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Advances in energy-harvesting hardware have created an opportunity for 

realizing batteryless wearables for continuous and pervasive human activity 

recognition (HAR). Unfortunately, power consumption of accelerometers used 

in conventional HAR is relatively high compared to the amount of power that 

can be harvested practically, which limits energy harvesting’s usefulness. Here, the 

authors present and evaluate an energy-harvesting wearable sensor architecture, 

HAR from Kinetic Energy (HARKE), that doesn’t require using an accelerometer. 

Using off-the-shelf products, the authors demonstrate that a kinetic harvester’s 

voltage exhibits distinguishable patterns to distinctly infer human activities 

accurately while consuming a fraction of the limited harvested energy.

A dvancements in human activity 
recognition (HAR) enable a wide 
range of activity-aware services 

in various domains, including health-
care,1 smart living,2 military,3 security, 
and indoor positioning4. For example, a 
system that can recognize various ambu-
lation activities such as walking, sit-
ting, standing, and jogging can enable 
healthcare authorities to continuously 
monitor a patient’s status from a remote 
center. Similarly, a smartphone capable 
of detecting activities such as climbing 
stairs, riding an elevator, or moving up 
a ramp can infer a pedestrian’s posi-
tion in a complex indoor environment 
by matching the activities to the indoor 
map that shows the precise locations of 
stairs, elevators, and ramps.5

There are two fundamentally different 
approaches to HAR, using infrastructure 
sensors and wearable sensors. In the for-
mer, the sensors that can detect motion, 

pressure, temperature, and so on, are 
installed at specific locations and on fur-
niture to detect human activity when the 
user visits these locations and interacts 
with the sensors. For example, a pres-
sure sensor installed beneath a sofa could 
detect sitting activity from the pressure 
change whenever the user sits there. 
Cameras installed at specific locations 
can help detect user activities when-
ever the user comes within their vicinity. 
However, deployment and maintenance 
of infrastructure sensors are costly.

Wearable sensors, on the other hand, 
provide an alternative option. By placing 
various types of sensors on the human 
body, we can achieve accurate and perva-
sive HAR without the need for deploying 
significant infrastructure. For example, an 
accelerometer in a wristband can help detect 
different activities by simply collecting 
and analyzing the time-series acceleration 
data. Because wearables can continuously  
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monitor user activities at all times and locations,  
they provide a more pervasive HAR solution com-
pared to the infrastructure-based approach that 
requires the user to be within the sensing range for 
effective activity recognition. Consequently, wear-
able sensor-based HAR has recently become the 
focus of intense research and development,6 produc-
ing a wealth of tools and algorithms to accurately 
detect human activities from the data collected by 
the wearables.

However, the major issue with wearable sensors 
is the battery life. To achieve sustained operation, 
we either need to instrument the wearables with 
large batteries or be prepared to manually replenish 
the batteries when they die. Neither of these options 
is desirable because large batteries make the wear-
ables heavy and less convenient to wear, while fre-
quent manual replacement might not be possible. 
This motivates us to explore a third option: energy-
harvesting wearables for activity-aware services.

Energy harvesting or scavenging is a process 
of converting various forms of ambient energy 
sources, such as kinetic, thermal, radio frequency, 
and solar or light, into electrical energy, which 
we can use to power a small electronic device. In 
recent years, we’ve seen significant advancements 
in energy-harvesting hardware technology, lead-
ing to many off-the-shelf products available at 
low cost. This means that it’s conceptually pos-
sible to replace the battery of a wearable sensor 
with an energy-harvesting unit to achieve perpet-
ual sensing in many applications including HAR.

However, there’s a caveat. Energy harvesting 
generally suffers from low power output, which 
could challenge the power requirement of the 
wearable sensor components, such as the acceler-
ometer used for sampling human motion. A recent 
study has shown that the power requirement of 
the accelerometer ranges between 0.35 to 5 times 
the harvested kinetic power for detecting common 
human activities with high accuracy.7 Given that 
the sensor will also have to turn on its radio for 
occasional communications with a nearby sink, the 
power generated from energy harvesting is clearly 
too small to simply port the existing accelerometer-
based HAR techniques into an energy-harvesting 
wearable. How to achieve HAR using energy-
harvesting wearables is indeed an extremely chal-
lenging problem that requires new solutions. A 
recent survey has revealed that although significant 
research has been carried out for battery-powered 
wearables, there exists limited literature on energy-
harvesting wearables for HAR.6

Here, we propose and evaluate a new paradigm 
for energy harvesting HAR that overcomes the 
power limitation of energy harvesting in wearables. 
More specifically, our novel approach employs 
kinetic energy harvesting and infers human activ-
ity directly from the energy-harvesting patterns 
without using any accelerometer. The underlying 
idea lies in the fact that different human activities 
produce different amounts of kinetic energy that 
can be leveraged for activity recognition. The pro-
posed energy-harvesting wearable sensor archi-
tecture is called Human Activity Recognition from 
Kinetic Energy, or HARKE.

Because we use no accelerometer in the HARKE 
architecture, we dedicate the harvested power to 
radio communication in its entirety. Using off-
the-shelf products, we design a kinetic-energy-
harvesting data logger, which shows that the 
energy-harvesting voltage switches to clearly dis-
tinguishable patterns as the user changes her activ-
ities. Our experimental results demonstrate that 
HARKE is as accurate as an accelerometer-based 
HAR system, yet it consumes only a small fraction 
of the limited harvested energy.

Limitations of Energy-Harvesting 
Wearables
Figure 1 shows a simplified block diagram of  
a conventional battery-powered wearable used 
for HAR. The battery powers three main compo-
nents: an accelerometer, a classifier, and a radio. 
The first two make up the HAR function in which 
the classifier detects human activities by analyz-
ing the features extracted from the accelerometer 
data. A previous detailed measurement study 
indicates that the average power consumption 

Figure 1. Block diagram of a conventional battery-based wearable 
sensor for human activity recognition (HAR). The battery powers 
three main components: an accelerometer, a classifier, and a radio.
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of an accelerometer running at 20 hertz (Hz) is 
four times as much as the average power con-
sumption for extracting features and executing 
a classifier.8 Consequently, the accelerometer 
is responsible for 80 percent of the total HAR 
power consumption.

Typically, a three-axial accelerometer is used 
to measure human acceleration in three dimen-
sions. These 3D acceleration data are then used 
to train a classifier, which later is used to detect 
activities from a given sample of acceleration 
values. Generally, the more frequent the measure-
ments occur, the more information is available 
to enable more accurate classification. The mea-
surement frequency is called the accelerometer’s 
sampling rate, which is measured in hertz or the 
number of measurements per second.

To perform a measurement, an accelerometer  
must be turned on for a few milliseconds. Because 
the accelerometer consumes power when it’s active,  
it’s turned off when it isn’t measuring. Conse-
quently, an accelerometer is continuously turned 
on and off, whose frequency is dictated by the 
sampling rate. As such, the average power con-
sumption of an accelerometer is a linear function 
of the sampling rate. For example, the Harvey 
Weinberg’s data sheet shows that an ADXL150 
accelerometer consumes about 5 microwatts (mW) 
on average per hertz, which means that it would 
require 100 mW if a sampling rate of 20 Hz was 
required for a given activity set.9 The required 
sampling rate depends on the set of activities 
monitored and typically ranges from 10–50 Hz.10,11 
In other words, the battery has to supply between 
50–250 µW to the accelerometer. This isn’t a major 
issue for conventional battery-powered wearables, 
because most batteries can supply power at a much 
higher rate than this.

Let’s now examine the power consumption 
of accelerometers in the context of self-pow-
ered energy-harvesting wearables. If we simply 
replace the battery in Figure 1 with an energy-
harvesting unit, we’ll face two major problems. 
First, we might not be able to supply enough 
power to the accelerometer for accurate HAR. 
Using a commercial kinetic energy harvester, 
a study by Alberto Olivares and his colleagues 
shows that some activities generate only a few 
mW, which is much lower than what’s required 
to sample the accelerometer at a sufficiently high 
rate for accurate activity classification.12 Clearly, 
this will force the wearable to cut down the 
power to the accelerometer — that is, use a lower 

sampling rate and accept a lower activity clas-
sification accuracy. Second, even if the harvested 
power is enough to operate the accelerometer at 
the required sampling rate, it reduces the amount 
that could be accumulated in the capacitor for 
future radio communications. Lack of enough 
stored energy in the capacitor will force more 
aggressive duty cycling of the radio and/or more 
drastic reduction in the transmission power. In 
summary, when the power supply is limited by 
energy harvesting, powering the accelerometer 
trades off the quality of radio communication.

The HARKE Architecture
Figure 2a shows the proposed HARKE with no 
accelerometer. Instead, it contains a kinetic energy-
harvesting (KEH) system to harvest energy from 
human motion. The harvested energy is then used 
to power the classifier, and the radio when it's 
turned on for communication. The KEH system typ-
ically consists of three basic components:

•	 a generator (transducer) to convert human 
motion into electrical power, typically with 
varying AC voltage;

•	 a power conditioning circuit to provide power 
rectification and regulation; and

•	 a storage element to store the harvested energy.

A storage element such as a battery or capaci-
tor is needed to accumulate the harvested energy 
and supply regulated power, typically a constant 
DC voltage, which is suitable to power the clas-
sifier and radio communication. The regulated 
power isn’t suitable for detecting human activities, 
because regulation would wipe out any potential 
pattern in the power signal that might be used for 
activity recognition. Therefore, HARKE uses the 
AC voltage from the transducer as an input to the 
classifier.

The energy savings of HARKE is directly due 
to the accelerometer’s removal, which accounts 
for 80 percent of the HAR power consumption in 
a wearable device. Compared to the energy saved 
by removing the accelerometer, the power con-
sumption for recording the AC voltage for activ-
ity classification is minimal. To continuously 
record AC voltage, HARKE basically needs an 
analog-to-digital converter (ADC) to sample the 
analog AC signal into digital data that we can use 
for feature extraction and classification. The data 
sheet of ADS7042 (see www.ti.com/lit/ds/sym-
link/ads7042.pdf), an ultra-low-power ADC from 
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Texas Instruments, shows that the ADC consumes 
approximately 1 mW per kilohertz (kHz). Com-
paring this to 100 mW consumed by an ADXL150 
accelerometer running at 20 Hz (assuming a 
5 mW/Hz power consumption), we find that 99 
percent of the power that would have been con-
sumed by the accelerometer could be saved using 
our proposed architecture. Given that 80 percent 
of HAR power consumption is due to the accel-
erometer, HARKE saves 72 percent of the HAR 
power consumption in a self-powered wearable.

It should be clear by now that the HARKE 
architecture can save a significant amount of the 
limited harvested energy in next-generation self-
powered wearables. The question is how accu-
rately can we classify human activities using the 
harvested energy signal?

Validation of HARKE
The basic idea of HARKE is to use the KEH data 
to classify common human activities. Figure 2b 
shows two options we can use to obtain such data. 
The first option is to use a mathematical model 
that could approximate KEH data from human 

motion data. We can use smartphones with incor-
porated accelerometers to collect human motion. 
This option lets us validate HARKE without the 
need to use special hardware. However, the gener-
ated KEH data are an approximation of the real 
data. The second option is to use a real device that 
the user could wear while performing different 
activities and collect real KEH data.

Validation Using KEH Data Approximation
Next, we use the first option of deriving KEH 
data to validate HARKE. Specifically, we use a 
mathematical model that relies on the most basic 
principle of a kinetic energy harvester,13 namely 
a standard mass-spring damping system, to 
approximate KEH data. When the spring moves, 
the mechanical energy is converted into electri-
cal energy. If the spring moves with more force, 
or it bounces back and forth rapidly, more energy 
is produced.

Given an accelerometer trace, this model lets us 
estimate the kinetic power signal that would have 
been harvested by a kinetic energy harvester. Our 
accelerometer traces have been collected from five 

Figure 2. HAR from Kinetic Energy (HARKE) architecture. (a) HARKE block diagram. (b) Validation 
options.
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different subjects at 100 Hz using a Samsung Gal-
axy Nexus smartphone carried in the hand. The 
generated kinetic power traces have been used to 
evaluate HARKE’s performance.

As is commonly used for HAR,14 we use 
the K-nearest neighbor (KNN) classifier in this 
study. We trained the KNN classifier with 12 
features (mentioned elsewhere7) extracted from 
the accelerometer traces, and only the maxi-
mum feature extracted from the approximated 
KEH traces. In a previous study,7 we showed 
that the maximum feature provides better 
accuracy than simultaneously using the 12 
features when KEH traces were used. In both 
cases, we extracted the features from 5-second 
windows with 50-percent overlapping between 
consecutive windows. Finally, we perform 
a 10-fold cross-validation test to obtain the 
accuracy.

We evaluate the performance of HARKE using 
three different activity sets from three different 
applications (sport, home monitoring, and indoor 
positioning), each containing between three to 
eight different activities to be classified. As men-
tioned earlier, HARKE only needs 1 mW to sample 
the KEH signal at 1 KHz. On the other hand, the 
sampling rate of the accelerometer, and hence its 
HAR accuracy, will depend on the power allo-
cated to it. Table 1 compares HAR accuracies of 
accelerometer-based and HARKE architectures in 
the last two columns and shows the percentage 
of harvested power allocated to the accelerom-
eter in the third column.

We can see that HAR accuracies for the accel-
erometer-based architecture are generally higher 
when higher power is allocated (for higher sam-
pling rates). HARKE accuracies varied between 
74 to 98 percent, depending on the activity set. 
The average accuracy over all activity sets is 
85 percent, which is within 12 percent of what 
could be achieved with an accelerometer without 
any power constraints (using 100 percent of the 
available harvested power). However, if we con-
sider the realistic scenario of dividing the avail-
able harvested power between the accelerometer 
sensor and radio communication, this difference 
will be reduced. For example, when 50 percent 
of the harvested power is allocated to the accel-
erometer, the average accuracy of HARKE is 
within only 3 percent of what could be achieved 
with an accelerometer with the achievable sam-
pling rate.

Validation Using Real KEH Data
For the ultimate validation of HARKE, we built a 
data logger, to collect real KEH data. Our objective 
is to investigate whether the kinetic energy har-
vested by a real harvester actually contains infor-
mation about human activity — and if it does, how 
does the accuracy of HAR from KEH data compare 
against conventional HAR based on accelerometers.

The prevalent commercial kinetic energy har-
vesters are based on the piezoelectric and electro-
magnetic transduction mechanisms (see Table 2), 
but piezoelectric transducers are the most favour-
able due to their simplicity and compatibility 

Table 1. Power-supply percentage and HAR accuracies of accelerometer-based and HARKE 
architectures for three different activity sets.*

Activity set

Average 
harvested 

power (mW)

Harvested power 
allocated to 

accelerometer (%)

Achievable 
accelerometer 

sampling rate (Hz)

HAR accuracy (%)

Accelerometer-
based HARKE

Sport 104.70 100.00 20 100.00 98.15

80.00 16 100.00

50.00 9 100.00

Home  
monitoring

45.17 100.00 9 96.97 82.17

80.00 7 94.81

50.00 3 86.58

Indoor  
positioning

36.00 100.00 7 91.84 73.97

80.00 6 89.86

50.00 3 77.75

* The sport set includes standing, walking, and running activities. The home monitoring set includes standing, walking, going up 
or down the stairs, and vacuuming. The indoor positioning set includes standing, walking, going up or down the stairs, standing 
on an escalator (going up or down), and going up or down a ramp.
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with microelectromechanical systems (MEMS).15 
Most commercial harvesters are available as a 
packaged system, including the transducer, power 
conditioning circuit, and local storage provid-
ing a regulated DC voltage to power multisensor 
nodes, controllers, peripherals, memory, and so 
on. However, we can’t access the instantaneous 
AC voltage in such packaged products. Only a 
few companies, such as MIDÉ, make the AC volt-
age accessible by offering modular components 
for transduction, power conversion, and storage.

Our data logger includes a product called 
Volture from MIDÉ (see www.mide.com), which 
implements only the transducer providing AC 
voltage as its output, and also a three-axis accel-
erometer (MMA7361LC) for comparison purposes. 
We used an Arduino Uno as a microcontroller 
device for sampling the data from both the Volture 
and the accelerometer. We used a sampling rate 
of 1 kHz for data collection. We saved the sam-
pled data on an 8-Gbyte microSD card, which we 
equipped to the Arduino using microSD shield. A 
9V battery was used to power the Arduino. The 
data logger also includes two switches, one to 
switch on/off the device and the other to control 
the start and stop of data logging. Figures 3a and 
3b show the hardware platform and the internal 
appearance of the data logger.

Ten subjects — four male and six female, with 
ages between 26 to 35 years — volunteered to par-
ticipate in this research study. We asked the subjects 
to hold the data logger in either their left or right 
hand and perform three activities: standing, walk-
ing, and running. All subjects performed walking 

and running with their natural speed (there was 
no special speed requirement). To avoid mislabel-
ing, we used a switch to start and stop data collec-
tion at the beginning and end of each activity. We 
asked subjects to stop and wait a few seconds after 
an activity and before starting the next activity. 
We labeled the data collected between the start and 
stop times of an activity with that activity’s name. 
Each subject provided between 25 and 35 seconds 
of data for each activity. Figure 3c shows the user’s 
output patterns of the accelerometer and Volture. 
We can clearly see that the AC output of Volture 
changes patterns whenever the user changes his 
or her activities. This is a clear indication that the 
output of kinetic energy harvesters contains infor-
mation about human activity.

Next, we investigate and compare HARKE’s 
accuracy against the conventional accelerometer-
based HAR. No noise filtering has been applied on 
the data. We consider a technique of window over-
lapping for feature extraction. In this technique, 
the data traces are subdivided into smaller subsets 
or windows. As previously mentioned, we chose  
windows of 5 seconds with 50 percent of overlap 
between consecutive windows to reduce informa-
tion loss at the edges of the window. We extracted 
two features — mean and standard deviation — 
from the consecutive windows.

In our work, we have two datasets — one for 
accelerometer data and one for KEH data from 
Volture. The accelerometer generates three time 
series along the x-, y-, and z-axes. We compute 
the features for each of the three axes, giv-
ing a total of six extracted features for each 

Table 2. Commercial kinetic (vibration) energy harvesters (VEHs).

Manufacturer (country) Product Material
Dimensions (in) 

L × W × H
Weight  
(grams)

Output  
(in voltage)

Perpetuum (UK) PMG FSH Electromagnetic 3.4 × 2.6 1075 DC (5V and 8V)

Ferro Solutions (US) VEH 460 Electromagnetic — 430 DC (3.3V)

LORD MicroStrain (US) PVEH Piezoelectric 1.87 × 1.75 185 DC (3.2V)

MVEH Electromagnetic 2.25 × 2.56 216 DC (3.2V)

MicroGen (US) BoLT PZEH Piezoelectric 1.18 × 1.04 × 0.6 10 DC (3.3 V)

MIDÉ (US) Volture V25W Piezoelectric 2.00 × 1.50 × 0.0 8 AC

PI Ceramic GmbH 
(Germany)

P-876.A11 
DuraAct

Piezoelectric 2.4 × 1.38 × 0.02 — AC

Smart Material (US) MFC M2503-P1 Piezoelectric 1.81 × 0.93 × 0.0 — AC

OMRON and Holst 
Centre/imec (Belgium)

Still under testing Electrostatic 1.96 × 2.36 15.4 DC
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Figure 3. HARKE proof-of-concept experimentation. (a) Block diagram of kinetic energy harvesting and the 
accelerometer data logger (up) and the external appearance of the data logger (down). (b) The internal appearance of 
the data logger. (c) The accelerometer’s output pattern (left) and Volture (right).
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accelerometer trace. On the other hand, the 
Volture generates one series of AC voltage, 
giving only two extracted features for each 
Volture trace.

We chose five classifiers to evaluate the rec-
ognition accuracy of HARKE and compare it with 
the accelerometer-based HAR system. As previ-
ously mentioned we performed a 10-fold cross-
validation test to obtain the accuracy. Table 3 
shows the classification accuracies of acceler-
ometer-based and HARKE architectures. These 
results confirm that although HARKE consumes 
72 percent less energy compared to the conven-
tional accelerometer-based HAR, it can classify 
human activities as accurately as accelerometer-
based HAR.

O ur experimental study shows that power con-
sumption by the accelerometer is a major 

roadblock for realizing HAR in self-powered 
energy-harvesting wearables. By eliminating the 
accelerometer, however, HARKE consumes only a 
small fraction of energy compared to the conven-
tional accelerometer-based HAR. Because HARKE 
can detect human activities as accurately as con-
ventional accelerometer-based HAR, we believe 
that this finding will open the door for a new direc-
tion of research and development in realizing self-
powered devices for the future Internet of Things.

A natural continuation of this current work is 
to quantify HARKE’s performance under a wider 
range of activities and using a larger-scale data-
set. Building and testing a complete self-powered 
HARKE prototype is also an important next step.
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