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ABSTRACT
We propose a new activity sensing method, CapSense, which de-
tects activities of daily living (ADL) by sampling the voltage of the
kinetic energy harvesting (KEH) capacitor at an ultra low sampling
rate. Unlike conventional sensors that generate only instantaneous
motion information of the subject, KEH capacitors accumulate and
store human generated energy over time. Given that humans pro-
duce kinetic energy at distinct rates for di�erent ADL, the KEH
capacitor can be sampled only once in a while to observe the en-
ergy generation rate and identify the current activity. �us, with
CapSense, it is possible to avoid collecting time series motion data
at high frequency, which promises signi�cant power saving for the
sensing device. We prototype a shoe-mounted KEH-powered wear-
able device and conduct experiments with 10 subjects for detecting
5 di�erent activities. Our results show that compared to the existing
time-series-based activity recognition, CapSense reduces sampling-
induced power consumption by 99% and the overall system power,
a�er considering wireless transmissions, by 75%. CapSense recog-
nizes activities with up to 90%.

CCS CONCEPTS
•Computing methodologies →Activity recognition and un-
derstanding; •Human-centered computing→Ubiquitous com-
puting;
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1 INTRODUCTION
�e rapid development of embedded technology has enabled wear-
able systems [32] that provide autonomous health, �tness, and
wellness monitoring services, such as step-counting [7, 27] and
recognition of ADL [15, 16]. To improve user-experience, wearable
devices are restricted to very small form factor, limiting the size
of ba�ery that can be embedded in the device. However, most
users desire 24/7 monitoring, which leads to long-term continuous
sampling of motion sensors, such as accelerometers, and frequent
data transmission to the server for further processing. �e high
power consumption due to frequent sensor sampling and wireless
transmission limits the ba�ery life of these wearable devices.

�e �rst stage in a typical activity recognition system is the ac-
quisition of a time-series of samples from the sensors [5]. In general,
the power consumption of sensor sampling is directly proportional
to the sampling rate, as the higher the sampling rate, the more
power is consumed by the sensors as well as the microcontroller
(MCU), which has to wake up more frequently to read, process,
and store the samples. A large volume of past research on human
activity sensing, therefore, have focused on reducing the sampling
rates of accelerometer-based systems. Depending on the type of
activities, reported sampling rates for accelerometer-based activity
sensing range between 25Hz to 100Hz for recognition accuracies
over 85% [5, 8, 25].

To further reduce power consumption of sensor sampling, re-
searchers have recently proposed the use of KEH transducer, which
produces di�erent AC voltage pa�erns for di�erent activities, as
an alternative to accelerometer [18, 35]. By saving the energy
that would have been otherwise consumed by the accelerometer,
transducer-based systems can reduce the sampling power consump-
tion to some extent [18]. However, as we will demonstrate later in
the paper, the sensor itself consumes a small fraction of the system
power during sampling; a large fraction of the sampling power is
actually consumed by the MCU. �e transducer-based approach,
which also relies on time series data, therefore still consumes sig-
ni�cant amount of limited ba�ery power in a small form-factor
wearable device.

Based on this observation, we propose a new way to exploit
the KEH circuit for detecting human activities. �e new method,
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which we call CapSense, avoids the acquisition of time series data
of instantaneous motion (for accelerometer) or AC voltage (for
transducer) information, thereby drastically reducing the sensor
sampling rate. To cut down the sampling rate, CapSense capitalizes
two important facts in KEH-powered systems:
• First, instead of providing only instantaneous information (i.e.,

the instant acceleration or AC voltage), the KEH capacitor can
provide accumulated information. �at is, the energy generated
continuously by the KEH transducer for a given period of T
second is accumulated in the capacitor. �erefore, a capacitor
can directly yield the energy generation rate during the last T
second with a single sample of its current voltage. In essence,
the capacitor works as a free computation engine that computes
the current energy generation rate without involving the MCU
or collecting any time series data.

• Second, it has been demonstrated that the energy generation
rates of human activities are distinctively di�erent [9, 39].
�us, it should be possible to classify human activities by
sampling the capacitor voltage only once in every T second.
For example, for a choice of T = 5, we can achieve activity
recognition with a sampling rate of only 0.2 Hz.

�e novelty and contributions of this paper can be summarized
as follows:
• Wepropose a newmethod for human context sensing, CapSense,

to drastically reduce sampling rates and power consumption
of KEH-powered wearable systems. CapSense detects activity
from the voltage of the KEH-capacitor, which to the best of
our knowledge has not been explored before.

• We have implemented the idea of CapSense in shoe form
factor using piezoelectric bending energy harvester. We derive
design parameters for the capacitor that produce e�ective
voltage samples for human activity recognition.

• We conduct experiments with 10 subjects for detecting 5 dif-
ferent activities. We demonstrate that CapSense is capable of
detecting ADL with up to 92% accuracy.

• We conduct a detailed power pro�ling to quantify the power
saving opportunity of CapSense. Our measurement results
indicate that, compared to the state-of-the-art, CapSense re-
duces sampling-related power consumption by 99% and the
overall system power by 75%.

�e rest of the paper is organized as follows. We review the
related works in Section 2. �en, we present the design and imple-
mentation of CapSense in Section 3, followed by its performance
evaluation in Section 4. �e power measurement study is presented
in Section 5. We conclude our work in Section 6.

2 RELATEDWORK
In this section, we �rst review existing works on reducing the sam-
pling frequency. �en, we discuss some recent e�orts in utilizing
KEH-transducer as an energy-e�cient motion sensor.

2.1 Reducing Sampling Frequency
A large volume of works in the literature focused on reducing the
sampling rates [5, 8, 29, 36] to improve energy e�ciency in sensing.
In [20] Krause et al., studied the trade-o� between power consump-
tion and classi�cation accuracy for the e-Watch wearable device.

�ey demonstrated that the lifetime of the device can be extended
by selecting the optimal sampling strategy without accuracy losing.
Similar results are presented in [36], the authors pointed out that
there is a trade-o� between sampling frequency and classi�cation
accuracy, and introduced the A3R algorithm which adapts the sam-
pling frequency and classi�cation features in real-time based on the
activity type. In addition, researchers have also proposed the use of
compressive sensing theory to reduce sampling frequency [6, 26, 28]
by leveraging the temporal-sparsity of human activity.

2.2 KEH-transducer based Context Sensing
Recent e�orts in the literature start to apply KEH transducer as
a low power vibration sensor. In [18], Khalifa et al. proposed the
idea of using the power signal generated by a VEH device for hu-
man activities recognition. �e proposed system can achieve 83%
of accuracy for classifying di�erent daily activities. In [23], the
authors investigate the feasibility of using KEH as a motion sensor
for transportation mode detection. In [22], Lan et al. demonstrated
the use of KEH voltage signal to estimate calorie expenditure of
human activities. In [14], a piezoelectric energy harvester-based
wearable necklace has been design for food-intake monitoring. �e
proposed system achieves over 80% of accuracy in distinguishing
food categories. In [2], Blank et al. proposed a ball impact local-
ization system using a piezoelectric embedded table tennis racket.
More recently, Xu et al. [35] proposed an authentication system
which utilizes the AC voltage signal to authenticate the user based
on gait analysis. �e proposed system can achieve an recognition
accuracy of 95% when �ve gait cycles are used. In [24], the authors
proposed the use of KEH-transducer as an energy-e�cient receiver
for acoustic communication. Although the use of KEH-transducer
can save the energy consumption in powering the motion sensor,
it still continuously sense and process the power signal from the
KEH transducer at a high sampling rate, and thus, will continue to
face the energy consumption problem.

3 SYSTEM OVERVIEW
3.1 CapSense Architecture
Although there are a various of designs in kinetic energy harvest-
ing powered wearable devices, such as backpack [34], fabric [37],
wristband [31], and footwear [21, 33], we designed our system in
the form-factor of shoes for several reasons: �rst, shoes are worn
by users for the majority of time in their daily lives, including
working/studying in the o�ce/school; second, unlike many other
wearable devices that their form-factors have been shrunk dramati-
cally, shoes have a much larger space to place an energy harvester;
third, it has been widely reported that a desirable amount of energy
can be harvested from human daily activities using the insole-based
harvesting system [11, 12, 33].

Figure 1 presents the system architecture of CapSense which
consists of two parts: the Energy Harvesting and Load. �e Energy
Harvesting corresponds to the functional components that harvest
and accumulate energy from human activity. It includes a piezo-
electric energy harvesting (PEH) transducer to generate electric
power (i.e., AC voltage) from foot strikes, and an rectifying circuit
that is able to rectify the intermi�ent or continuous AC voltage
output from the PEH transducer into stable DC power. �en, the
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Figure 1: System architecture of CapSense.

recti�ed DC voltage will be accumulated in a capacitor before it is
su�cient to turn-on the buck converter and power any electronics
(i.e., the voltage of the capacitor should reach a pre-de�ned thresh-
old con�gured in the buck converter). �e Load represents any
system components responsible for data sensing, processing, and
communication, or could be a rechargeable ba�ery that can be used
to power a wearable system.

As an illustration, considering the scenario in which a subject
is wearing the KEH-powered shoes and doing some activities, e.g.,
walking or running, her heel will hit the ground �oor and the foot
strike induced pressure will bend the energy harvester inside the
shoe. Consequently, the energy harvester will generate electric
power from the foot strikes when the subject is doing di�erent
activities, and the generated energy are naturally accumulated in
the capacitor [10, 11, 38]. In CapSense, the voltage of the capac-
itor is sampled periodically by the system load (e.g., once every
T seconds), and is send to the remote server (i.e., smartphone or
cloud-server) for further processing. As the power generated from
di�erent human activities such as walking, running, and relaxing,
are distinctively di�erent [9, 39], and the energy generated by the
PEH transducer within the last T second(s) is accumulated in the
capacitor, it would be possible to estimate the power generation rate
duringT by a single sample of the capacitor voltage. �en, the
estimated rates can be used to recognize the activity performed by
the user in the last T second with a sampling rate of 1

T . As we will
demonstrate later in Section 4, CapSense can detect activities with
sampling rates as low as 0.14Hz compared to tens of Hz required
by the state-of-the-art. �us, CapSense can reduce sensing-induced
power consumption of wearable devices by several orders.

�e fundamental novelty of CapSense is that, unlike accelerom-
eter or KEH transducer that can only generate instantaneous
motion information of the subject at a particular time, capacitor
stores the generated KEH energy over time, and thus, it provides
accumulated information that can be used to detect the subject’s

Prototype Attached to Subject’s Leg 
PEH inside the shoe 

Capacitor 

Energy Harvesting Circuit 

SD card 

PEH Transducer 

Figure 2: Pictures of CapSense prototype. 
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Figure 3: Circuit diagram of energy harvester.

activity within a period of time. �erefore, unlike accelerometer-
based [5] or KEH transducer-based [18, 35] sensing systems that
require a time-series of signal sampled from the sensor (i.e., a
sequence of signal sampled from the accelerometer or KEH trans-
ducer), CapSense utilizes a single sample of the capacitor voltage
for activity recognition.

3.2 CapSense Prototype
In this subsection, we present the design and implementation of
our prototype. Figure 2 gives the pictures of our prototype which
we implemented in the form of shoe. As discussed previously,
our prototype consists of two parts, the Energy Harvesting and
Load. For the Energy Harvesting part, we select the EH220-A4-
503YB PEH bending transducer from Piezo Systems1 as our PEH
transducer and a�ached it to the shoe-pad. �e PEH transducer
is only 10.4 grams weighted with a dimension of 76.2×31.75×2.28
mm3, which is easy to be placed inside the shoe. �e output pins of
the PEH transducer are connected to an energy harvesting circuit,
namely the LTC3588-1 from the Linear Technology2. �e LTC3588-
1 integrates a low power-loss bridge recti�er that can be used to
rectify the AC voltage output from the PEH transducer, and a high

1Piezo System: h�p://www.piezo.com/prodexg8dqm.html.
2Linear Technology LTC3588: h�p://www.linear.com/product/LTC3588-1.
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e�ciency buck converter that is able to transfer the energy stored
in the capacitor into stable DC power to power/charge the load.
We select an electrolytic capacitor with a capacitance of 470µF and
a rating voltage (i.e., the maximum voltage) of 25V to store the
generated energy (we will discuss how we select the capacitor in
Section 3.3). When the voltage of the capacitor rises above the
undervoltage lockout rising threshold of the buck converter (i.e.,
denoted by VUV LO risinд, and equals to 4V in our se�ing), the
buck converter will be enabled to discharge the energy stored in
the capacitor. On the other hand, when the capacitor voltage has
been discharged below the lockout falling threshold (i.e., denoted
by VUV LO f allinд, and equals to 3.08V in our se�ing), the buck
converter will be turned o�, and the capacitor starts to be charged
again. In our current prototype, an Arduino Uno is used for data
logging. �e voltage of the capacitor is sampled by the Arduino
through onboard 10-bit ADC at 100Hz and stored on the SD card
for o�ine data analysis. �e circuit diagram of the prototype is
shown in Figure 3.

3.3 Ensuring Linearity in Capacitor Voltage
Before presenting the details of capacitor-based sensing, we �rst
analyze some properties of the capacitor when the system is pow-
ered by an energy harvester, and discuss the feasibility and design
requirement of leveraging the capacitor voltage for activity sensing.
For this purpose, we use our CapSense hardware to collect some
voltage samples from a subject when she is conducting di�erent
daily activities, namely, walking, running, ascending/descending
stairs, and stationary.

�e voltage of the capacitor,VC (t), at time t during the charging
is given by:

VC (t) = Vmax (1 − e−t/τ ), (1)

in which, Vmax is the maximum voltage to which the capacitor
can be charged, and it is bounded by Vmax = min{Vratinд ,VS },
where VS is the voltage applied to the capacitor (i.e., the recti�ed
DC voltage from the recti�er in our case), and Vratinд is the rating
voltage of the capacitor; and τ is de�ned as τ = RC , in which, R is
the resistance of the resistor in the equivalent resistor-capacitor
charging circuit (RC circuit), and C is the capacitance of the capaci-
tor. For a given capacitor, τ is known as the time constant of the
equivalent RC circuit, which is a constant value (in second).

Figure 4 plots the voltage of a capacitor when it is charged over
time (in the unit of RC). �e �rst observation is that, within the
examining time of 5RC , the increasing rate of capacitor voltage is
not constant. For instance, the voltage increment in the �rst RC
interval (i.e., from time 0 to RC) is not equal to that increased in
the second RC interval (i.e., from time RC to 2RC). As the only
information we can obtain from the capacitor is its voltage, and we
are using the voltage increasing rate for activity sensing, the non-
linear increment in the capacitor voltage will introduce additional
uncertainties in the activity recognition.

Fortunately, as we can observe in Figure 4, with time t ≤ 1
2RC ,

the theoretical curve of VC , de�ned in Equation (2), can be approx-
imated by a linear curve. According to the RC circuit theory, a
capacitor can be charged to 39.3% of Vmax with a charging time of
1
2RC , this means that to ensure the linearity in the capacitor voltage

0 RC 2RC 3RC 4RC 5RC
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0.2Vmax
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Figure 4: �e theoretical curve shows the voltage of a capac-
itor when it is charged over time. And the theoretical curve
is approximated by an linear curve. �e unit of time is RC
(i.e., the time constant).

for a maximum time of 1
2RC , Vmax should satisfy:

Vmax ≥
VUV LO risinд

0.393 , (2)

which yields:

min{Vratinд ,VS } ≥
VUV LO risinд

0.393 , (3)

in which,VUV LO risinд is the undervoltage lockout rising threshold
of the buck converter, at which the capacitor starts to be discharged.
�is means that, to ensure the linearity in the capacitor voltage,
the selection and con�guration of the hardware components (i.e.,
the PEH transducer, the buck converter, and capacitor) should be
considered interactively.

As discussed in Section 3.2, in our prototype,VUV LO risinд of the
buck converter has been con�gured to 4V3. �is means that, given
Equation (3), we have: min{Vratinд ,VS } ≥

4V
0.393 = 10.18V . �e

recti�ed DC voltage from the recti�er, VS , depends on the energy
harvester that is used in the system. Given di�erent materials and
con�gurations of the energy harvester, VS could be as high as tens
of volts. In our case, the recti�ed voltage from the PEH transducer
we used in the current prototype is up to 20.8V which is much
higher than 10.18V. �erefore, it turns out that the rating voltage
of the capacitor, Vratinд , should be larger than 10.18V. We select a
capacitor with rating voltage of 25V to meet the requirement.

3.4 Activity Sensing using Capacitor Voltage
In this section, we discuss how does CapSense leverage the capacitor
voltage for activity sensing.

An actual voltage trace showing the capacitor charging and
discharging status is presented in Figure 5. Initially, the capacitor
voltage starts from 0, and takes approximately 60 seconds to reach
4V and triggers the buck converter to discharge the accumulated
energy (i.e., the VUV LO of the buck converter is 4V). �en, when
the capacitor voltage is discharged to 3.08V, the buck converter is
shut o� until the capacitor voltage being charged above theVUV LO

3According to the datasheet of LTC3588, to ensure an output DC voltage of 2.5V, the
lowest voltage threshold is 4V.
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Figure 5: Voltage trace showing the capacitor is charged and
discharged periodically when the subject is running.
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Figure 6: Timeline (a) is the charging cycles of the capacitor.
Timeline (b) is the system operation cycles of CapSense.

rising threshold again. As shown, the capacitor is charged and
discharged periodically under the control of the energy harvesting
circuit depending on its voltage level. �e length of each charging
cycle is approximately 20 seconds when the subject is running
(i.e., the most intense activity we consider). �e cycle length will
be bigger if the subject is doing some modest activities such as
walkings. �is means that there is at least 20 seconds of time, during
which the voltage samples could be used for activity sensing.

Figure 6 presents the system operation cycles of CapSense, to-
gether with the charging cycles of the capacitor. As shown, within
each capacitor charging cycle, TCharдe , CapSense duty-cycles the
system MCU to sample capacitor voltage periodically. At the begin-
ning of each charging cycle, MCU is in the sleep mode, while the
capacitor starts to accumulate the energy generated by the KEH
transducer. A�er an accumulation time of TC , MCU awakes and
starts to sample the voltageVC of the capacitor. It takes timeTS for
MCU to complete the data sampling (according to our measurement
in Section 5, TS equals to 0.6ms). Once the sampling is �nished,
MCU goes back to sleep again. As shown in Figure 6, in each capac-
itor charging cycle, CapSense reads a series of capacitor voltage,
V1,V2, ...,Vn−1,Vn . By using two adjacent voltage samples, for in-
stance, Vk−1 and Vk , it is straightforward to estimate the increase
rate, r , of the capacitor voltage within the last accumulation time

 

Figure 7: �emeasured voltage of a self-discharge capacitor.

of TC by:
r =

Vk −Vk−1
TC

. (4)

�erefore, using the voltage reading of the capacitor, we can esti-
mate the energy generation rate of the transducer in timeTC , with-
out the need of high frequency data sampling. It is also noteworthy
that, as the MCU has no knowledge about the charging/discharge
status of the capacitor, it is possible that those two adjacent volt-
age samples are obtained in two di�erent charging cycles (i.e., it
may result in Vk−1 ≥ Vk , as Vk is sampled at the initial charging
state of the capacitor in a new charging cycle). In this case, when
calculate the increase rate, r , we disregard all adjacent voltage peer,
{Vk−1,Vk }, with Vk ≤ Vk−1.

However, the estimation of r may be a�ected by the discharging
time of the capacitor (i.e., TDC shown in Figure 6). As if it takes a
long time for the buck converter to discharge the capacitor from
4V to 3V, it is possible that the MCU may wake-up and sample an
incorrect voltage value during the discharge of the capacitor, which
will result in a wrong estimation in r . Fortunately, as shown in
Figure 5, the time required to discharge the capacitor from 4V to
3V, TDC , is extremely short which is less than tenms in our cur-
rent design. �us, it is highly unlikely that the voltage is sampled
incorrectly when the capacitor is discharging. Another factor that
may a�ect the estimation is the capacitor leakage. Figure 7 shows
the measured voltage of our capacitor when it self-discharges (i.e.,
leakage) from 5V to 0V. Speci�cally, we are interested in the be-
havior of the capacitor within the 3-4V range. As speci�ed in the
sub�gure, we can observe that it takes more than 700 seconds (i.e.,
12 minutes) for the capacitor to self-charge from 4V to 3V, which
means the leakage of the capacitor is negligible within a short time
of a few seconds. �us, the capacitor leakage will not a�ect our
estimation with a few seconds accumulation time TC .

As an example, Figure 8 plots the voltage samples of the capacitor
when a subject is doing di�erent activities. We can observe that, for
all �ve activities, our hardware design ensures a linear increasing in
the voltage when the capacitor is powered by the energy harvester.
As di�erent human activities can generate distinctive amount of
energy [9, 39], intuitively, the increasing rate of capacitor voltage
would directly yield the energy harvesting rate during the last few
seconds, thus, we can achieve activity recognition by simply using
the capacitor voltage. CapSense utilizes solely the capacitor voltage
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to classify di�erent human activities using conventional machine
learning algorithms, which enables system level power saving by
enabling the MCU to stay in the energy-saving low-power mode for
extended periods of time. In the following section, we will evaluate
the performance of CapSense using our prototype.

4 SYSTEM EVALUATION
4.1 Data Collection
�e dataset we used to evaluate the proposed system is collected
from 10 healthy subjects volunteered in our lab4. �e subjects are
diverse in gender (8 males and 2 females), age (range from 24 to
30), weight (from 55 to 75Kg), and height (from 168 to 183cm). We
considered �ve di�erent activities, including: walking, running, as-
cending/descending stairs, and stationary (i.e., si�ing or standing).
During data collection, the subjects were asked to wear our energy-
harvesting embedded shoe (we prepared shoes with di�erent sizes
to meet the requirement of our subjects) and the prototype system
is a�ached to the subject’s ankle (as shown in Figure 2). �en, the
subjects were asked to perform the activities normally in their own
way without any speci�c instruction. As illustrated in Figure 9, for
activities such as running and walking, they are performed in both
indoor and outdoor environments to capture the in�uence of dif-
ferent terrains. For ascending and descending stairs, we conducted
data collection in two building environments with di�erent styles
of stairs. For all the �ve activities, each volunteer participated at
least two data collection sessions for both indoor and outdoor envi-
ronments. For walking, running, and stationary, each session lasts
at least 20 seconds, whereas, for ascending/descending stairs (i.e.,
the slope and steps of the stairs are di�erent), each session may last
7 to 10 seconds depending on the number of steps and the speed
of the subject. For each of the �ve activities, we have collected at
least four sessions of samples from each of the 10 subjects. In total,
we have 210 sessions of data.

4.2 Evaluation Methodology
�e evaluation is carried out in WEKA5 using 10-folds cross valida-
tion with 10 repetitions for each test. Six typical machine learning
algorithms are used: the C4.5 decision tree algorithm (C4.5) [30], IBk
4Ethical approval for carrying out this experiment has been granted by the correspond-
ing organization (Approval Number HC15888).
5WEKA: h�p://www.cs.waikato.ac.nz/ml/weka/.
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Figure 9: �e illustration of data collection.

K-Nearest Neighbor classi�er [1], Naive Bayes with kernel estima-
tion [13], RandomForest [4], DecisionTable [19], and BayesNets [3].
�e parameters of the classi�ers are optimized using the CVParam-
eterSelection algorithm [19]. We evaluate CapSense performance in
terms of activity recognition accuracy (i.e., True Positive Rate). �e
experiment is conducted in a subject-dependent manner. It is note-
worthy that, unlike conventional accelerometer-based [5] or KEH
transducer-based activity sensing system [18] that require complex
signal processing and feature extractions, CapSense relies only on
the voltage di�erence of the capacitor for activity recognition.

4.3 Performance Evaluation
4.3.1 Recognition Accuracy v.s. Subject. �e �rst thing we are

interested in is the impact of subject di�erence on the recognition
accuracy, as subjects will perform activity in di�erent ways which
may a�ect the system accuracy [5]. Intuitively, given the diversity
in subject’s gender, weight, and height, the foot strike pressures
applied on the energy harvester di�er in the way subjects perform
the activity. �e classi�er we used in this experiment is Naive
Bayes.

Figure 10 exhibits the achieved accuracy of CapSense for all the
10 subjects given di�erent accumulation windows TC . As expected,
given a speci�c classi�er and a �xed TC , the achieved classi�cation
varies with subjects. More speci�cally, Figure 11 plots the confusion
matrix of the classi�cation results for two subjects, Subject 4 and
8, with TC=3s. Subject 4 achieves the lowest accuracy among all
subjects, whereas, Subject 8 achieves the highest. As shown in
Figure 11, for both subjects, the major classi�cation error occur
between the class ‘Stairs’ (i.e., ascending/descending stairs) and
‘Walk’, due to the high similarity between those activities. For
Subject 4, there are more classi�cation errors appear between those
two classes than that for Subject 8. We can also notice that about
13% of the ‘Run’ instances have been classi�ed incorrectly as ‘Stairs’
for Subject 4, whereas, there is no classi�cation error for Subject
8. Clearly, as expected, the results indicate that di�erent subjects
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Figure 10: CapSense accuracy (in %) with Naive Bayes clas-
si�er for all the ten subjects given di�erent accumulation
window TC . (results with accuracy ≥ 85% are highlighted)

Stairs Walk Run Sit
Stairs 0.47 0.34 0.19 0.00
Walk 0.23 0.73 0.04 0.00
Run 0.13 0.00 0.87 0.00
Sit 0.00 0.00 0.00 1.00

(a) Subject 4, TC = 3s .

Stairs Walk Run Sit
Stairs 0.92 0.08 0.00 0.00
Walk 0.00 0.00
Run 0.00 0.00 1.00 0.00
Sit 0.00 0.00 0.00 1.00

0.950.05

(b) Subject 8, TC = 3s .

Figure 11: Confusion matrix of CapSense with Naive Bayes
classi�er for Subject 4 and 8. �e TC = 3s.
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Figure 12: �e accuracy (in %) achieved by CapSense given
di�erent subjects and accumulation windowTC . �e results
are the averaged accuracy achieved by the seven di�erent
classi�ers.

perform the activities in di�erent ways, and those di�erences have
impacted the CapSense performance. Fortunately, CapSense can
still achieve high classi�cation accuracy for 90% of the subjects
based on our evaluation.

4.3.2 Recognition Accuracy v.s. Accumulation Time. Now, we
investigate the impact of accumulation time TC on the recognition
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Figure 13: �e accuracy (in %) achieved byCapSensewith dif-
ferent classi�ers given di�erent accumulation window TC .
�e results are the averaged accuracy across the ten subjects.

accuracy. First, as we have shown in Figure 10, for a speci�c clas-
si�er (i.e., Naive Bayes), the achieved accuracy increases with TC .
Similarly, Figure 12 exhibits the averaged accuracy achieved by the
six classi�er given di�erent TC for all the subjects. We can see that
the accuracy increases with TC irrespective of the classi�er. �e
second observation is that, 9 out of 10 subjects can achieve over
85% of accuracy with TC ≥ 6s. Intuitively, this is because a larger
accumulation window can lead to a more distinctive di�erence in
the capacitor voltage. �us, a large TC is preferable in improv-
ing the classi�cation accuracy. However, the sojourn time for a
subject in performing a speci�c activity is short, and transitions
between activities may occur in the middle of TC . �erefore, TC
should not be set too large that exceeds the activity sojourn time.
For instance, during our data collection, we have noticed that, for
ascending/descending a 10-steps stair, the sojourn time is usually
within 8 to 10 seconds depending on the subject’s speed. �us,
the maximum value of TC is con�gured to 7 seconds based on our
current dataset. Moreover, as reported in [36], for activities such as
walking, running, and standing/si�ing, the sojourn time is at least
1 to 2 minutes. For activities such as ascending/descending stairs,
the sojourn time is much shorter, but still longer than 5 seconds
for over 99.9% of the time. �erefore, as a trade-o� between the
system performance and robustness, we recommend the maximum
value of TC for CapSense to be con�gured to 5 seconds.

4.3.3 Recognition Accuracy v.s. Classifier. Lastly, we analyze
the performance of CapSense with di�erent classi�ers. Figure 13
exhibits the averaged performance of CapSense across all the ten
subjects with di�erent TC when apply di�erent classi�ers. We can
observe that, all the six classi�ers can achieve over 85% of accuracy
with TC ≥ 3s . With TC ≥ 5s , the average accuracy of CapSense
across the 10 subjects will increase to 90% for all the classi�ers.
With TC = 7s , CapSense is able to achieve over 92% of accuracy
which is comparable to the performance achieved by conventional
motion sensor-based systems [25].

An interesting observation is that CapSense exhibits no bias on
the selection of classi�er, as all the six classi�ers achieved similar
classi�cation results. In general, the selection of relevant features
and the decision on how to construct a classi�cation model on the
selected a�ributes can have an enormous impact on the classi�-
cation result. �us, for conventional accelerometer-based or KEH
transducer-based activity sensing systems [5, 18, 35], they require
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very large feature set and complex feature selection algorithm to
build the learning model carefully. Di�erently, as CapSense does
not require very complex feature sets and relies only on the voltage
di�erence for activity recognition, it shows no bias on the selection
of classi�er. �erefore, it simpli�es the procedure in building the
classi�cation model and minimizes the errors that could result from
selecting an inappropriate classi�er.

5 POWER CONSUMPTION ANALYSIS
Ba�ery lifetime is the major roadblock for the mainstream uptake
of wearable technology6, and system energy consumption optimiza-
tion is an active research area for both academics and industries.
Existing e�orts [18, 23, 35] have demonstrated the superiority of
KEH transducer-based sensing system in energy saving. Compar-
ing to accelerometer-based system, KEH transducer-based system
can save the energy consumption in power energy-hungry motion
sensor. In this section, we will conduct an extensive power con-
sumption pro�ling of o�-the-shelf wearable activity recognition
systems. We will demonstrate that, for KEH transducer-based sys-
tem, a non-negligible amount of system energy consumption still
comes from powering the MCU for sampling the AC voltage signal.
As KEH transducer-based activity recognition system still requires
tens of Hz sampling frequency, it turns out that the MCU needs
to wake-up and polling the signal from the transducer frequently.
In contrast, by appropriately use the properties of the capacitor,
CapSense enables system level power saving by enabling the MCU
to stay in the energy-saving low-power mode for extended periods
of time comparing to the state-of-the-art KEH transducer-based
system. Consequently, we will show that CapSense can reduce the
system power consumption by several factors.

5.1 Measurement Setup
We use an o�-the-shelf Texas Instrument SensorTag7 as the target
device, which is embedded with the ultra-low power ARM Cortex-
M3 MCU that is speci�cally designed for today’s energy-e�cient
wearable devices8. �e SensorTag is running the Contiki 3.0 operat-
ing system9 which duty-cycles the MCU to save energy. To further
reduce the power consumption of MCU in processing, a lower clock
frequency of 12MHz is used instead of the default 48MHz. More-
over, all unnecessary components, including the onboard ADC, SPI
bus, and the on board accelerometers are powered-o� when it is not
sampling. �e SensorTag is connected with a 10Ω resistor in series
and powered by a 3V coin ba�ery. �e average power consumption
and time requirement for each sampling event are measured by
using the built-in function in the Agilent DSO3202A oscilloscope.
We are interested in the power consumption of SensorTag in data
sampling (i.e., either in sampling the capacitor voltage or the AC
voltage signal from KEH transducer), and the power consumption
in data transmission. In the following, we present our measurement
results of those parts in order.

6h�p://www.theverge.com/2016/1/15/10775660/�tness-tracker-smartwatch-ba�ery-
problems-apple-motorola-lumo (accessed on July 29th 2016).
7SensorTag: h�p://www.ti.com/ww/en/wireless connectivity/sensortag/.
8Mainstream wearable devices such as FitBit are using ARM Cortex-M3: see h�ps:
//www.i�xit.com/Teardown/Fitbit+Flex+Teardown/16050.
9Contiki OS: h�p://www.contiki-os.org/.

S_sample 

S_sleep S_sleep 

MCU wakes up to sample periodically. 

MCU in deep-sleep mode. 

Figure 14: Pro�ling of voltage sampling.

Table 1: States of MCU in sampling the ADC signal.

State
Time
(ms)

Power
(µW)

Description

Ssample 0.6 480 MCU wakes up to sample ADC signal.
Ssleep null 6 MCU in deep-sleep mode.

Table 2: �e power consumption (µW) in data sampling.

KEH transducer-25Hz CapSense-0.14Hz
Sensing 7.11 0.04
MCU Leakage 6 6
Overall 13.11 6.04

5.2 Power Consumption in Sampling
First, we investigate the power consumption in data sampling. In
themeasurement, both capacitor voltage and KEH transducer signal
are simpled through the on board ADC of SensorTag. �e sampling
frequency of MCU is con�gured as 25Hz to meet the requirement
of KEH transducer-based sensing system. Figure 14 presents an
oscilloscope trace when MCU sampling the signal from ADC pe-
riodically. As shown, MCU is triggered by the timer to sample
periodically. It takes approximately 0.6ms for the MCU to com-
plete a single voltage sampling event (i.e., state Ssample shown in
Figure 14). A�er that, MCU turns back into the deep sleep mode
(i.e., LPM3 in Contiki OS) to save power. �e average power con-
sumption of the system for a single ADC sampling is 480µW, and
the baseline system power consumption when MCU is in the deep-
sleep-mode is only 6µW. �e details of power consumption and
time duration for MCU sampling the ADC signal are summarized
in Table 1.

In general, for the duty-cycled activity sensing system, the aver-
age power consumption in data sampling, Psense , can be obtained
by the following equation:

Psense =

{TS×n
1000 Psample + (1 −

TS×n
1000 )Psleep if 0 ≤ n ≤ 1000

TS
,

Psample if 1000
TS

< n.
(5)

where, Psample is the average power consumption of the system
during the sampling event, and Psleep is the average power con-
sumption when the MCU is in deep-sleep mode (with all the other

https://www.ifixit.com/Teardown/Fitbit+Flex+Teardown/16050
https://www.ifixit.com/Teardown/Fitbit+Flex+Teardown/16050
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Figure 15: Pro�ling of BLE broadcasting event.

system components power-o�). n is the sampling frequency, and
TS is the duration of time (in milli-second) required by a single
sampling event. Based on the measurement results given in Ta-
ble 1, we can have the average power consumption for KEH voltage
sampling event, Psample , equals to 480µW with a duration, TS ,
equals to 0.6ms. �e power consumption when MCU in deep-sleep
mode, Psleep , is 6µW. For KEH transducer-based system, given
di�erent application scenarios, a sampling frequency of 25Hz-50Hz
is required to achieve good accuracy for human activity recog-
nition [17, 18, 23, 35]. �erefore, given the minimum required
sampling frequency of 25Hz, following Equation 5 we can obtain
the power consumption in data sampling for KEH transducer-based
system equals to 13.11µW. On the other hand, as demonstrated
in Section 4, to achieve an overall classi�cation accuracy of 90%,
CapSense need only to sample the ADC signal once every 7s. Fol-
lowing Equation 5, the power consumption in data sampling for
CapSense is only 6.04µW.

�e results are summarized in Table 2. As shown, CapSense
is able to save 54% of the overall power consumed by the
transducer-based system in data sampling. It is noteworthy
that, in case of Sensing, the power consumption of CapSense is
only 0.6% of the KEH transducer-based system (i.e., 0.04µW7.11µW ). We
can also notice that for CapSense, the main energy expenditure
is the MCU Leakage (i.e., the power consumption of the system
when MCU is in deep-sleep mode), which consumes 99% (6µW over
6.04µW) of the overall sampling power consumption. Fortunately,
with the rapid development of energy-e�cient micro-controllers,
we can expect the power consumption in System Leakage could be
further reduced. For instance, the EFM32 Gecko MCU10 consumes
only 2.7µW in the deep-sleep mode, it can help CapSense achieving
an ultra-low system power consumption of 2.71µW .

5.3 Power Consumption for Data Transmission
In this subsection, we study the power consumption for the wire-
less transmission using the BLE beacons in broadcasting mode. We
programmed the Contiki OS which wake-ups the CC2650 wireless
MCU periodically to transmit a BLE beacon packet, which is re-
peated three times on three separate channels (repetition improves
reliability of broadcasting). �e transmi�ed beacon packets are
all 19 Bytes (all for protocol payloads. �e details for each BLE
broadcasting event are visualized in Figure 15, and summarized
in Table 3. Note that, the transmission time is depending on the
packet size. �e time stated in Table 3 (0.28ms for state S2, S4, and
10EFM32 Gecko 32-bit MCU: h�p://www.silabs.com/products/mcu/32-bit/efm32-
gecko.

Table 3: States of BLE broadcasting event.

State
Time
(ms)

Power
(uW)

Description

S1 1.12 1008 Radio setup.
S2, S4, S6 0.28 3990 Radio transmits a beacon packet of 19 Bytes.
S3, S5 0.30 2460 Transition between transmissions.
S7 1.72 744 Post-processing before sleep.
S sleep null 6 Radio o�; MCU in deep-sleep mode.

Table 4: Summary of data transmission power consumption.

KEH-25Hz CapSense-0.14Hz
Power 3.212mW 1.716mW
Time 33.9ms 4.3ms
Energy 108.88µ J 7.43µ J

S6) is the minimum required time to transmit the 19 Bytes packet
per channel. For every additional Byte11 to be transmi�ed, 8µs time
needs to be added to the total transmission time.

For transducer-based system with a sampling frequency of 25Hz,
it has 25Hz × 7s = 175 voltage samples (2 Bytes for each 12-Bits
ADC reading, and 350 Bytes in total) to be transmi�ed per Channel
for every seven seconds. Given the maximum additional data can
be added to each beacon packet is 28 Bytes, this requires d 35028 e = 13
packets to be transmi�ed per channel. As a result, for transducer-
based system, it consumes 108.88µJ12 to transmit the 13 packets
on three di�erent channels. �e average power consumption is
3.212mW with time duration of 33.9ms . On the other hand, for
CapSense, it has only one voltage sample to be transmi�ed for
every seven seconds (in total, 2 Bytes), results in one packet to
be transmi�ed per channel. �e total energy consumption for
CapSense is only 7.43µJ13. �e average power consumption is
1.716mW with time duration of 4.3ms . �e results are summarized
in Table 4. �is means that, CapSense is able to save over 93%
of the energy consumption in data transmission. Clearly, for
KEH transducer-based systems, the radio has to stay for a longer
period of time to transmit more sampling data. Although, di�erent
transmission mechanisms (data aggregation and feature selection)
can be applied to reduce the amount of data to be transmi�ed [25],
and thus, reduce the transmission power consumption. However,
additional on-board computations in those mechanisms may still
introduce inevitable power consumption. Combining the power
consumption in data sampling and transmission together, the over-
all system power consumption for KEH transducer-based system
is 28.53µW 14, whereas, the overall system power consumption for
CapSense is only 7.09µW15. �is means that CapSense is able to
save 75% of the overall system power consumption of state-
of-the-art KEH transducer-based system.
11According the protocol, up to 28 Bytes of data could be added to the 19 Bytes payloads
per packet.
12Obtained by: 1.12µs ×1.008µW +1.72µs ×0.744µW +39×(0.28µs +0.008µs ×
28) × 3.99µW + 38 × 0.3µs × 2.46µW = 108.88µ J .
13Obtained by: 1.12µs × 1.008µW + 1.72µs × 0.744µW + 3× (0.28µs + 0.008µs ×
2) × 3.99µW + 2 × 0.3µs × 2.46µW = 7.43µ J .
14Obtained by:( 13.11µW ×7sec+3.212mW ×33.9ms

7sec+33.9ms ) = 28.53µW .
15Obtained by:( 6.04µW ×7sec+1.716mW ×4.3ms

7sec+4.3ms ) = 7.09µW.
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6 CONCLUSION AND FUTURE DIRECTIONS
In this paper, we present CapSense, a novel activity sensing scheme
for KEH-powered wearable devices. By simply using the voltage
readings of the capacitor which is sampled at a frequency down to
0.2Hz, CapSense is able to achieve over 90% of accuracy in classi-
fying di�erent daily activities, and reduce sampling-related power
consumption of the state-of-the-art system by 99% and the overall
system power consumption by 75%.

�e current work is a �rst step in capacitor-based human activity
recognition. As such, it can be extended in many directions. First of
all, we have only evaluated its potential under the ideal condition
when activities do not overlap within the sampling interval. In
the future work, we will investigate solutions that address the
more practical cases where activity changes occur at arbitrary time
boundaries. Second, as the current hardware prototype is quite
cumbersome, another direction for future work is to design the
prototype with a smaller form-factor, and provide detailed user
study on the practical user experience of this device. Finally, as
our hardware can harvest energy from di�erent user activities, we
will investigate ways to utilize the harvested energy to power our
system, thus making it ba�ery-free.
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