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Abstract—Advanced computing and sensing capabilities of
smartphones provide new opportunities for personal indoor
positioning. A particular trend is to employ human activity recog-
nition for autonomous calibration of pedestrian dead reckoning
systems thereby achieving accurate indoor positioning even in the
absence of any positioning infrastructure. The basic idea is that
the activity context, such as switching from a walking to a stair
climbing activity gives clues about pedestrian’s current position.
In this paper, we have made a first attempt in developing a
performance model for such systems. For an unbiased random
walk, we have obtained two interesting results in closed-form
expressions. First, we have demonstrated that the distance a
pedestrian is expected to travel before the PDR is recalibrated
is reciprocal of the density of activity switching points (ASPs) in
the indoor environment. The implication of this finding is that
the continuous unaided use of PDR can be curbed drastically by
identifying more ASPs in a given environmental setting. Second,
we have shown that false negatives of the activity detection
algorithms do not have a major impact as long as they are within
a reasonable range of 0-30%. The system performance however
degrades rapidly if false negatives continue to grow beyond 30%.

I. INTRODUCTION

Pedestrian dead reckoning (PDR) refers to a self-contained
positioning technique that uses kinematics of human walk-
ing to estimate the current user location without any help
from the infrastructure [1]. PDR uses an accelerometer to
detect steps and estimate step lengths of a walking user and
a compass to estimate the heading. From step length and
heading information, PDR works out the current location as a
displacement from a previously known position. Since modern
personal mobile devices, e.g., smartphones, already provide an
accelerometer and a compass, PDR is considered as a viable
technique to overcome positioning difficulties in areas, e.g.,
indoors, dense forests, and urban canyons, where GPS signals
are difficult to receive [2].

A fundamental problem with PDR is the accumulation of
errors over time or distance travelled. In PDR, each new
position estimate is based on the previous estimate of the last
step. Therefore, if we have errors associated with step length
and heading estimation of a human step, which is unavoidable
with commercial grade sensors, then PDR becomes unreliable
if continued to be used over a long period or distance. For this

reason, PDR is often used in conjunction with another type of
positioning, e.g., RFID [1], which provides frequent location
updates to PDR. With such location updates, PDR has to work
only for a short duration or distance before being updated with
accurate positioning yielding an improved outcome.

For location updates in PDR, researchers have tradition-
ally relied on some form of external sources. For example,
Constandache et al. [2] used Assisted-GPS (AGPS) in outdoor
scenarios while House et al. [3] used RFID for indoor areas
as means of occasional location updates to their PDR systems.
More recently, activity-based map matching (AMM) [4], [5]
has been proposed as a fully self-contained solution to PDR
updates that does not require input from any external sources.
AMM uses the same accelerometer used by the PDR to
recognize specific human activities, e.g., climbing a stair,
and then matching that activity to discrete locations on a
given map (which shows locations of stairs). Thus, each time
the user performs certain types of activities, PDR can be
autonomously updated with correct locations provided the map
of the environment is available in the mobile device (note that
most public complexes, e.g., shopping malls and airports, are
now publishing their maps on the Internet).

Unlike some external sources, e.g., RFID, which can pro-
vide more deterministic updates by carefully designing the
placement of the sensors, AMM relies on pre-existing locations
in a map as a natural source of location update. Hence, AMM is
inherently a stochastic system, where the actual PDR distance
travelled between two updates is a random number. This is
because location update in AMM is contingent on the user
reaching to a specific location and performing the activity
available in that location (these are spatially dependent activ-
ities). The expected distance (D) a pedestrian will travel with
pure PDR before an update, therefore, becomes an important
variable to study. Note that higher the D, the more error the
PDR will accumulate on average before being updated, and
vice versa. Hence, D would ultimately affect the ‘zone of
uncertainty’ within which a user is localized using PDR.

Researchers have investigated other aspects of AMM, such
as how to improve detection of human activity using machine



Fig. 1. An 8 × 4 2D lattice with two activity switching points (shaded
locations).

learning [5], but to the best of our knowledge, the expected
PDR distance between two updates has not been modelled
before. Contributions of this paper can be summarized as:
• We model a PDR system with activity-based updates as

a Markov chain and derive a closed-form expression for
D as a function of the density of ASPs in a given indoor
environment.

• We show that D is reciprocal of ASP density in a
given indoor complex. The implication of this finding is
that the continuous unaided use of PDR can be curbed
drastically by identifying and detecting more ASPs in a
given environmental setting.

• We further demonstrate that false negatives of the activity
detection algorithms do not have a major impact as long
as they are within a reasonable range of 0-30%. This
finding is encouraging for researchers and developers con-
sidering activity recognition as a viable tool to improve
PDR-based indoor positioning, especially if such systems
are to be deployed over smartphones where it is more
challenging to avoid false negatives.

The rest of the paper is organized as follows. We present the
proposed Markov chain-based performance model and analysis
in Section II. Related work is reviewed in Section III. We
draw our conclusions along with discussions on future work
in Section IV.

II. PERFORMANCE MODEL AND ANALYSIS

We consider a 2D M ×N square lattice, where each of the
M ×N squares is considered a distinct location. A pedestrian
wanders in this environment following a Random Walk model
as follows. At each step, the pedestrian can move only to
the neigbouring locations either up, down, left or right with
equal probability. A subset of total locations where activity
switchings occur are called special locations. Figure 1 shows
a 8 × 4 lattice with two special locations (activity switching
points).

A special location is a location where a switch in user
activity occurs, which creates a distinguishing change in the
accelerometer pattern, which in turn can be detected using
appropriate activity classification and recognition algorithms,
e.g. those proposed in [5]. Hence the exact location is learned

Fig. 2. The proposed Markov chain model of the PDR system with activity-
based location updates.

immediately when the pedestrian moves to any one of these
special locations, provided the pattern recognition algorithm
can detect the event. When the exact location is learned, the
PDR is reset or updated with this location knowledge. Thus in
this system, the PDR error grows only during the consecutive
steps (PDR distance) the pedestrian travels through non-special
locations. For a random walk, the PDR distance is a stochastic
variable and is the focus of our study. Specifically, we want to
answer the following performance questions:

1) Starting from a random location, what is the probability
that the pedestrian takes exactly k consecutive steps
before reaching to an ASP (probability distribution of
PDR distance)?

2) What is the expected number of steps the pedestrian
takes before reaching to an ASP (expected PDR dis-
tance)?

The activity detection algorithm may or may not be perfect.
A perfect algorithm would detect every single arrival to special
locations while an imperfect and perhaps more realistic one
would miss the detection of some of these arrivals. We propose
a Markov chain that can be used to study both perfect and
imperfect algorithms.

A. Perfect Activity Recognition

We model the PDR system using the Markov chain shown
in Figure 2. The states in this Markov chain represent the
number of consecutive steps taken without being updated. For
example, state (0) means the pedestrian is now standing on a
special location, state (1) means the pedestrian has taken one
step from a known location and is currently residing in a non-
special location, state (2) means the pedestrian has taken two
consecutive steps from a known location and so on.

State transitions occur at discrete time events when the
pedestrian takes a step. There are only two outcomes when a
step is taken, the pedestrian lands either on a special location
or continues to be on a non-special location. The former leads
to state (0) while the latter increments the state counter by
one. Let us assume that at each step, there is a probability p
that he will land on a special location and (1− p) that he will
land on a non-special location. Therefore, from any state in
the Markov chain, there is a probability p that it will move to
state (0) and (1− p) to move to the next higher state.

For an unbias and uncorrelated random walk, it could be



shown that
p =

L

M ×N
(1)

where L is the number of special locations in the M × N
lattice. Therefore, p is basically the ASP density of the indoor
space. We leave the formal proof of this concept for a future
communication, but provide a quick intuitive explanation using
the example lattice shown in Figure 1.

The numbers inside the squares in Figure 1 represent
the probabilities that the pedestrian would land on a special
location in the next step if the step is taken from those squares.
Since the user can be in any of the 32 locations when the next
step is taken, on average the probability of landing on a special
location is 8×0.25

32 = 1
16 , which is equal to L

M×N (note that
L = 2 in this example).

Probability Distributions

From the Markov chain of Figure 2, we have the following
probability equations:

π(0) = p

∞∑
i=0

π(i) (2)

π(k) = π(0)(1− p)k for k = 1, 2, . . . (3)
∞∑
i=0

π(i) = 1 (4)

By solving the above equations, we obtain the steady state
probability distributions as:

π(k) =

{
p for k = 0
p(1− p)k for k > 0

We observe the following properties for π(k). First, it can be
seen that π(k) decreases exponentially with k for any values of
p (see Figure 3). This is intuitive because not finding a special
location after the nth step is conditional to not finding this in
all of the previous (n− 1) steps.

Our second observation is less intuitive. Intuitively, it may
seem that π(k) would always decrease for an increasing p,
because increasing p means there are more chances that the
pedestrian would find a special location in the next step.
However, it can be shown (proof omitted) that π(k) is a
concave function of p, which means that we have a single
maximum for π(k) in the interval 0 < p < 1. This result is
shown graphically in Figure 4. By equating the first derivative
π′(k) to zero, we obtain a unique solution of p = 1

k+1 . This
means that the maximum is reached at p = 1

k+1 and the
maximum value of π(k) is

πmax(k) =
kk

(k + 1)k+1

.
The reason that we have a maximum is because for small

values of p, i.e., p < 1
k+1 , the pedestrian is likely to take more

steps before finding a special location, but with increasing p
some of the system probabilities from ‘higher order steps’
(greater than k) are shifted to π(k). For example, in Figure
4, π(5) is decreasing while π(2) is increasing for 1

6 < p < 1
3 .

Fig. 3. Steady state probability as a function of number of consecutive steps
k.

Fig. 4. Steady state probability as a function of ASP density p.

Expected PDR Distance

The expected number of PDR steps taken (D) before
reaching to a special location can be obtained from the steady
state probabilities as:

D =

∞∑
i=1

iπ(i) (5)

Replacing π(i) with p(1−p)i and expanding the summation
into a geometric series, we obtain:

D = p[(1− p) + 2(1− p)2 + 3(1− p)3 + . . .] (6)

The geometric series inside the square bracket in the right
hand side is an infinite sum of

∑∞
i=1 ix

i, which adds up to
x

(x−1)2 when |x| < 1 (the proof is omitted). In our case, we
replace x with (1−p) to obtain 1−p

p2 provided the series variable



TABLE I
REDUCTION IN AVERAGE PDR DISTANCE

p Average PDR Distance (steps)
1% 99
10% 9
20% 4

(1 − p) fulfils the condition |1 − p| < 1, which is indeed the
case for us as p is a probability. Therefore we finally obtain:

D = p

[
(1− p)
p2

]
=

(
1

p
− 1

)
0 < p < 1 (7)

We observe that the average number of consecutive steps
taken from a known position is inversely proportional to p.
Figure 6 shows this relationship. Table I shows how the average
PDR distance can be reduced dramatically from 99 steps to
only 4 steps by increasing the density of activity switching
points from 1% to 20%.

Model Validation with Simulation
Using MATLAB, we have simulated random walk on a

wrap-around 3× 3 lattice, where the edges are assumed to be
connected to the corresponding squares of the opposite edge.
The wrap-around allows the pedestrian to move to any of the
four directions with equal probability even at the edges without
falling off the lattice.

We have conducted two sets of simulations, each cor-
responding to a different number of special locations (see
Figure 5). The first set corresponds to a single special location
(p = 1

9 ), while the other corresponds to two special locations
(p = 2

9 ). In each set of simulation, we run 100 experiments
for each of the 9 locations as the starting location for the
pedestrian. Each experiment starts on a given location and
ends when the pedestrian reaches one of the special locations,
at which time the total number of consecutive steps to reach
the special location is recorded. Figure 5 shows the average
of 100 runs for each location, when that location was used as
a starting point. The average PDR distance, i.e., the average
of all 9 locations is shown at the bottom of each sub-figure.
Note that our model predicts D as 1

p − 1, which gives 8
for a single special location and 3.5 for the lattice with 2
special locations. The simulation outcomes are 8.09 and 3.87,
respectively, when averaged over all possible starting points.
Thus, our model provides a very accurate prediction for the
expected PDR distance for these experiments.

B. Activity Recognition with Errors
We assume that our activity recognition module has non-

negligible false negative errors (we leave the treatment of false
positive error as a future work). Let us denote the false negative
error rate by β. It means that when the pedestrian reaches a
special location, the detection of this event, i.e., activity switch
event, is missed with a probability of β and detected with
probability (1− β).

The effect of false negatives can be captured in our Markov
chain by replacing p with p(1 − β). Thus the expected PDR
distance with false negatives is obtained as:

Fig. 5. Simulation of random walk on a wrap-around 3 × 3 lattice, where
special locations are shaded. The number inside each square is PDR distance
D, averaged over 100 experiments, if that location was chosen as the starting
point. The overall average over all 9 starting locations is shown below the
lattice.

Fig. 6. Expected PDR distance D as a function of special location density
p.

Dε =
1− p(1− β)
p(1− β)

(8)

It can be shown, as also expected intuitively, that Dε > D
for 0 < β < 1. We derive the relative extension in expected
PDR distance due to false negative errors as:

Dε

D
=

1− p(1− β)
(1− p)(1− β)

(9)

which is strictly greater than 1 for β > 0.
Figure 7 shows that relative extension increases slowly

(almost linearly) for reasonable values of β (for about β <
0.3). It grows exponentially only when β becomes too large.
This is encouraging because it means that false negatives
do not become a performance bottleneck as long as they
remain within a reasonably large range. This is particularly
important for smartphone accelerometers, which (1) contain
much weaker signal than those inertial measurement units
fixed to specific human body parts, and (2) yield much noisier
signals due to free movement of the smartphone.



Fig. 7. PDR distance extension as a function of false negative rate β.

III. RELATED WORK

We are witnessing a growing trend in the literature fo-
cussing on PDR-based indoor positioning, which has a po-
tential to provide effective positioning even when no exter-
nal infrastructure is available. Because PDR is plagued with
accumulated error drift over time, researchers are trying to
find new ways to control or reduce the PDR drift as much as
possible. There is a growing consensus that it is now relatively
easy to detect human steps and estimate their lengths using ac-
celerometers, but heading estimation using consumer compass
remains a primary source of drift for PDR [6], [7]. While some
researchers are working on better heading estimators [7], others
have proposed using external sources to update or recalibrate
a drifting PDR. For example, Constandache et al. [2] used
Assisted-GPS (AGPS) in outdoor scenarios while House et al.
[3] used RFID for indoor areas as means of occasional location
updates to their PDR systems.

In a recent work, Gusenbauer et al. [4] proposed the idea
of activity-based map matching for autonomous recalibration
of PDR. They built a basic prototype to demonstrate the
idea in an indoor environment involving stairs and elevators.
When the stair climbing or elevator riding was detected, the
current position was matched to the nearest stair (elevator)
to correct the drift in PDR. This work was followed up in
more depth by [5], where detailed experiments were conducted
involving many different types of activities including spiral
stairs. Although the experiments were based on sensors fixed to
human body parts, they indicate that recognition of such human
activities using smartphone accelerometer may be within reach.
These researchers conducted their experiments in specific
environments with real subjects under prescribed mobility
and focussed their performance evaluation to the comparison
of PDR systems augmented with activity recognition against
pure PDR that does not use activity recognition. Our focus
in this paper is to develop a generic performance model
assuming unprescribed random pedestrian mobility, which can
be used to study fundamental properties of PDR systems that

are autonomously calibrated using an environmental map and
activity recognition.

Random walk models have been studied extensively in the
literature in many different domains [8]. The main performance
measure derived for a walker on a 1D lattice (walker is allowed
to move either right or left with equal probability) is the
probability that the walker will be a given distance from origin
after k steps. 2D random walks are also studied, but again with
the goal of determining the probability of destination locations
after n steps. The problem studied in this paper is new. We
studied the probability distribution π(k), i.e., the probability
that it takes exactly k steps to reach one of the multiple special
locations in a 2D lattice.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have made a first attempt in developing
a performance model for PDR systems with activity-based
location updates. For an unbiased and uncorrelated random
walk, we have obtained two interesting results in closed-form
expressions. First, we have demonstrated that the distance a
pedestrian is expected to travel using a pure unaided PDR
is reciprocal of the density of activity switching points in an
indoor space. Therefore, the continuous reliance on PDR can
be curbed drastically by identifying more activity switching
points in a given environmental setting. Second, we have
shown that false negatives of the activity detection algorithms
do not have a major impact as long as they are within a
reasonable range of 0-30%. The system performance however
degrades rapidly, i.e., the expected PDR distance increases
exponentially, if false negatives continue to grow beyond 30%.

There is significant opportunity to extend the current work
from several different angles. We have considered only the
basic unbiased and uncorrelated random walks. While useful to
gain significant insight to the problem, such random walks do
not capture some of the dynamics exhibited by real pedestrians
in practical environments, such as shopping malls and airports.
While there are some randomness in the mobility of pedestri-
ans, they also exhibit some correlation and bias. For example,
while a pedestrian is heading towards a particular shop, his
steps would be biased towards a certain direction until reaching
that shop. However, after that shop, the new direction would
be random. Therefore, one obvious extension of the current
work would be to consider a biased random walk and derive
the performance metrics as a function of some bias parameters.
One could also consider more advanced pedestrian movement
models, such as those based on the principles of gas diffusion
[9], [10], to more accurately model realistic scenarios. These
advanced models would be, however, more challenging to
capture mathematically, but finding an approximate or non-
closed-form solution may be possible. One could even consider
simulation to explore the effect of these mobility models.

Another interesting avenue to explore would be to study the
effect of false positives (commonly known as false alarms)
of the activity recognition algorithms. In the current work,
we considered only false negatives and assumed that false
positives are negligible. However, if false positives are not



negligible for a given system, then the PDR performance can
be adversely affected. Modelling false positives can be more
challenging, because the system would incorrectly think that
it had reached an ASP and update the PDR with a wrong
location. Depending on which ASP is incorrectly detected, the
error in PDR can vary.

ACKNOWLEDGEMENT

This work was accomplished while the author was on a 6-
month Special Studies Leave (‘sabbatical’) from UNSW visit-
ing Osaka University and National ICT Australia (NICTA).
The author acknowledges supports received from UNSW,
Osaka University, and NICTA. The MATLAB code for random
walk on a wrap-around 2D lattice was written by Sara Khalifa.

REFERENCES

[1] O. Mezentsev, G. Lachapelle, and J. Colin, “Pedestrian Dead Reckoning
- A Solution to Navigation in GPS Signal Degraded Areas,” Geomatica,
vol. 59, no. 2, pp. 175–182, 2005.

[2] I. Constandache, R. R. Choudhury, and I. Rhee, “Towards mobile phone
localization without war-driving,” in Proceedings of the 29th conference
on Information communications (INFOCOM), San Diego, California,
USA, 15-19 March 2010.

[3] S. House, S. Connell, D. Austin, T. Hayes, and P. Chiang, “Indoor
Localization using Pedestrian Dead Reckoning Updated with RFID-
Based Fiducials,” in Proceedings of International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Boston, USA.,
30 August-03 September 2011.

[4] D. Gusenbauer, C. Isert, and J. Krosche, “Self-Contained Indoor Posi-
tioning on Off-The-Shelf Mobile Devices,” in Proceedings of Interna-
tional Conference on Indoor Positioning and Indoor Navigation (IPIN),
Zurich, Switzerland, 15-17 September 2010.

[5] K. Altun and B. Barshan, “Pedestrian dead reckoning employing simulta-
neous activity recognition cues,” Measurement Science and Technology,
vol. 23, no. 2, pp. 1–20, February 2012.

[6] J. Kim, H. Jang, D. Hwang, and C. Park, “A Step, Stride and Heading
Determination for the Pedestrian Navigation System,” Journal of Global
Positioning Systems, vol. 3, no. 1, pp. 273–279, 2004.

[7] R. Stirling and K. Fyfe, “Evaluation of a New Method of Heading Es-
timation for Pedestrian Dead Reckoning Using Shoe Mounted Sensors,”
The Journal of Navigation, vol. 58, no. 1, pp. 31–45, 2005.

[8] E. Coding, M. Plank, and S. Benhamou, “Random Walk Models in
Biology,” Journal of the Royal Society Interface, vol. 5, no. 25, pp.
813–834, August 2008.

[9] J. Kammann, M. Angermann, and B. Lami, “A new mobility model
based on maps,” in Proceedings of IEEE VTC, 2003.

[10] M. Khider, S. Kaiser, and P. Robertson, “A Novel Three Dimensional
Movement Model for Pedestrian Navigation,” The Journal of Navigation,
vol. 65, no. 2, pp. 245–264, April 2012.


