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Abstract—In large shopping malls and airports, pedestrians
often change floors using conveniently located lifts and escalators.
Floor changing activity recognition (FCAR) therefore can be a
vital aid to multi-floor pedestrian navigation systems. The focus
of this paper is to achieve accurate FCAR with the minimal
number of features. Using experimental data, we compare the
performance of various feature selection methods and classifiers
trained to detect whether the user is using an escalator or a
lift. The results show that an accelerometer embedded in a
smartphone can achieve 94% recognition accuracy using only
5 features.

I. INTRODUCTION

In multi-floor pedestrian navigation systems, such as pedes-
trian dead reckoning (PDR) implemented in a smartphone
[1], it is necessary to reset the pointer to a new starting
location in a new floor plan whenever the user moves from
one floor to another. Since pedestrians often change floors
using conveniently located lifts and escalators, floor changing
activity recognition (FCAR), such as riding an escalator or
a lift, is considered a critical component of these emerging
personal indoor navigation systems [2].

Activity recognition involves periodic computation of a
set of features (feature extraction) from smartphone sensors
and feeding them to a pre-trained classifier that matches
the input features to one of the known output classes or
activities. For example, an FCAR module may consider three
accelerometer features, such as the average accelerations in x,
y, and z directions in the last 3 seconds, to detect whether the
pedestrian is riding an escalator or a lift using a multi-layer
perceptron (MLP) classifier, which was trained a priori with
a large amount of accelerometer data collected from many
pedestrians.

The number of features used for activity recognition directly
contributes to the computational complexity (or overhead) of
the overall FCAR process. First, a higher number of features
means the FCAR will need to extract (compute) more informa-
tion from the accelerometer each time it needs to make a deci-
sion about the current activity, which could be every 2-4 sec-
onds in some practical systems [2]. Second, a classifier trained
to work with a larger set of inputs or features is expected to
have a larger computational requirement. For example, a three-
layer MLP executes a total of (N; + N,)? + 1.5(N; + 3N,)
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additions, multiplications, and function evaluation operations,
where N, represents the number of output classes, and IV, the
number of input features (assuming that it employs M
neurons in its hidden layer) [3]. Therefore, given a target set
of activities, the number of operations to be completed by
the MLP classifier increases quadratically with the number of
features. These observations motivate us to investigate feature
selection that leads to the minimal number of features for
FCAR without sacrificing the detection accuracy.

To carry out our investigations, we collected accelerometer
data from several volunteers riding escalators and lifts in
different buildings. We then applied a number of different
feature selection methods and classifiers to this data and
compared their performances in terms of detection accuracy
and the number of features. The main floor-changing activities
considered are riding an escalator (E) and a lift (L) in a
standing position, which initially gives two output classes for
the classifier. However, because standing still anywhere on the
floor (S) could be potentially confused with E and L, we finally
consider three activities in our studies. The results show that
an accelerometer embedded in a smartphone can achieve 94%
recognition accuracy using only 5 features.

The rest of the paper is organized as follows. Related work
is reviewed in Section II. We explain the data collection
process in Section III, followed by the feature selection and
classification methodology in Section I'V. Results are discussed
in Section V. We conclude the paper in Section VI with a
discussion of future work.

II. RELATED WORK

FCAR is a part of the Human Activity Recognition (HAR)
Research. HAR has been an area of significant research in
the literature over the past years. All the approaches for HAR
share 3 basic components, data collection, feature extraction,
and classification. In the data collection phase, most of the
published work relied on attaching accelerometer sensors
to different places on the human body (wearable sensors).
However, the popularity of smartphones in the recent years
has shifted the focus to smartphone-based HAR. Table I
summarizes some of the studies related to performing HAR
using either wearable sensors or smartphones, in terms of the
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TABLE I
SUMMARY OF SOME PRIOR WORKS ON ACCELEROMETER-BASED HAR
Device Ref. | Position of the device E and/or L in- | # of fea- | Features Classifiers
cluded? tures
Wearable [4] | Five 2-axis accelerometers | Both 75 Mean, FFT Energy, Frequency Domain En- | DTL, KNN, DT, NB
Sensors (different places) tropy, Correlation
[5] | Five 3-axis accelerometer | L only 30 Mean, Variance, Skewness, Kurtosis, Autocor- | BDM, RBL,LSM ,
(different places) relation, The Peaks of the DFT KNN, DTW, ANN,
SVM
Smartphone|| [2] | In the user hand in front | L only 25 Velocity, Distance, Mean, Variance, Standard | SVM
of the body deviation, Interquartile Range, Root Mean
Square, Correlation
[6] | Strapped to the user’s an- | L only 4 Mean, Variance, Skewness, Kurtosis, Eccen- | NB, DTW
kle tricity, Correlation

Note: Features No. means the exact number of features to be fed to the classifier.
Abbreviations: Fast Fourier Transform (FFT), Discrete Fourier Transform (DFT), Decision Table (DTL), Decision Tree (DT), Naive Bayes (NB), K Nearest
Neighbour (KNN), Support Vector Machine (SVM), Bayesian Decision Making (BDM), Rule Based Learner (RBL), Least square method (LSM), Dynamic
Time Wrapping (DTW), Artificial Neural Network (ANN).

position of the device on the user’s body, when either E or L
or both activities are included, the number and description of
the features, and the classifier(s) used.

We note from Table I that, although the number of the basic
features used seems small, the exact number of features to be
fed to the classifier is very large (up to 75) [4] which increases
the HAR overheads not only in terms of the computational
time needed to calculate all of these features but also the
complexity of the classifier to be used. Reference [6] uses
simple (time domain) and small number of extracted features.
However, the authors strapped the phone to the user’s ankle
to keep the y-axis of the phone aligned to the lower leg at
all times. Therefore, the activities have had distinguishable
characteristics in the accelerometer data. This distinction in the
signals have made the classification process, to some extent, an
easy job and has allowed the authors to rely on only 4 features.
It can be seen from Table I that, both L and E are studied in
only one reference while three references studied L alone. It
is also worth noting that the single paper which included both
E and L [4] reported a poor recognition accuracy (70.56% for
E), and (43.58 % for L) in spite of using a large number of
sensors attached to different positions of the user’s body and
the high number of features, up to 75 (some of which are
extracted from the frequency domain).

FCAR, or any other activity recognition, for the purposes
of correcting pedestrian dead reckoning (PDR) errors in in-
door environments has attracted attention of several research
groups. With a practical implementation on a smartphone,
Gusenbauer et al. [2] have convincingly demonstrated that
FCAR can reduce PDR positioning error significantly when
the user travels through multiple floors. The same observation
was later confirmed by Altun et al. [5], [7] with a simultaneous
activity recognition and dead reckoning implementation using
inertial measurement units (IMUs) attached to body parts. For
a random walk model, Hassan [8] has shown that the distance
a pedestrian is expected to travel before the PDR error is
reset is reciprocal of the density of activity switching points
(ASPs), such as lifts and escalators, in the indoor environment.
The implication of this finding is that the continuous unaided

use of PDR can be curbed drastically by identifying more
ASPs. Khalifa and Hassan [9] considered the problem of
multiple lifts or escalators existing near a pedestrian leading
to the possibility of matching to the wrong lifts (escalators)
despite the classifier detecting the activity correctly. They
found that such mismatch probabilities vary from location
to location in the same building and can be pre-computed
offline, which could be later used by a PDR system to make
decisions about whether to accept the outcome of an activity
detection module or ignore it. Khalifa et al. [10] considered the
problem of reducing the classification complexity of FCAR.
They observed that at any time, there is only a small subset of
facilities in the immediate proximity of the user yielding the
opportunity to train multiple low-complexity classifiers each
trained to detect only a small number of activities. The actual
classifier to be used then can be adaptively switched during
run time. Using practical data, the authors have shown that
adaptive classification can reduce classification complexity
significantly.

III. DATA COLLECTION

We collected accelerometer data using an Android Galaxy
Nexus smartphone and a publicly available accelerometer data
collection software called AccelerometerValues [11]. The data
is collected at 20 Hz from nine different indoor complexes
including 18 different escalators and 11 different lifts. Five
volunteers, 3 males and 2 females of ages between 25 and 35,
were asked to hold the smartphone in their right or left palms
in front of the body' and perform the three specified activities,
S, L, and E. While riding lift or escalator, the subjects were
told to simply stand on the moving platform and not walk
around or climb up or down.

For escalators, data collection begins and ends at two end
points of the escalator, giving a trace length proportional to the
length of the escalator. For most of the escalators, the traces
were about 20sec long. For lifts, it is harder to control the
trace length as lifts are stopped arbitrarily by other users in the

This is the most natural holding position when using the phone for
navigation.




2014 Seventh International Conference on Mobile Computing and Ubiquitous Networking (ICMU)

building. Therefore, our lift trace lengths varied widely ranging
from a mere 5sec (one floor) to 20sec (5 floors). To match the
majority of traces, all S activity traces are 20sec long. From
five subjects, we collected a total of 177 traces, including 64
E’s, 80 L’s, and 33 S’s. With a 20H z data collection frequency,
we have 20 three-dimensional data for each second of the
trace.

Because our data were collected from natural settings out-
side the lab, the raw data was subject to noise from various
sources, including unexpected movement of the subjects and
platform vibrations caused by other people riding the same
lift or escalator. Such noise could potentially reduce FCAR
accuracy and (or) increase the number of features needed
for classification. We therefore decided to study the effect
of filtering or pre-processing the raw data before used for
feature selection and classification. In particular, we used a
moving average filter (MAF), which is simple but effective
for removing random noise from time series while retaining a
sharp step response [12]. A MAF smooths data by replacing
each data point with the average of the neighboring data points
defined within the span. This process is equivalent to lowpass
filtering with the response of the smoothing given by the
following difference equation

= ﬁ(y(HNHy(HN—lH- ~+y(i=N)) (1)
where y,(i) is the smoothed value for the i*" data point, N
is the number of neighboring data points on either side of
y(7), and 2N + 1 is the span. We have considered a span of 3
(N =1). For the points on the edges, i.e., the first and the last
points of the input trace, a padding of zero is used. The MAF
was applied to each of the 177 collected traces, generating two
sets of data traces, one containing the raw data and the other
filtered. To observe the effect of filtering, these two data sets
are used separately for feature selection and classification.

ys (1)

IV. FEATURE SELECTION AND CLASSIFICATION

From the many features used in the literature for
accelerometer-based HAR, as shown in Table I, we chose 19
time-domain features (see Table II) as our original feature set
to start the feature selection process. Our traces are of variable
length containing as few as 150 samples to 750 samples,
where each sample is a 3D reading of the accelerometer. For
each of the 177 traces, we divide the entire trace into a few
non-overlapping windows each 100-sample long?. For each
window, we extract 19 features, but the feature values across
all windows of a given trace are averaged to represent the
final 19 feature values for that trace. Thus, after the feature
extraction, we have 19 feature values for each of the 177
traces. We repeat the process for the 177 filtered traces.

We consider and compare three different types of feature
selection algorithms, Information Gain (IG), Correlation Fea-
ture Selection (CFS), and Decision Tree Pruning (DTP). I1G
[13] is a highly successful feature selection method for high

2For a sampling rate of 20Hz, this corresponds to 5 seconds, which has
been found to be sufficient to detect a human activity [5].

TABLE I
THE INITIAL FEATURE SET BEFORE APPLYING FEATURE SELECTION (7
BASIC FEATURES YIELDING A TOTAL OF 19 EXTRACTED FEATURES)

Feature Name Computational Formula

(@) = % ?:1 Ti

ol@) = /5 iy (@i —p)?

1N (g—pw)®
Skew(z) = ==l Zi:(;g( 2

Mean of the three axes

Standard deviation (Std)
of the three axes

Skewness of the three axes
i 771 (mi—m)* _

Kurt(z) = ===r—— -3

AAD(z) = 30 |wi — pl

Kurtosis of the three axes

Average Absolute Devia-
tion of the three axes

Cov(z,y)
o(z)o(y)

ARA(z,y,2) = % Z?:l V2?4 y2 + 22

Pairwise-Correlation  of
the three axes

Corr(z,y) =

Average Resultant Accel-
eration

The “minus 3" in the kurtosis equation, is often used as a correction to
make the kurtosis of the normal distribution equal to zero.

TABLE III
DEFAULT WEKA CONFIGURATIONS FOR THE FIVE CLASSIFIERS.
Classifier Configuration
DTL Evaluation Measure: Accuracy, Search Algorithm:
BestFirst.
DT (J48) Confidence Factor = 0.25, The minimum number of

instances per leaf = 2.
NB A default precision of 0.1 for numeric attributes.

KNN K = 1, No distance weighting, Nearest Neighbour
Search Algorithm: LinearNNSearch (Euclidean Dis-
tance).

MLP Hidden Layers = (Features+classes)/2, Learning Rate

= 0.3, Momentum = 0.2, Training time = 500 epochs.

dimensional data. Using the concept of entropy, it computes
the IG of each feature individually as a measure of its
suitability to classify the training data. The higher the IG,
the more informative the feature is. The output of IG is a
ranked list of individual features along with their IG values.
From this list, we consider only those features that have an
IG greater than zero. Unlike IG, which works on each feature
individually, CFS [14] evaluates subsets of features, where a
good subset is the one that contain features highly correlated
with the classification, yet uncorrelated to each other. The final
output of CFS is the subset that is considered the best among
all possible subsets.

Unlike IG and CFS, DTP is an ‘unorthodox’ feature selec-
tion method that uses the Decision Tree of a C.45 Decision
Tree (DT) classifier to select features. After a DT classifier
is trained, the tree may be too complex if the training data
contains a lot of noise. Post-prunning is a method often used
to remove some of the nodes or branches of the trained tree
to improve the efficiency of the trained model. This process,
however, essentially remove some of the features that are
deemed not so relevant. Therefore, in theory, if someone
extract the remaining features from a pruned tree, the feature
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TABLE IV
FEATURE SELECTION WITH INFORMATION GAIN (IG). FOR FILTERED
DATA, 16 FEATURES HAVE GAIN GREATER THAN ZERO

Raw Data Filtered Data
Feature Gain | Feature Gain
AAD(z) 0.73 | AAD(z) 0.99
Std(z) 0.70 | Std(z) 0.73
Corr(y,z) 0.53 | Corr(y,z) 0.64
AAD(y) 0.39 | Kurt(y) 0.46
Std(y) 0.39 | AAD(y) 0.40
ARA(X,y,z) 0.22 | Skew(y) 0.33
Corr(x,y) 0.21 | Kurt(z) 0.29
Mean(y) 0.20 | Skew(z) 0.28
Std(x) 0.20 | Std(y) 0.27
AAD(x) 0.20 | Mean(y) 0.20
Mean(z) 0.20 | Mean(z) 0.19
Kurt(z) 0.15 | AAD(®x) 0.12
Corr(x,z) 0.12 | Corr(x,y) 0.11
Skew(z) 0.07 | Std(x) 0.11
Mean(x) 0 ARA(X,y,z) 0.10
Kurt(x) 0 Corr(x,z) 0.07
Kurt(y) 0 Mean(x) 0
Skew(x) 0 Kurt(x) 0
Skew(y) 0 Skew(x) 0

TABLE V

FEATURE SELECTION WITH CFS. IT SELECTS 10 FEATURES FOR THE RAW
DATA AND 6 FOR THE FILTERED.

Raw Data Filtered Data
Mean(z) Mean(y)
Std(y) Std(z)
Std(z) Kurt(y)
Skew(z) AAD(x)
Kurt(z) AAD(z)
AAD(x) Corr(y,z)
AAD(z)

Corr(x,y)

Corr(y,z)

ARA

subset is likely to produce better results than the original set
used to train the tree in the first place. Using publicly available
data sets, Ratanamahatana and Gunopulos [15] have recently
provided experimental evidence that this theory is indeed valid,
i.e., DTP can be used as an effective feature selection method.

All of the three feature selection algorithms are available
in the WEKA software [16]. We use the 19 extracted features
from each of the 177 traces (a matrix of 19x177) as input to
WEKA, select a specific feature selection algorithm in WEKA,
and obtain a reduced feature set for that algorithm. After the
feature selection experiments, we have four alternative sets of
features, the original set of 19 features and the three reduced
sets obtained using three feature selection algorithms.

To evaluate the performance of the different feature sets,
we train and test five different classifiers, Decision Tree (DT)
[17], Decision Tables (DTL) [18], Naive Bayes (NB) [19],
K-Nearest Neighbour (KNN) [20], and Multilayer Perceptron
(MLP) [21], which are all available in WEKA. Table III shows
the (default) WEKA configurations for these five classifiers.
Because we have a limited data set of 177 examples, we used
a 10-fold cross validation to experiment with many different
training and testing sets.

TABLE VI
FEATURE SELECTION WITH DTP. WHETHER THE DATA IS FILTERED OR
NOT, IT SELECTS ONLY 5 FEATURES.

Raw Data Filtered Data
AAD(z) Std(z)
Corr(y,z) AAD(z)
Mean(y) Std(x)
Mean(x) Kurt(y)
Corr(x,z) Mean(x)

V. RESULTS AND DISCUSSIONS
A. Feature Reduction

Tables IV-VI show the features selected by the three feature
selection methods for both raw and MAF-filtered data. In
terms of the number of selected features, CFS and DTP have
clearly outperformed IG for both raw and filtered data sets.
DTP selects only 5 features irrespective of whether the data
is filtered or not. CFS, on the other hand, selects 10 features
for the raw data and 6 when data is filtered. This remarkable
performance of DTP is interesting considering that it is rarely
mentioned in the literature as a feature selection tool.

B. Classification Performance

Table VII shows the classification results in term of accu-
racies on the test set (averaged over 10-fold cross validation),
without feature selection (original 19 features) and using the
three feature selection methods and 5 classifiers for both raw
and filtered data. The number of features is shown in the
brackets and the best accuracy result for each feature selection
method is in bold.

A comparison between raw and filtered data across all
classifiers shows that the best accuracies are obtained (with
MLP) when data is filtered. This outcome highlights the need
for filtering the accelerometer data of a smartphone when used
for FCAR, as these data are likely to contain some noise.
With regards to the performance of feature selection methods,
DTP again beats CFS. With only 5 features, DTP achieves
an accuracy of 94.42% for the filtered data, which is higher
than that achieved by CFS. Therefore, we find that feature
selection not only reduces the number of features for FCAR,
but it also increases the recognition accuracy by eliminating
irrelevant and potentially interfering (noisy) features.

As mentioned earlier, complexity reduction in the classifier
could be a motivation behind feature reduction for FCAR.

TABLE VII
CLASSIFICATION ACCURACIES (%).
Data Feature Set DTL DT NB KNN MLP
Raw Original (19) | 80.59 82.97 87.49 89.20 87.86
1G (14) 79.58 81.44 88.05 85.46 86.34
CFS (10) 80.25 82.01 88.32 87.44 84.34
DTP (5) 83.06 87.95 89.46 87.95 88.74
Filtered| Original (19) | 80.22 90.57 85.84 85.67 91.40
1G (16) 80.40 90.57 84.37 82.18 91.11
CFS (6) 82.23 89.66 89.56 84.88 93.01
DTP (5) 82.38 90.63 88.32 93.77 94.42
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Fig. 1. Classifier (MLP) complexity reductions for different feature selection
methods.

As MLP turns out to be the best performing classifier (see
Table VII) for our filtered data set, let us examine how the
different feature sets affected the computation complexity of
MLP. Because the WEKA default configuration used %
neurons in the hidden layer, the number of MLP operations is
given by (N; +N,)?+1.5(N;+3N,), where N; is the number
of features and N, = 3. Fig. 1 shows the number of MLP
operations for four different feature sets, original (19 features),
IG (16 features), CFS (6 features), and DTP (5 features).
We can see that DTP reduces MLP complexity from 526
operations to only 85 operations. This remarkable reduction in
classification complexity comes without sacrificing accuracy.
In fact, as a result of removing noisy features, the accuracy
increased slightly from 91.40% (without feature selection) to
94.42% (with 5 features).

C. Effect of Sampling Window Size

The results discussed in the preceding sections are all based
on a sampling window size of 100 samples, which corresponds
to 5 seconds worth of acceleration data at 20Hz. 5 seconds
window is often used for accelerometer-based human activity
detection as most human activities are found to be better
detected when observed over 5 seconds [5]. However, for
our investigations, all the 3 activities were basically standing
still without performing any real activity. As such, one may
wonder whether it would be possible to accurately detect
these activities with smaller windows. To investigate this,
we repeat our experiments for several smaller window sizes
using the 5 features selected by DTP and employing MLP for
classification. Table VIII shows that even with a small window
of 1 second, we can achieve an accuracy close to 90%, but at
the expense of increasing the number of features nearly by a
factor of 2 (from 5 to 9).

VI. CONCLUSIONS AND FUTURE WORK

Based on empirical data, we evaluated and compared three
different feature selection methods, IG, CFS, and DTP, for

TABLE VIII
THE EFFECT OF USING DIFFERENT WINDOW LENGTH
Window | # of features | Accuracy
5 sec 5 94.42
4 sec 5 94.93
3 sec 6 94.74
2 sec 10 92.94
1 sec 9 89.60

classification and detection of two floor changing activities,
riding on an escalator and a lift. The selected feature sets
are tested with five different types of classifiers. We have
found that DTP, albeit little-known as a feature selection tool,
outperforms the other two methods. DTP reduced the number
of features from 19 to only 5, which in turn reduced (MLP)
classification complexity from 526 operations to only only 85
operations. As a result of removing noisy features, the activity
recognition accuracy increased from 91.40% (without feature
selection) to 94.42% (with 5 features).

While we experimented with only two floor-changing ac-
tivities in this paper, an important extension of the current
work would be to examine other such activities, including
climbing stairs, climbing on an escalator, walking on a ramp,
and so on. Similarly, it would be useful to extend the list
of feature selection methods beyond the three. How other
filtering techniques (other than MAF) affect the performance is
also worthy of future works. Finally, we only considered one
holding position for the smartphone. Given that users often
carry smartphones in pockets and bags, it would be interesting
to see how different positions affect the number of features and
the accuracies.
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