mismatch proba-
bility for every single facility located at a known position.
We have the following 3 inputs: (1) location of the facility
for which mismatch probability is to be computed, (2) sensor
error distribution, and (3) location of all other facilities which
belong to the same class of facilities. When a certain class
of pedestrian activity, such as riding an escalator, is detected,
we assume that the PDR location estimate at that time can be
anywhere within a certain range of the location of the escalator.
This range is called PDR sensor error region, which can be
derived from the sensor error distribution. We then determine
mismatch probability for this escalator as the fraction of all
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TABLE I
ERROR REGIONS RADIUS FOR DIFFERENT COMBINATIONS OF ERROR

VARIANCE AND CONFIDENCE LEVELS

Confidence Level Standard Deviation (σ) Error Radius(r)
95% 0.5 0.98
95% 1 1.96
99% 0.5 1.285
99% 1 2.57

locations within the error region that will not match to the
correct escalator (will match to another escalator instead due
to shorter distance).

A. Computing Error Region

Let Pt = (xt, yt) be the true position of the user, i.e., the
position of the correct facility to match. We need to create a
region around Pt such that PDR estimates will be contained
in the region with a given confidence level. This can be
determined using the error distribution of the PDR sensor.

In [11], the authors assume that the errors in the x− and
y− axes are jointly normally distributed with mean (µx, µy)
and variance-covariance matrix(
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where σ0 is a critical constant 1.96 or 2.57 obtained from the
normal tables to ensure respectively a 95% or a 0.99% proba-
bility (confidence level) that the current location estimates of
the user falls in the constructed elliptical region.

We can achieve some simplification for indoor map match-
ing by considering the errors in x and y to be independent
(σxy = 0)1 and assuming a common variance for them
(σx = σy = σ). With these simplifications, it is now possible
to represent the error region by a circle of radius r defined as:

r = σ0σ (3)

where σ is the common standard deviation for x and y.
At this point, it is important to note that PDR error depends

not only on the physical sensors, but also on the time it
is in operation. In fact, for a given hardware, PDR error
typically accumulates in time. Hence, the actual value of σ
(and the corresponding error radius) will also depend on the

1Note that authors in [11] assumed a non-zero σxy because they had to
align the ellipse along a road segment, which is difficult with σxy = 0

(a) No Overlap (d > 2r).

(b) Single Overlap (d < 2r).

(c) Disjoint Overlap. (d) Joint Overlap.

Fig. 1. Possible Cases of overlap. (a) No Overlap, (b) Single Overlap, (c)
Disjoint Overlap and (d) Joint Overlap.

time elapsed since its last recalibration. Table I shows some
values of r for different combinations of sensor error standard
deviation and confidence levels.

Determining the error region around the position of a facility
allows us to compute mismatch probability for the facility for
both discrete and continuous locations. For discrete locations,
mismatch probability is obtained as:

p =
m

n
(4)

where n is the total number of locations inside the error region
and m is the number of those locations which matched to a
wrong facility.

For continuous location case, i.e., if we assume infinite point
locations within an indoor area, mismatch probability can be
derived as a closed-form expression (see next subsection).

B. Continuous Location Case

The main reason for mismatch is due to overlap of error
regions of two or more facilities. Regarding overlaps, we have
three cases:
• No overlap: This occurs when d > 2r, where d is the

proximity between any pair of facilities (see Fig.1(a)). In
this case, we have p = 0.

• Single overlap: In this case, there is only one other facility
for which d < 2r (see Fig.1(b)). Let A be the overlap
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area, i.e., the common area between the two error regions.
In this case, p = A

2πr2 for each of the two facilities.
• Multiple overlaps: In this case, the facility of interest is

overlapped with more than one facility. The overlap areas
can be disjoint to each other as shown in Fig.1(c), or they
can have mutual overlap with each other (Fig.1(d)). For

disjoint overlaps, we can obtain p =
∑k

i=1
Ai

2πr2 , where Ai
is the area of the ith overlap. The case of joint overlaps,
however, will need more extensive modeling, which is
left as a possible future work.

let us proceed with the derivation of p for a single overlap
case. Using geometry, it can be obtained as a closed-form
expression (detail steps of the derivation are provided in the
appendix):

p =
sin−1

√
1− ( d2r )

2 − ( d2r )
√

1− ( d2r )
2

π
(5)

where d is the facility proximity and r is the radius of the
error region.

Fig. 2 shows that 0 < p < 0.5 when ( d2r ) is varied between
0 and 1. This means that for single-overlap case, mismatch
probability for any facility is upper bounded to 0.5. Fig. 3
further explores the impact of d and σ (since r is based on σ
combined with the desired confidence level) on the mismatch
probability, separately. For example, we can see (Fig. 3(a))
that for a sensor error standard deviation of half-a-location
(σ = 0.5), reducing proximity from 2 to 1 (50% reduction)
would increase mismatch probability from 0.05 to 0.25 (a
500% increase!). This implies that mismatch probability can
be very sensitive to facility proximity. Similarly, from Figure
3(b), we find that mismatch probability is also very sensitive to
PDR sensor error. For example, the prospect of any mismatch
is totally eliminated (p = 0) for σ < 0.5 when d = 2.5.

Fig. 2. Mismatch probability as a function of d
2r

.

(a) Mismatch Probability as a function of Facility Proximity d.

(b) Mismatch Probability as a function of PDR Sensor Error σ.

Fig. 3. Mismatch Probability as a function of (a) Facility Proximity d, and
(b) PDR Sensor Error σ.

IV. PRACTICAL APPLICATION (SYDNEY AIRPORT)

In this section, we apply our mismatch probability computa-
tion methodology to a practical indoor complex, the departure
level of Sydney international airport. We use the floor map
of level 2 (see Fig.4), which is publicly available on the
internet [12]. The map has a size of 1.5 MB, which means
any smartphone can easily preload and store it in its memory.
We can see from Fig.4 that the map is presented as a 2D
lattice (grid map) consisting of 18 rows and 26 columns. For
discrete location case, we would assume that each grid square
(cell) represents a possible location of the user with the row
and column numbers representing the x-coordinate and the y−
coordinate, respectively.

The map shows locations of many different types of fa-
cilities. These include escalators, lifts, stairs, ATM machines,
telephone booths, Internet kiosks, toilets, and so on. The more
facilities an AD module can detect, the less distance is traveled
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Fig. 4. Floor Map of Level 2 in Sydney Airport [12]. Square error regions with side length 2r = 3 (σ = 0.5) are shown around each of the 9 escalators.
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TABLE II
MISMATCH PROBABILITIES FOR ESCALATORS BASED ON ANALYTICAL

EXPRESSION (σ = 0.5, r = 1.28)

Escalator(s) no. Overlapping Scheme p (σ = 0.5, 2r = 2.57)
1 No overlap 0.00
4 No overlap 0.00
8 No overlap 0.00

(2,3) Single overlap (d = 1.4142) 0.17
(5,6) Single overlap (d = 2.2361) 0.03
(7,9) Single overlap (d = 1.4142) 0.17

TABLE III
MISMATCHING PROBABILITIES FOR ESCALATORS BASED ON ANALYTICAL

EXPRESSION (σ = 1, r = 2.57)

Escalator(s) no. Overlapping Scheme p (σ = 1, 2r = 5.14)
1 No overlap 0.00
4 No overlap 0.00

(2,3) Single overlap (d = 1.4142) 0.33
(7,9) Single overlap (d = 1.4142) 0.33

(5,6,8) Disjoint overlap -

with ‘pure’ PDR before it is recalibrated. In fact, earlier work
[13] has shown that the expected distance traveled before
an AMM-based recalibration occurs to the PDR is inversely
proportional to the density of the detectable facilities within
an indoor complex. However, not all facilities can be easily
detected. In this paper, we consider escalators and lifts as two
basic facilities because they can be detected using smartphone
accelerometers [7]. Our methodology remains applicable to
any other facilities which we learn to detect in future.

There are a total of 9 escalators and 9 lifts altogether in the
map. We consider two cases. In the first case, we assume that
the smartphone employs highly sophisticated signal processing
and classification techniques that can distinguish between
escalators and lifts with very high accuracy. In this case, when
an escalator/lift is detected, there is no confusion whether the
facility is an escalator or a lift. In the second case, we assume
that it is difficult to rule out confusion between escalator and
lift with 100% guarantee. In that case, both escalators and lifts
are used as possible matching target when an escalator/lift is
detected.

A. Case of Accurate Activity Detection

Here the results are presented under the assumption that
no other facility is incorrectly classified as an escalator, i.e.,
when calculating mismatch probability for a given escalator,
we only consider the other 8 escalators as possible target
for mismatch. For continuous location case, analytical results
obtained using Equation (5) are shown in Tables II and III.
We find that the mismatch probabilities for some escalators,
1, 4, and 8 for σ = 0.5 and 1 and 4 for σ = 1, are zero,
because there are no error region overlaps. Some have single
overlaps and others have multiple. Escalators with overlaps
have non-zero mismatch probability as expected. We also find,
as expected intuitively, that mismatch probability increases
with error variance when there is an overlap. For example,
for escalators 2 and 3, the mismatch probability is only 0.17

TABLE IV
THE MISMATCH PROBABILITY FOR EACH ESCALATOR BASED ON

DISCRETE LOCATION (NO CONFUSION BETWEEN LIFTS AND ESCALATORS)

Escalator no. and Coordinates p (σ = 0.5, 2r = 3) p (σ = 1, 2r = 5)
1 (2,3) 0.00 0.00
2 (7,6) 0.22 0.32
3 (8,5) 0.22 0.32

4 (17,2) 0.00 0.00
5 (13,20) 0.11 0.32
6 (14,22) 0.11 0.24
7 (16,12) 0.22 0.32
8 (18,17) 0.00 0.08
9 (17,11) 0.22 0.40

for σ = 0.5, but they increased to 0.33 when σ is increased
to 1.

Next, we consider the discrete location case, where we
assume that each grid square represents a possible location
of the user with the row and column numbers representing
the x-coordinate and the y− coordinate, respectively. For such
discrete locations, we need to modify the shape of our error
region from a circle to a square, because with a circle, some
locations may be contained only fractionally. The square has
a side of length 2r, which equals to the diameter of the circle
with radius r. Furthermore, since our map is a 2D lattice
of squared units, the side length of the square shaped error
region has to be approximated to the nearest integral value.
With the square error region, Table IV shows the mismatching
probability of 9 escalators based on Equation (4).

Comparing the results of the discrete location case, which is
more practical, to the results of the continuous location case,
one can see that all the non-zero mismatch probabilities in
Table IV for σ = 0.5 are higher than the corresponding ones
in Table II. The reason for this increase is the larger error
region resulting from rounding the value of 2r from 2.57 to
the nearest integer, 3.

Although, some of the mismatch probabilities in Table IV
for σ = 1 are a little bit less than the corresponding ones in
Table III (escalators 2, 3, and 7), this minor reduction came
due to rounding down the value of 2r from 5.14 to 5. This has
created a little bit smaller error region. On the other hand, the
mismatch probability in Table IV for escalator 9 is higher than
its corresponding value in Table III. This can be explained by
looking at Fig. 4 and realizing that part of the error region
of this escalator (in case of σ = 1) is chopped, since it falls
outside the border of the map. This has caused a reduction in
the value of n, the total number of locations inside the error
region, in Equation (4) and simultaneously an increase in the
value of m, the number of locations which matched to a wrong
facility, resulting in a higher mismatch probability. Finally, this
type of comparison cannot be conducted for escalators 5, 6,
and 8 due to the existence of the disjoint overlaps, which we
have mentioned that their calculations are left as a possible
future work.

We also notice that mismatch probability varies from es-
calator to escalator, giving a spatially non-uniform mismatch
probability for the airport. Location-dependent probability
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(a) Escalator (b) Lift (c) Walking

Fig. 5. Acceleration signals along x-, y- and z- axes for different activities (a) Escalator, (b) Lift, and (c) Walking

information such as Table IV can be precomputed and stored in
a smartphone, which can be used by some advanced decision
making process during run-time. For example, if the PDR
location estimate is within the error region of escalator 9 when
an escalator activity is detected, an application may decide
not to recalibrate PDR with AMM due to high mismatch
probability.

B. Low Accuracy Activity Detection

By low accuracy activity detection, we refer to the case
when there may be confusion between escalators and lifts. To
motivate the prospect of this confusion, we carried out a small
scale experiment with one person riding both an escalator and
a lift in a shopping mall in Sydney while holding an Android
phone in the hand. The phone was equipped with a tri-axial
accelerometer. Accelerometer readings were recorded at 50 ms
intervals for three different activities, walking, riding escalator,
and riding lift. Fig.5 shows the readings of accelerometer for
these three different activities. It is clear that both escalator and
lift can be immediately detected from walking, but escalator
and lift have very similar signals. It may be difficult to separate
escalator from lift with 100% accuracy, leading to confusion.

We therefore considered a total of 18 facilities, 9 escalators
and 9 lifts, assuming they belong to the same class of facil-
ity. Fig. 6 compares the results under this assumption with
those obtained under no-confusion case. We can see that the
mismatch probability increases dramatically when lifts could
be confused with escalators and vice versa. This happens
due to reduced proximity, which in turn increases overlaps.
For escalators, the mismatch probability could be reduced on
average by 68% for σ = 0.5 and 55% for σ = 1, and for
lifts by 65% for σ = 0.5 and 56% for σ = 1 if escalators
and lifts could be distinguished with high accuracy. This
result underscores the need for developing advanced signal
processing and classification techniques for smartphones that
can unambiguously detect all types of activities related to
indoor facilities.

V. CONCLUSION AND FUTURE WORK

AMM is seen as a potential candidate to correct position-
ing errors of PDR or other indoor localization techniques.
However, AMM is not always perfect and may introduce

positioning errors of its own through mismatch. Thus, there is
a degree of uncertainty for how well a map-matching algorithm
will perform for a given map. We have attempted to shed light
on this uncertainty by proposing a methodology to derive the
mismatch probability of AMM based on the NOM algorithm.
Using analytical geometry, we have demonstrated that the
NOM algorithm produces good results only when the facilities
are located far from each other relative to the PDR sensor
error, but performance degrades rapidly as the ratio of facility
proximity to sensor error reduces. The proposed methodology
is applied to one of the floor maps of Sydney airport. The
results show that mismatch probability for one facility can
vary significantly from another in the same floor due to
uneven facility density in a given floor. This knowledge can be
useful for a pedestrian navigation or any other location-based
applications that intend to use AMM as a viable technology for
indoor positioning. For example, if the mismatch probability
is above a target threshold at a given floor area, the application
may choose not to use AMM in that area and use other options
instead. We have also found that in Sydney airport, lifts and
escalators are usually located in the same area. However, this
may lead to large increase in mismatch probability unless we
can find ways to distinguish between an escalator and a lift
from their corresponding accelerometer signals, which appear
to be very similar to each other.

The current work can be extended in several ways. First,
the circular error region does not take into consideration the
topology of interior. For example, with walls and other sepa-
rators, the actual walking distance may significantly vary from
the Euclidean distance between any two locations. One could
consider more realistic error regions by incorporating interior
topology information (if available) into the model. Second,
the NOM algorithm makes use of only the estimated position
information to achieve the matching. We are likely to achieve
better matching accuracy (reduced mismatch probability) if
the matching algorithm uses the heading information as well.
In that case, the current methodology to compute mismatch
probability would have to be extended to accommodate head-
ing information. Finally, we have not considered the case
when different facility classes are confused with each other
with different probabilities (in the AD module). Extending the
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(a) Escalators Results for σ = 0.5 (b) Escalators Results for σ = 1

(c) Lifts Results for σ = 0.5 (d) Lifts Results for σ = 1

Fig. 6. Comparison Between Accurate and Low-accuracy Activity Detection (a) Escalators Results for σ = 0.5, (b) Escalators Results for σ = 1, (c) Lifts
Results for σ = 0.5, and (d) Lifts Results for σ = 1

current model to consider such confusion matrix would be an
interesting future work.
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APPENDIX
DERIVATION OF MISMATCH PROBABILITY

This appendix presents a proof of the mismatching
probability formula given in (5).

In Fig. 7(a), let P and Q be the centers of the two
circles with equal radius r, d be the distance PQ, the
separation between the two centers, and θ be the central angle
(BPC).

In Fig. 7(b), let M be the mid-point of the chord BC,
and φ be the measure of the angle (BPM). We note that:

PM = d
2 , BP = r, BM =

√
4r2−d2

2 , θ = 2φ, and
the overlapping area, A, as shaded in Fig. 7(a) is twice the
area of the shaded segment in Fig. 7(b).

We also observe that, The shaded area in Fig. 7(a) is
the difference between the area of the minor sector PBC
and the triangle PBC, which is given by:

1

2
r2(θ−sin θ) =

1

2
r2(2φ−sin 2φ) = r2(φ−sinφ cosφ) (6)

Hence,
A = 2r2(φ− sinφ cosφ) (7)

Now, from the right- angle triangle PMB, we can find:

sinφ =
BM

BP
=

√
4r2 − d2
2r

=

√
1− (

d

2r
)2 (8)

and
cosφ =

d

2r
(9)

Hence,

φ = sin−1
√
1− (

d

2r
)2 (10)

Substituting for sinφ, cosφ, and φ from (8), (9), and (10) into
(7) gives:

A = 2r2
[
sin−1

√
1− (

d

2r
)2 − (

d

2r
)

√
1− (

d

2r
)2
]

(11)

Finally, it follows that:

p =
A

2πr2
(12)

Substituting for A from (11) into (12), gives:

p =
sin−1

√
1− ( d2r )

2 − ( d2r )
√

1− ( d2r )
2

π
(13)

(a) Total Overlapping Area

(b) Half of the Overlap

Fig. 7. Case of Single Overlap (a) Total Overlapping Area and (b) Half of
the Overlap


