
Ed-Join: An Efficient Algorithm
for Similarity Joins With Edit Distance Constraints

Chuan Xiao Wei Wang Xuemin Lin
School of Computer Science and Engineering
The University of New South Wales, Australia

{chuanx, weiw, lxue}@cse.unsw.edu.au

ABSTRACT
There has been considerable interest in similarity join in the
research community recently. Similarity join is a fundamen-
tal operation in many application areas, such as data in-
tegration and cleaning, bioinformatics, and pattern recogni-
tion. We focus on efficient algorithms for similarity join with
edit distance constraints. Existing approaches are mainly
based on converting the edit distance constraint to a weaker
constraint on the number of matching q-grams between pair
of strings.

In this paper, we propose the novel perspective of inves-
tigating mismatching q-grams. Technically, we derive two
new edit distance lower bounds by analyzing the locations
and contents of mismatching q-grams. A new algorithm, Ed-
Join, is proposed that exploits the new mismatch-based fil-
tering methods; it achieves substantial reduction of the can-
didate sizes and hence saves computation time. We demon-
strate experimentally that the new algorithm outperforms
alternative methods on large-scale real datasets under a wide
range of parameter settings.

1. INTRODUCTION
With the wide availability of data sources on the Web

and increasing demands for data integration within enter-
prises, similarity join has become an essential procedure to
provide an effective and efficient way to correlate data to-
gether. Similarity join between two sets of objects returns
pairs of objects from each set such that similarity values
between the pairs are above a given threshold. Due to its
importance, similarity join has been studied in many areas,
such as data integration and cleaning, bioinformatics, and
pattern recognition. Similarity join is also adopted in the
industry solutions. For example, Google adopts both ap-
proximate and exact similarity join for near duplicate Web
page detection [18], query log mining, and collaborative fil-
tering [3]. Microsoft researchers proposed the SSJoin prim-
itive operator [12] to support similarity join and it has been
used in the Data Debugger project [11].

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, to post
on servers or to redistribute to lists, requires a fee and/orspecial permission
from the publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

In this paper, we focus on similarity joins with edit dis-
tance thresholds or edit similarity join [12]. Edit distance
measures the minimum number of edit operations (inser-
tion, deletion, and substitution) to transform one string
to another. Edit distance has two distinctive advantages
over alternative distance or similarity measure: (a) it re-
flects the ordering of tokens in the string; and (b) it allows
non-trivial alignment. These properties make edit distance
a good measure in many application domains, e.g., to cap-
ture typographical errors for text documents, and to capture
similarities for Homologous proteins or genes.

Similarity joins with edit distance thresholds pose serious
algorithmic challenges. Computing edit distance is more ex-
pensive (O(n2)) than alternative distance or similarity mea-
sure (usually O(n)). Even approximating edit distance is
hard. For example, Andoni et al. showed that edit distance
cannot be embedded into L1 with distortion less than 3/2 [1].
As a result, the näıve algorithm that evaluates edit distance
for every pair of strings would incur an prohibiting O(N2·n2)
running cost, where N is the number of strings and n is the
length of the strings.

Current state-of-the-art approaches to process edit simi-
larity join are mainly based on a filter-and-verify approach,
operating on the q-gram representation of strings [14]. The
q-gram representation of a string is the set of substrings ob-
tained by sliding a window of length q over the string. If
there are only few edit errors between two strings, the ma-
jority of the q-grams in one string will be preserved and we
should be able to find them in approximately the same lo-
cations in the other string. q-grams that are preserved are
called matching q-grams. Several filtering conditions regard-
ing the total number and locations of the matching q-grams
and the lengths of the strings were developed [14]. These fil-
tering conditions are only necessary conditions for the edit
distance threshold, and therefore, string pairs that survive
all the filters still need to be verified by the edit distance
calculation. Hence, the efficiency of this filtering-based ap-
proach critically depends on the pruning power of the filters.
A recent progress is the introduction of prefix filtering [30,
12, 3]. When applied to the edit similarity join, it usually
reduces the candidate size significantly and hence speeds up
the computation.

Unlike all the existing approaches, this paper takes a novel
perspective by studying mismatching q-grams. Intuitively,
traditional filtering methods based on the count of matching
q-grams have high computational cost as they have to access
all the q-grams before rejecting a candidate pair. We argue
that q-grams that cannot be matched also provide valuable

information on the similarity of strings. Technically, we de-
rive two novel lower bounds to edit distance by analyzing
mismatching q-grams. Two filtering methods, location-based
mismatch filtering and content-based mismatch filtering, are
developed that usually reduce the size of the candidates sub-
stantially compared with previous methods [14, 12, 3]. We
also show how the additional filters are complementary to
existing ones and that they are all integrated into a new
algorithm, Ed-Join, to attain the maximal pruning power.
Our extensive experimental evaluation verifies the superior
efficiency of the new algorithm to alternative methods.

We make the following contributions in the paper:

• We propose a novel perspective of analyzing the locations
and contents of mismatching q-grams to speed up edit
similarity join computation. We developed two new fil-
tering methods that are especially effective against non-
clustered edit errors and clustered edit errors, respectively.

• We propose a new algorithm, Ed-Join, that integrates the
new mismatch filtering methods with existing filters. Ex-
perimental results on several large-scale datasets demon-
strate the substantial reduction of candidate sizes and the
running time.

• Based on the experimental results, we recommend con-
sidering longer q-grams for stand-alone implementation
of edit similarity join on medium to long strings. We
present our analysis on why this deviates from the pre-
vious recommendation of q = 2 [14]. This finding might
impact many data cleaning toolkits that currently rely on
bi-grams or tri-grams for edit similarity join.

The rest of the paper is organized as follows: Section 2
introduces preliminaries and backgrounds. Sections 3 and 4
present location-based and content-based mismatch filter-
ing and their integration with the new proposed algorithm
Ed-Join. Section 5 discusses several implementation issues.
Experimental results and analyses are given in Section 6.
Section 7 presents related work and Section 8 concludes the
paper.

2. PRELIMINARIES

2.1 Problem Definition and Backgrounds
Let Σ be a finite alphabet of symbols σi (1 ≤ i ≤ |Σ|). A

string s is an ordered array of symbols drawn from Σ. The
length of string s is denoted as |s|. Each string s is also
assigned an identifier s.id. All input string sets are assumed
to be in increasing order of string length. ed(x, y) denotes
the edit distance between strings x and y, which measures
the minimum number of edit operations (insertion, deletion,
and substitution) to transform one string to another (and
vice versa). It can be computed in O(n2) time and O(n)
space using the standard dynamic programming [32].

Given two sets of strings R and S, a similarity join with
edit distance threshold τ (or edit similarity join [12]) returns
pairs of strings from each set, such that their edit distance
is no larger than τ , i.e., { 〈r, s〉 | ed(r, s) ≤ τ, r ∈ R, s ∈ S }.
For the ease of exposition, we will focus on the self-join
case in the paper, i.e., { 〈ri, rj〉 | ed(ri, rj) ≤ τ ∧ ri.id <
rj .id, ri ∈ R, rj ∈ R }.

A q-gram is a contiguous substring of length q; and its
starting position in a string is called its position or location.
A positional q-gram is a q-gram together with its position,
usually represented in the form of (token, pos) [14]. For

simplicity, when there is no ambiguity, we use “positional
q-gram” and “q-gram” interchangeably.

Let w be a q-gram and df(w) be the number of strings con-
taining w. The inverse document frequency of w, idf(w), is
defined as 1/df(w). Intuitively, q-grams with high idf values
are rare q-grams in the collection.

We can extract all the positional q-grams of a string and
order them by decreasing order of their idf values and in-
creasing order of their locations. We call the sorted array the
q-gram array of the string. Sorting positional q-grams in this
order is a good heuristic to speeding up similarity joins [12].

A string s can generate l = |s| − q + 1 q-grams.1 Given a
q-gram array x, str(x) denotes its corresponding string. The
i-th positional q-gram in x is denoted as x[i]; its q-gram and
location are denoted as x[i].token and x[i].loc, respectively.
The k-prefix of x is its first k entries, i.e., x[1 . . k].

An inverted index for q-grams is a data structure that
maps a q-gram w to an array Iw containing entries in the
form of (id, loc), where id identifies the sting that contains
w and loc is the starting location of w in the string identified
by id. The entries in Iw are sorted in the increasing order
of id and loc.

Example 1. Consider the string s = abaabab. Let q = 2,
it has l = 6 positional q-grams: (ab, 1), (ba, 2), (aa, 3),
(ab, 4), (ba, 5), and (ab, 6). If idf(aa) ≥ idf(ab) ≥ idf(ba),
then the q-gram array of s is

(aa, 3) (ab, 1) (ab, 4) (ab, 6) (ba, 2) (ba, 5)

The inverted list for q-gram ba will be

(s, 2) (s, 5)

2.2 q-gram-based Filtering
[14] proposed an efficient solution for edit similarity join in

a database setting. The method essentially relaxes the edit
distance constraint to a weaker count constraint on the num-
ber of matching q-grams. Two q-grams match if they have
the same token and their locations are within the edit dis-
tance threshold τ . Specifically, three filters were proposed as
follows: if two strings s and t are within edit distance τ , then

Count Filtering mandates that s and t must share at least
LBs;t = (max(|s|, |t|) − q + 1) − q · τ common q-grams.

Position Filtering mandates that s and t must share at
least LBs;t matching positional q-grams.

Length Filtering mandates that ||s| − |t|| ≤ τ .

Note that a pair of strings that passes the filters (called
candidate pair) does not necessarily satisfy the edit distance
constraint. Therefore, edit distance calculation is needed for
every candidate pair that survives all the preceding filters.

Given a pair of string s and t and a threshold τ , q-grams
in s that cannot be matched with any q-gram in t are called
mismatching q-grams from s to t, or simply s’s mismatching
q-grams if there is no ambiguity.

2.3 Prefix Filtering
A major performance bottleneck in [14] is the generation

of candidate pairs that share LBs;t matching q-grams. We
cannot discard a candidate pair unless all their q-grams have
been accessed and compared.

1Unlike [14], we choose not to add special symbol ‘#’ or ‘$’ to s
as prefix or suffix for the ease of illustration. Otherwise, l should
be |s|+ q − 1.

This weakness has been identified by several researchers [30,
12]. A prefix-based filtering is proposed to quickly filter out
candidate pairs that are guaranteed not to meet the LBs;t

threshold. Figure 1 illustrates the idea of prefix filtering in
the context of edit similarity join.

qa qb ? ? ? ? ?y:

qu qv ? ? ? ? ?x:

q · τ + 1 l − q · τ − 1 = LBstr(x);str(y) − 1

l

Figure 1: Illustration of the prefix filtering (l is the
total number of q-grams for both q-gram arrays; the
unshaded cells are prefixes of length q · τ ; if x and
y has no matching q-gram in their prefixes, their
matching q-grams are no more than LBstr(x);str(y)−1,
as both arrays follow the same ordering).

We formally state the prefix filtering principle for the edit
similarity join in Lemma 1. More details and its application
to other similarity/distance measures can be found in [12,
3].

Lemma 1 (Prefix Filtering). Let x and y be two q-
gram arrays and ed(str(x), str(y)) ≤ τ . Then the (q · τ +1)-
prefix of x and the (q · τ + 1)-prefix of y must have at least
one matching q-gram.

2.4 TheAll-Pairs-Ed Algorithm
Previous work on edit similarity join algorithm employ-

ing prefix filtering is an RDBMS-based implementation that
exploits the set-based and group-base processing mechanism
by the RDBMS [12].

In this paper, we consider the stand-alone implementa-
tion. We modify a state-of-the-art, prefix-filtering-based
similarity join algorithm, All-Pairs [3], for edit similarity
join.2 We name it All-Pairs-Ed and its pseudo-code is given
in Algorithm 1. All-Pairs-Ed follows an index nested loop
join style and maintains an in-memory inverted index on q-
grams on-the-fly. Specifically, it assumes the input is a set of
q-gram arrays, sorted by in increasing order of their length.
It iterates through each q-gram array x; for each q-gram w
in the (q · τ + 1)-prefix of x, it probes the inverted index to
find other q-gram arrays y that contain matching q-grams
to w. Afterwards, x and all its candidates will be further
checked by the Verify algorithm.

Within Verify, count and positional filterings will be ap-
plied to every candidate pair first. Only those that pass both
filters will be further checked by performing the expensive
edit distance calculation.

We will see later how additional filters can be integrated
to it to gain further efficiency. This algorithm will also serve
as a baseline algorithm for comparison in our experiment.

3. LOCATION-BASED MISMATCH FILTER-
ING AND ED-JOIN

2Although ppjoin family algorithms [34] have been shown to
outperform All-Pairs, we don’t consider them as the optimizations
used in [34] are either made redundant by the location-based
mismatch filtering or not easily extendible to the edit distance
function.

Algorithm 1: All-Pairs-Ed (R, τ)

S ← ∅;1

Ii ← ∅ (1 ≤ i ≤ |U |);2

for each x ∈ R do3

A← empty map from id to boolean;4

px ← q · τ + 1;5

for i = 1 to px do6

w ← x[i].token; locx ← x[i].loc;7

for each (y, locy) ∈ Iw such8

that |y| ≥ |x| − τ and A[y] has not been initialized do
if |locx − locy | ≤ τ then9

A[y]← true; /* found a candidate */;10

Iw ← Iw ∪ { (x, locx) };11

/* index the current prefix */;

Verify(x, A);12

return S13

In this section, we first gives an overview of the proposed
Ed-Join algorithm for edit similarity join, followed by the
introduction to location-based mismatch filtering. The new
filtering method forms the first part of the Ed-Join algo-
rithm.

3.1 Overview of the Ed-Join Algorithm
Most existing algorithms for edit similarity join are based

on the accumulation and counting of matching q-grams.3

Even with the prefix-filtering optimization, algorithms still
have to access and process all the q-grams of strings that
share a common q-gram in their respective prefixes.

In this paper, we propose to analyze also the mismatching
q-grams in order to further speed up the join processing. We
design a new algorithm, Ed-Join, that employs two novel fil-
tering techniques obtained from analyzing the locations and
the contents of mismatching q-grams. Like previous algo-
rithms, our Ed-Join algorithm has a candidate-generation
phase and then a verification phase. Since our new filters
are developed from a new perspective, both filters are or-
thogonal to existing ones (count and position filterings) and
can be used with existing ones in a complementary manner.
In our Ed-Join algorithm, the new location-based mismatch
filtering is applied to both phases and content-based mis-
match filtering is applied to the verification phase.

3.2 Location-based Mismatch Filtering
The count filtering essentially answers the question: “what

is the maximum number of q-grams that can be destroyed by
τ edit operations”. Here, we ask an inverse question: “what
is the minimum number of edit operations that cause the
observed mismatching q-grams”. Answering this question
leads us to establish a new lower bound for the edit distance.

Example 2. Let q = 2 and τ = 1. Consider two strings:

t = abccabcc

s = abbcabbc.

Count filtering requires 5 matching q-grams in both strings.
Without loss of generality, consider one string t, and it has
only two out of seven q-grams that are not matched (two cc

3
PartEnum is an exception, which is based on the pigeon hole

principle. We discuss and compare with PartEnum in Section 6.4.

not matched), 〈s, t〉 will become a candidate pair and will be
ultimately verified by edit distance.

However, we can consider the locations of t’s mismatch-
ing q-grams and obtain a lower bound directly on the edit
distance. Obviously, since the two mismatched q-grams are
disjoint in location, it takes at least two edit operations to
destroy them. Therefore, we can infer a lower bound of the
edit distance between the pair to be 2. Hence the pair can be
safely discarded.

To handle the general case, we also need to consider par-
tially overlapping mismatching q-grams. We named the
problem as the minimum edit errors problem, which can
be stated formally as: Given a set of q-grams Q, find the
minimum number of edit operations that destroy all q-grams
in Q. It seems that there is no closed-form formula to calcu-
late minimum edit errors. Nevertheless, we design a greedy
algorithm that calculates the number exactly in O(|Q|) time
if Q is already sorted in increasing location, or O(|Q| log |Q|)
otherwise.

Algorithm 2: MinEditErrors (Q)

Sort q-grams in Q in increasing order of locations if necessary;1

cnt← 0; loc← 0;2

for i = 1 to |Q| do3

if Q[i].loc > loc then4

cnt← cnt + 1;5

loc← Q[i].loc + q − 1;6

return cnt7

The algorithm is shown in Algorithm 2. It greedily selects
the next unprocessed mismatch q-gram (Q[i]), makes an sub-
stitution edit operation at its last position (i.e., Q[i].loc +
q − 1), and then removes all the subsequent q-grams that
are destroyed by this substitution. The loop continues until
all q-grams are destroyed. Note that the default sorting or-
der of q-gram arrays is by decreasing idf values of q-grams
rather than their locations.

Proposition 1. Algorithm 2 correctly solves the mini-
mum edit error problem.

Let min-err(Q) be the minimum edit errors for a set of
mismatching q-grams Q. We also show two properties with
respect to the minimum edit errors, which is important to
our Ed-Join algorithm.

Proposition 2 (Monotonicity).

min-err(Q) ≤ min-err(Q′), ∀Q ⊆ Q′

Proposition 3. d|Q|/qe ≤ min-err(Q) ≤ |Q|.

Lemma 2. Let x and y be two q-gram arrays, and let
Q be the set of mismatching q-grams from x to y, then
ed(str(x), str(y)) ≥ min-err(Qp), ∀Qp ⊆ Q.

Lemma 2 gives a new edit distance lower bound based on
any subset of a string’s mismatching q-grams.

3.3 Minimum Prefix for Edit Similarity Join
We introduce how location-based mismatch filtering can

be applied to the prefixes and achieve substantial reduction
of candidate pairs. The filtering can be used on the entire
string as well (See Section 4.3).

Recall that prefix filtering requires each string to generate
a fixed-length q ·τ +1 prefix and consider as candidates other
strings whose prefix matches one of the q-grams in the pre-
fix. This means that a string in a candidate pair can have
up to q · τ mismatching q-grams in the prefixes. It is highly
likely that the minimum edit errors of those mismatching q-
grams already exceed τ and the candidate pairs are in fact
disqualified with respect to the edit distance constraint due
to Lemma 2.

Based on the monotonicity of the minimum edit errors
(Proposition 2), we can further strengthen the filtering con-
dition by reducing the prefixes to the minimum prefixes.
Intuitively, the minimum prefix is the shortest prefix of the
q-gram array x such that if all the q-grams in the minimum
prefix are mismatched, it will incur at least τ +1 edit errors.
We call the length of such minimum prefix minimum prefix
length.

Algorithm 3: CalcPrefixLen (x)

left← τ + 1; right← q · τ + 1;1

while left < right do2

mid← (left + right)/2;3

err← MinEditErrors(x[1 . . mid]);4

if err ≤ τ then5

left← mid + 1;6

else7

right← mid;8

return left9

A näıve algorithm to find the minimum prefix length by
the definition is to iterate over the range [τ + 1, q · τ + 1]
(due to Proposition 3) and stop at the first number m such
that x[1 . . m] will entail more than τ edit errors (by call-
ing Algorithm 2). This algorithm, however, has an O(u2)
running time, where u = q · τ + 1. We propose a more effi-
cient Algorithm 3 that performs a binary search within the
same range of [τ + 1, q · τ + 1]. The time complexity of the
algorithm is O(u log2 u).

Example 3. Continuing the example in Example 1, the
minimum prefix length for τ = 1 will be 2, since the first
two q-grams are disjoint in their locations. In contrast, the
standard prefix length required by prefix filtering is 3. Simi-
larly, if the threshold τ = 2, the minimum prefix length is 4
while the standard prefix length is 5.

We now state the location-based mismatch filtering for
edit similarity join as follows.

Lemma 3 (Location-based Mismatch Filtering).
Let the minimum prefix length for q-gram arrays x and y be
lx and ly, respectively. If ed(str(x), str(y)) ≤ τ , x’s lx-prefix
and y’s ly-prefix must have at least one matching q-gram.

Remark 1. We can interpret prefix filtering as a special
case of location-based mismatch filtering. Consider the ex-
ample in Figure 1. If x and y have no matching q-grams
in their prefixes, then all q-grams in the prefix of one of
them are mismatching q-grams. Denote these mismatching
q-grams as Q, and we know |Q| = q · τ + 1. According to
Proposition 3, min-err(Q) ≥ τ + 1, and the pair does not
meet the edit distance constraint.

Algorithm 4: Ed-Join (R, τ)

Change Line 5 in Algorithm 1 to “px ← CalcPrefixLen(x)” ;1

Use the Algorithm 72

as the implementation of Verify (Line 12 in Algorithm 1) ;

3.4 The Ed-Join Algorithm
We introduce a new algorithm, Ed-Join (Algorithm 4),

that performs edit similarity join efficiently. Conceptually,
the algorithm is similar to the All-Pairs-Ed algorithm with
two important modifications:

1. A shorter minimum prefix length is used instead of the
standard prefix length required by prefix filtering. We
note that this optimization is critical in reducing candi-
date size, a measure that is highly correlated to the over-
all join performance, in addition to other obvious benefits
(e.g., smaller inverted index).

2. A new implementation of the Verify algorithm that ex-
ploits another novel mismatch-based filtering. We will
show the details in Section 4. The new filtering will ef-
fectively reduce the final number of candidate pairs to be
verified by the expensive edit distance function.

Other important optimizations to the algorithm are also
given in Section 5.

4. CONTENT-BASED MISMATCH FILTER-
ING

In this section, we introduce another filter that comple-
ments the location-based mismatch filter. We then intro-
duce an multiple-filters-based Verify algorithm implementa-
tion used in our Ed-Join algorithm.

4.1 Content-based Mismatch Filtering
We define non-clustered edit errors to be a set of edit er-

rors such that no two of them are within distance q. It
can be shown that location-based mismatch filtering is well
suited for detecting this type of errors. However, one weak-
ness in location-based mismatch filtering is that we assume
the set of observed mismatching q-grams were caused by the
minimum number of edit operations. It is possible that sev-
eral edit errors actually occur within the same mismatching
q-gram. We call this type of errors clustered edit errors.

Clustered edit errors occur fairly frequently in real datasets.
For example, it is often the case that an entire word is
deleted/inserted/substituted when editing text documents.
In protein sequence alignment, it is well-known that a gap,
i.e., several contiguous insertions or deletions of amino acid
residues, is common and needs special treatment as it is
likely to be due to one evolutionary event.

We design the content-based mismatch filtering to detect
clustered edit errors. Our idea is to select a probing win-
dow and look into the contents of both strings within the
probing window; the content difference in the probing win-
dows, when measured by an appropriate distance measure,
will lower bound the edit distance of the pair.

A probing window w is an interval [w.s . . w.e]. The con-
tent of w on a string s is the substring between location
w.s and w.e, i.e., s[w.s . . w.e].4 Given a (sub-)string t, its

4For the easy of illustration, we will assume the probing window
is always within the string boundaries. A special padding scheme
is used to deal with the general case in the implementation.

frequency histogram Ht is a vector of size |Σ|, where Ht[i]
records the number of occurrences of a symbol σi ∈ Σ in t.
The L1 distance between two n-dimensional vectors u and
v is defined as

∑
1≤i≤n

|u[i] − v[i]|.

... a b c d ...

... ? ? ? ? ? ...

s

f(s)

probing window w

d′ edit operations d′′ edit operations

d edit operations

Figure 2: Content-based Mismatch Filtering

Now consider the example in Figure 2 where a string s is
transformed into f(s), and the edit distance is d. Suppose
there are d′ edit operations that occurs before or at the end
of probing window w. Consider the L1 distance (denoted as
dL1) between the frequency histograms for the two strings
in the probing window. It is obvious that each edit opera-
tion (insertion, deletion, and substitution) will contribute at
most 2 to this L1 distance. Therefore, d′ ≥ dL1/2. Finally,
since the edit distance of the entire string d ≥ d′, we have
d ≥ dL1/2.

Lemma 4 (Content-based Mismatch Filtering).
If the edit distance between the two strings is within τ , there
does not exist a probing window such that the L1 distance
between the frequency histograms of two strings within the
probing window is larger than 2τ .

Example 4. Consider q = 5, τ = 2, and two strings of
length 25:

s = c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, . . . , c25

t = c1, c2, c3, c4, z1, z2, z3, z4, z5, c10, . . . , c25

The two strings differ only by the 5 substitutions (from ci

to zi−5). Assume ci and zj are all distinct. Then the edit
distance between x and y is 5.

The count filtering will require only 25− 5 + 1− 5 · 2 = 11
matching 5-gram. Since there are 12 matching 5-grams be-
tween s and t, they will be considered as a candidate pair.

If we take the probing windows w = [5, 9]. The L1 distance
between the corresponding contents is 10. This immediately
gives us an edit distance lower bound of 5. Hence the pair
will be pruned by the content-based mismatch filtering.

Although the above filtering method can be used for any
probing window, we found that a good heuristics is to choose
a probing window that contains (at least) a mismatching
q-grams. The rationale is that a mismatching q-gram indi-
cates that there is no exact match of the q-gram within the
τ proximity in the other string, and therefore indicates a
high difference in the local contents.

4.2 Tightening the Lower Bound
The above method cannot factor into edit errors made

on the right side of the probing window. One way to rem-
edy this is to first collect all the mismatching q-grams of
one string in the candidate pair, and compute the minimum

number of edit errors that destroy all the mismatching q-
grams on the right side of the probing windows. The latter
part can be solved by an algorithm similar to Algorithm 2
with the only difference that it works in the reverse direction
on the strings. Since we will perform several probes for a
candidate pair, we also build a condensed suffix sum array
to quickly answer multiple queries.

Example 5. Consider the same string in Example 1. As-
sume the following q-grams are not matched against a can-
didate y:

(ab, 1) (ba, 5) (ab, 6)

If we run Algorithm 2 in the reverse direction, we can com-
pute the suffix sum array on the left hand side of the figure
below:

loc SumRightErrs

6 1
5 1
4 1
3 1
2 1
1 2

Suffix Sum Array

=⇒

loc SumRightErrs

6 1
1 2

Condensed Suffix Sum Ar-
ray

The array can be condensed by keep the largest location for
a given SumRightErrs value. This results in the condensed
suffix sum array on the right hand side of the figure above.

Each entry in the condensed table indicates the total num-
ber of errors on the right if the probing window ends be-
fore the location field. For example, if our probing window
is [1 . . 2], we query the table to find the first entry whose
location is larger than 2. If the L1 distance for the probing
windows is 2, then we can infer a lower bound for the edit
distance as 2/2 + 1 = 2.

Algorithm 5: ContentFilter(s, t, Q)

Input : Q is an array
of mismatching q-grams sorted in increasing order
of locations; String x and y form a candidate pair.

Output : A lower bound of the ed(s, t)

j ← 1; i← 2;1

while i ≤ |Q| do2

if Q[i].loc−Q[i− 1].loc > 1 then3

ε = L1Distance(s, t, Q[j].loc, Q[i− 1].loc + q − 1)4

+ SumRightErrs(Q[i− 1].loc + q);
if ε > 2τ then5

return 2τ + 1 /* early termination here */6

j ← i;7

i← i + 1;8

return L1Distance(s, t, Q[j].loc, Q[i− 1].loc + q − 1)9

+ SumRightErrs(Q[i− 1].loc + q)

Algorithm 6: L1Distance(s, t, lo, hi)

Hs ← frequency histogram for s[lo . . hi];1

Ht ← frequency histogram for t[lo . . hi];2

return
∑

1≤i≤|Σ| |Hs[i]−Ht[i]|3

Algorithm 5 implements the tightened content-based mis-
match filtering. The heuristic to select the probing window

is to use the set of contiguous mismatching q-grams. The
algorithm SumRightErrs probes a pre-built condensed suffix
sum array to find the minimum number of edit errors to the
right of the probing window.

4.3 The Verification Algorithm based on Mul-
tiple Filters

Algorithm 7: Verify(x, A)

for each y such that A[y] = true do1

(Q, ε1)← CompareQGrams(x, y);2

/* count filtering */;
if ε1 ≤ q · τ then3

Sort Q by the increasing order of locations;4

ε2 ← MinEditErrors(Q);5

/* location-based mismatch filtering */;
if ε2 ≤ τ then6

Build a condensed suffix sum array for Q;7

ε3 ← ContentFilter(str(x), str(y), Q);8

/* content-based mismatch filtering */;
if ε3 ≤ 2τ then9

ed← EditDistance(str(x), str(y));10

if ed ≤ τ then11

S ← S ∪ (x.id, y.id);12

Algorithm 8: CompareQGrams(x, y)

Input : x and y are two sorted q-gram arrays.
Output : Q is the set of loosely

mismatching q-grams from x to y; ε is the number
of strictly mismatching q-grams from x to y

i← 1; j ← 1;1

ε = 0; Q← ∅;2

while i ≤ |x| and j ≤ |y| do3

if x[i].token = y[j].token then4

if |x[i].loc− y[j].loc| ≤ τ then5

i← i + 1; j ← j + 1;6

else7

if x[i].loc < y[j].loc then8

if x[i].token 6= x[i− 1].token9

or x[i].token 6= y[j − 1].token
or |x[i].loc− y[j − 1].loc| > τ then

Q← Q ∪ x[i];10

ε← ε + 1; i← i + 1;11

else12

j ← j + 1;13

else14

if x[i].token < y[j].token then15

if x[i].token 6= x[i− 1].token or x[i].token 6=16

y[j − 1].token or |x[i].loc− y[j − 1].loc| > τ then
Q← Q ∪ x[i];17

ε← ε + 1; i← i + 1;18

else19

j ← j + 1;20

while i ≤ |x| do21

if x[i].token 6= x[i−1].token or x[i].token 6= y[j−1].token22

or |x[i].loc− y[j − 1].loc| > τ then
Q← Q ∪ x[i];23

ε← ε + 1; i← i + 1;24

return (Q, ε)25

The complete Verify algorithm used in our Ed-Join algo-

rithm is shown in Algorithm 7. It applies three filtering
methods in turn before running the final edit distance cal-
culation: count and position filtering (Lines 2–3), location-
based mismatch filtering (Lines 4–6), and content-based mis-
match filtering (Lines 7–9).

The CompareQGrams algorithm deserves some discussions.
In order to perform count filtering, we need to obtain the to-
tal number of mismatching q-grams from the longer string to
the shorter one in each candidate pair. We identify a mul-
tiplicity constraint not mentioned in previous work: each
q-gram can have at most one match. Ignoring this con-
straint will lead to double-counting and inflated matching
q-gram count.5 We call q-grams that cannot be matched un-
der the multiplicity constraint strictly mismatching q-grams.
In contrast, all the other mismatching q-grams we have dis-
cussed before are without the multiplicity constraint and are
called loosely mismatching q-grams. We note that location-
based mismatch filtering does not work with strictly mis-
matching q-grams.6 Therefore, the seemingly complicated
CompareQGrams algorithm strives to scan both x and y only
once and is still able to compute two outputs: (a) the set
of loosely mismatching q-grams Q in x, and (b) the total
number of strictly mismatching q-grams (i.e., ε) in x. ε is
immediately used in the count filtering (Line 3) and Q is
used in the subsequent location-based filtering (Lines 5–6).

5. IMPLEMENTATION DETAILS

5.1 Optimizing Index Probing
In Algorithm 4, we probe each q-gram w in x’s mini-

mum prefix and try to match w with the positional q-grams
returned from the inverted list Iw. This straight-forward
implementation is not efficient if the same q-gram appears
multiple times in x and/or y (e.g., ba in Example 1). In
the worst case, it will probe the inverted index k times and
make O(k2) comparisons, if w appears k times in both x
and y. In our implementation, we perform the matching in
blocks, where each block is a contiguous group of entries for
the same q-gram (for x) or a contiguous group of inverted
list entries from the same string (for y). The matching is
similar to a sort-merge join and we only need to sequentially
scan both blocks once. In order not to add the same y to
the candidate set more than once, we will skip to the next
block in the inverted list once a matching q-gram is found.

5.2 q-gram Related Optimizations
A string of length l will generate l − q + 1 q-grams. If

we store q-grams as it is, i.e., each using q bytes [14], the
total size of the q-gram array will be approximately q + 2
times of the total size of the string dataset.7 In addition,
the inverted index built during the join will be also large.

We choose to hash q-grams into 4-byte integers8, an idea
also adopted in [2]. Therefore, the total size of the q-grams
array is approximately six times of that of the string dataset,

5For example, the SQL implementation in [14] will return a
count of 14 for s = aaaawaaaax and t = aaaayaaaaz and will

incorrectly take 〈x, y〉 as a candidate pair for τ = 1, q = 2.
6There are subtle instances where location-based mismatch
filtering based on strictly mismatching q-grams will incorrectly
prune candidate pairs whose edit distance is within the threshold.
7We use 2 bytes for each location.
8We use the bit-wise hash function designed for strings in [27].

regardless of the choice of q. Note this does not affect the
correctness of the algorithm. Hash collisions only introduce
more false positive candidates.

If the edit similarity join is a self join, another simple
yet effective optimization is the removal of widow q-grams.
A widow q-grams has df value of 1, i.e., it only appears
in one string (even if multiple times), and therefore won’t
contribute any join result. Widow q-grams can be removed
during the preprocessing or simply be ignored when running
the Ed-Join algorithm.

5.3 Memory Usage
We measure the memory usage for our Ed-Join algorithm

and show the result for the 0.85M-tuple DBLP dataset with
q = 5 in Table 1.

Table 1: Memory Usage (MB)

Inverted Index Strings q-gram Arrays (= token + loc)

≈ 8.5 · τ 87.1 507.9 = 338.6 + 169.3

We can see that the memory used by the inverted in-
dex increases almost linearly with the threshold τ (when
τ is small). This is because of the use of minimum prefix
length in the Ed-Join algorithm. As will be discussed in
Section 6.3, the size of the inverted index for the All-Pairs-

Ed algorithm, which does not use minimum prefix, could be
up to 10 times higher than that of the Ed-Join algorithm.
Note that even though q-gram arrays are large, they do not
necessarily need to be loaded entirely into main memory.
Thanks to the length filtering (Line 8 in Algorithm 1), we
can safely discard q-gram arrays whose lengths are smaller
than lx − τ , where lx is the length of the current q-gram
array (i.e., x). Even in the worst case when all strings are of
the same length, the algorithm can switch back to a “block-
nested-loop-join” mode, where the input strings are divided
into memory-size partitions, and one partition is joined with
the entire datasets at a time. This is similar to how the All-

Pairs algorithm copes with out-of-core datasets [3].
As a future work, we will explore compression techniques

as are often used in search engines [35].

6. EXPERIMENTS
In this section, we report experimental results and our

analyses.

6.1 Experiment Setup
The following algorithms are used in the experiment.

All-Pairs-Ed is a prefix-filtering-based algorithm adapted from
All-Pairs algorithm for edit similarity join [3]. It serves as
a baseline algorithm in the experiment.

PartEnum is a similarity join algorithm based on the Pigeon-
Hole principle [2]. It computes and divides a feature vec-
tor based on q-grams into n1 partitions and generates sev-
eral hash signatures for each partitions using an enumer-
ation scheme; String pairs that share a common signature
are recognized as candidate pairs. The Flamingo Project9

has implemented the algorithm. The original implemen-
tation is for string similarity search problem. We modified

9
http://flamingo.ics.uci.edu/

http://flamingo.ics.uci.edu/

the implementation to support similarity join as well as
adding a few optimizations (such as randomized partition-
ing). Section 6.4 is dedicated to the comparison of Ed-Join

and PartEnum.

Ed-Join and Ed-Join-l . Ed-Join is our proposed algorithm,
with both location-based and content-based mismatch fil-
tering. In order to measure the effects of each filter, we
remove the content-based mismatch filtering from Ed-Join

and we name the resulting algorithm Ed-Join-l.

All algorithms are implemented as in-memory algorithms,
with all their inputs loaded into the memory before they
were run.

In [3], All-Pairs is shown to consistently outperform al-
ternative algorithms such as ProbeCount-Sort [30], and LSH [13],
and therefore we don’t consider them.

All experiments were carried out on a PC with Intel Xeon
X3220 @ 2.40GHz CPU and 4GB RAM. The operating sys-
tem is Debian 4.1.1-21. All algorithms were implemented in
C++ and compiled using GCC 4.1.2 with -O3 flag.

We used several publicly available real datasets in the ex-
periment. They were selected to cover a wide range of data
distributions (See Table 2) and application domains.

DBLP This dataset is a snapshot of the bibliography records
from the DBLP Web site.10 It has about 900K records;
each record is a concatenation of author name(s) and the
title of a publication. DBLP dataset is widely used in
similarity join and near-duplicate detection research [2, 3,
21, 20, 34].

TEXAS is a text dump of the Broker and Sales licensees
database from the Texas Real Estate Commission.11 The
file contains over 150K records; each is a concatenation
of 19 attributes, including person names, addresses, and
licence information. This dataset was also used in [21].

TREC is from TREC-9 Filtering Track Collections12. It
contains 350K references from the MEDLINE database.
We extract and concatenate author, title, and abstract
fields.

UNIREF denotes the UniRef90 protein sequence data from
the UniProt project.13 We extract the first 500K protein
sequences; each sequence is an array of amino acids coded
as uppercase letters.

These datasets are transformed and cleaned as follows:

1. We converted white spaces and punctuations into under-
scores, and letters into their lowercases for TEXAS and
TREC. UNIREF is already a clean dataset. In order to
study the effect of large alphabet size, we choose not to
perform case conversion on DBLP.

2. We then removed exact duplicates.
3. We also removed the strings whose length is smaller than

a threshold. This is mainly because count filtering re-
quires strings longer than q · (τ + 1).14 Since we use
different maximum edit distance thresholds for different

10
http://www.informatik.uni-trier.de/~ley/db

11
http://www.trec.state.tx.us/LicenseeDataDownloads/

trecfile.txt (downloaded in Oct, 2007)
12
http://trec.nist.gov/data/t9_filtering.html

13
http://beta.uniprot.org/ (downloaded in March, 2008)

14See [15] for further discussions.

datasets, we choose minimum string length thresholds as
follows: 20 for DBLP and TEXAS, 100 for TREC, and
180 for UNIREF.

4. We then sort the strings into increasing order of length.

Some important statistics about the cleaned datasets are
listed in Table 2. Distributions of q-gram frequency and
string length are plotted in Figures 3(a)–3(c). q-gram fre-
quency distributions for all datasets follow approximately
the Zipf distribution and thus only the plot on DBLP is
shown. It is interesting to observe that the length distribu-
tions for the four datasets are all distinct.

Table 2: Datasets Statistics
Dataset N avg len |Σ| Comment

DBLP 863,171 104.8 93 author, title
TEXAS 154,987 112.1 37 name, address, licence#
TREC 271,464 1098.4 37 author, title, abstract
UNIREF 365,996 465.1 25 protein sequences

We mainly measure (a) size of the candidate pairs before
calling the Verify algorithm (denoted as CAND-1)— these
are candidate pairs that pass the location-based mismatch
filtering for Ed-Join and Ed-Join-l or candidate pairs that
pass the prefix filtering for All-Pairs-Ed; (b) size of candidate
pairs before the final edit distance verification (denoted as
CAND-2); and (c) the running time. The running time
does not include preprocessing time or loading time of the
q-gram arrays, as they are the same for all algorithms.15

6.2 Effect of q-gram Length
We ran Ed-Join algorithm with varying q. Figures 4(a)–

4(c) show CAND-1 and CAND-2 sizes and the running time
for Ed-Join on the TREC dataset for τ ∈ [2, 10]. Results on
other datasets or algorithms are similar.

With respect to the running time, we observe that (a) the
best q under this setting is 8. q = 10 is a close runner-up for
τ ∈ [2, 8], but no longer competitive for larger thresholds.
(b) the running time for q = 2 is by far the worst for all
thresholds. Its running time is usually an order of magni-
tude slower than the running time with the best q value.
(c) for a fixed τ , the general trend is that the running time
will first decrease and then increase when we move towards
a large q value.

The main reason for the reduction in running time when
q increase to its optimal value is due to the reduction of
CAND-1 sizes (See Figures 4(a)). E.g., the ratio of candi-
date sizes between q = 2 and q = 8 is 164.4 when τ = 10.
The effect of CAND-1 size reduction gradually subsides with
the increase of q. When q = 10, the CAND-1 size actually
increases.

There are several factors contributing to the trends of
CAND-1 size. First, small q means a small q-gram domain,
where the inverted list of the rarest q-gram is still fairly long.
Hence a large number of candidate pairs will be generated.
This explains the rapid reduction of CAND-1 size when we
move away from q = 2. Second, a larger q value means the
average minimum prefix is longer and hence more inverted
lists will be probed and candidates generated. Third, hash
collision is more serious when q increases. The last two fac-
tors together contributed to the increase of CAND-1 size for
q = 10 and τ = 10.

15The loading time is between 24 to 79 seconds.

http://www.informatik.uni-trier.de/~ley/db
http://www.trec.state.tx.us/LicenseeDataDownloads/
trecfile.txt
http://trec.nist.gov/data/t9_filtering.html
http://beta.uniprot.org/

100

101

102

103

104

105

106

100 101 102 103 104 105

C
ou

nt

Token Frequency

DBLP - 5-GRAM

DBLP

(a) q-gram Frequency Distribution, DBLP

100

101

102

103

104

105

101 102 103

C
ou

nt

String Length

DBLP, TEXAS

DBLP
TEXAS

(b) String Length Distribution, DBLP (in red)
and TEXAS (in blue)

100

101

102

103

104

102 103 104

C
ou

nt

String Length

TREC, UNIREF

TREC
UNIREF

(c) String Length Distribution, TREC (in red)
and UNIREF (in blue)

Figure 3: Statistics and Distributions of Datasets

103

104

105

106

107

108

109

 2 4 6 8 10

C
A

N
D

-1

Edit Distance

TREC

2-gram
3-gram
4-gram
6-gram
8-gram

10-gram

(a) TREC, CAND-1

102

103

 2 4 6 8 10

C
A

N
D

-2

Edit Distance

TREC

2-gram
3-gram
4-gram
6-gram
8-gram

10-gram
Real-Result

(b) TREC, CAND-2

 1

 10

 2 4 6 8 10

T
im

e
(s

ec
on

ds
)

Edit Distance

TREC

2-gram
3-gram
4-gram
6-gram
8-gram

10-gram

(c) TREC, Running Time

Figure 4: Varying q-gram Length

Another contributing factor to the running time is the
time spent on the edit distance calculation. Since a large q
value reduces the effectiveness of count filtering, we observe
a steady increase in the CAND-2 sizes when q increases.

In the rest of the experiment, we use the most time-
efficient q for each dataset.

6.3 Effect of Filters
We run the All-Pairs-Ed, Ed-Join-l, and Ed-Join algorithms

on DBLP, TEXAS, and TREC datasets to measure the ef-
fectiveness of location-based and content-based mismatch
filtering techniques.

Location-Based Mismatch Filtering. Figures 5(a)–
5(c) show the average prefix lengths for All-Pairs-Ed and Ed-

Join-l on three datasets. Note that Ed-Join has the same
prefix length as Ed-Join-l. We can see that prefix length
is reduced by 1/2 to 2/3 from Ed-Join-l to All-Pairs-Ed due
to the use of location-based mismatch filtering. The prefix
lengths for both algorithms grow linearly with the threshold
τ . For All-Pairs-Ed, this is expected as the length is exactly
q · τ + 1. The linear growth of minimum prefix length in
Ed-Join-l showcases the inherent redundancy in the prefix
and the wide applicability of this optimization.

The reduction of prefix length affects both the index size
and the CAND-1 size (See Figures 5(d)–5(i)). The impact
is even more significant. For example, a 90% reduction of
index size and a 72% reduction of CAND-1 size are achieved
on TREC dataset by Ed-Join-l with τ = 10, while the reduc-
tion of prefix length is about 66%. This is because of the
Zipf distribution of q-grams.

Content-Based Mismatch Filtering. Figures 5(j)–
5(l) show the CAND-2 sizes by different algorithms. Note
that Ed-Join-l has the same CAND-2 size as All-Pairs-Ed.
We also show the size of the real join results, which lower
bounds the CAND-2 size.

The following observations can be made.

1. The difference of CAND-2 sizes between All-Pairs-Ed and
real result size grows exponentially with the increase of
τ . This is primarily because the count filtering is less
effective at high error thresholds.

2. Content-base mismatch filtering effectively reduces the
CAND-2 size. About 76%, 18%, and 98% of candidate
pairs are pruned by content-based mismatch filtering at
the largest τ tested on DBLP, TEXAS, and TREC, re-
spectively. The reduction effect is generally more sub-
stantial with large τ .

3. The reduction rate of CAND-2 size by Ed-Join on TEXAS
is not as significant as that of the other two datasets. This
is because the majority (70%) of the candidate pairs re-
turned by count filtering are real join results. In contrast,
the numbers are 21% and 0.5% for DBLP and TREC, re-
spectively.

Running Time. We show the running times for all three
algorithms on three datasets in Figures 5(m)–5(o). For all
settings, Ed-Join is the most efficient algorithm, followed
by Ed-Join-l. Both algorithms outperform All-Pairs-Ed algo-
rithm by a large margin and the margin increases rapidly
with the increase of error threshold τ . When τ increases,
the CAND-1 and CAND-2 sizes for All-Pairs-Ed will both
grow due to using longer prefix and the less effectiveness of
count filtering. Our location-based and content-based mis-
match filtering effectively alleviate each of these issues and
thus Ed-Join can still attain good performance.

The speed-ups of Ed-Join and Ed-Join-l against All-Pairs-

Ed are in the range of 2.2x to 5x. The speed-up is especially
significant on TREC. This can be explained as (a) content-
based mismatch filtering helps to remove a 99.5% of the can-
didate pairs generated by count filtering; and (b) the over-
head for edit distance verification is more significant due to
the long average length of the strings in the TREC dataset.

6.4 Comparison withPartEnum

We compare our Ed-Join algorithm with PartEnum algo-

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3

P
re

fix
 L

en
gt

h

Edit Distance

DBLP - 5-GRAM

All-Pairs-Ed
Ed-Join-l

(a) DBLP, 5-Gram, Prefix Length

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3

P
re

fix
 L

en
gt

h

Edit Distance

TEXAS - 5-GRAM

All-Pairs-Ed
Ed-Join-l

(b) TEXAS, 5-Gram, Prefix Length

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10

P
re

fix
 L

en
gt

h

Edit Distance

TREC - 8-GRAM

All-Pairs-Ed
Ed-Join-l

(c) TREC, 8-Gram, Prefix Length

106

107

108

 1 2 3

In
de

x
E

nt
rie

s

Edit Distance

DBLP - 5-GRAM

All-Pairs-Ed
Ed-Join-l

(d) DBLP, 5-Gram, Index Entries

105

106

107

 1 2 3
In

de
x

E
nt

rie
s

Edit Distance

TEXAS - 5-GRAM

All-Pairs-Ed
Ed-Join-l

(e) TEXAS, 5-Gram, Index Entries

104

105

106

107

108

 2 4 6 8 10

In
de

x
E

nt
rie

s

Edit Distance

TREC - 8-GRAM

All-Pairs-Ed
Ed-Join-l

(f) TREC, 8-Gram, Index Entries

104

105

106

107

 1 2 3

C
A

N
D

-1

Edit Distance

DBLP - 5-GRAM

All-Pairs-Ed
Ed-Join-l

(g) DBLP, 5-Gram, CAND-1

104

105

106

107

 1 2 3

C
A

N
D

-1

Edit Distance

TEXAS - 5-GRAM

All-Pairs-Ed
Ed-Join-l

(h) TEXAS, 5-Gram, CAND-1

102

103

104

105

106

 2 4 6 8 10

C
A

N
D

-1

Edit Distance

TREC - 8-GRAM

All-Pairs-Ed
Ed-Join-l

(i) TREC, 8-Gram, CAND-1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 1 2 3

C
A

N
D

-2

Edit Distance

DBLP - 5-GRAM

All-Pairs-Ed
Ed-Join

Real-Result

(j) DBLP, 5-Gram, CAND-2

 60

 70

 80

 90

 100

 110

 120

 130

 1 2 3

C
A

N
D

-2

Edit Distance

TEXAS - 5-GRAM

All-Pairs-Ed
Ed-Join

Real-Result

(k) TEXAS, 5-Gram, CAND-2

101

102

103

104

105

 2 4 6 8 10

C
A

N
D

-2

Edit Distance

TREC - 8-GRAM

All-Pairs-Ed
Ed-Join

Real-Result

(l) TREC, 8-Gram, CAND-2

 0

 2

 4

 6

 8

 10

 12

 1 2 3

T
im

e
(s

ec
on

ds
)

Edit Distance

DBLP - 5-GRAM

All-Pairs-Ed
Ed-Join-l
Ed-Join

(m) DBLP, 5-Gram, Running Time

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

 1 2 3

T
im

e
(s

ec
on

ds
)

Edit Distance

TEXAS - 5-GRAM

All-Pairs-Ed
Ed-Join-l
Ed-Join

(n) TEXAS, 5-Gram, Running Time

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10

T
im

e
(s

ec
on

ds
)

Edit Distance

TREC - 8-GRAM

All-Pairs-Ed
Ed-Join-l
Ed-Join

(o) TREC, 8-Gram, Running Time

Figure 5: Experiment Results I

104

105

106

107

108

109

ED PE ED PE ED PE

τ=1 τ=2 τ=3

C
A

N
D

-1

Edit Distance

DBLP

CAND-1

(a) DBLP, Candidate Size

 0.1

 1

 10

 100

ED PE ED PE ED PE

τ=1 τ=2 τ=3

T
im

e
(s

ec
on

ds
)

Edit Distance

DBLP

Phase 2
Phase 1

(b) DBLP, Running Time

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
on

ds
)

Edit Distance

UNIREF - 8-GRAM

All-Pairs-Ed
Ed-Join-l
Ed-Join

(c) UNIREF, Running Time

Figure 6: Experiment Results II

rithm on all datasets and report the results of the DBLP
dataset here. We run both algorithms in their optimal pa-
rameter settings.

• for Ed-Join, we use q = 5.
• for PartEnum, we fix q = 1 according to [2] and then manu-

ally tune its parameters n1 and n2. The best performance
is obtained by using n1 = 3, n2 = 4 for τ = 1 and using
n1 = 3, n2 = 7 for τ = 2 or τ = 3.

The running time of PartEnum does not include its signature
generation time.

Figure 6(a) shows the candidate size produced by two
algorithms. We measure the candidate size generated by
location-based mismatch filtering for Ed-Join (i.e., CAND-
1). The candidate of PartEnum is generated by signature set
intersection. The candidate size of PartEnum grows much
more rapidly than Ed-Join when edit distance threshold in-
creases.

Figure 6(b) plots the running times of the algorithms de-
composed into two phases. Phase 1 is the time taken to
generate candidate pairs and phase 2 is the time taken to
remove false positives and obtain the final answers. We can
see that PartEnum is only competitive for τ = 1 while Ed-

Join outperforms PartEnum for all τ values. For τ = 3,
Ed-Join achieves 13x speed-up against PartEnum. There are
at least two reasons for the slow down of PartEnum: it gen-
erates a much larger candidate set and it directly verifies the
edit distance for all candidates without further filtering.

6.5 Large Edit Error Thresholds
We measure the performance of the edit similarity join

algorithms with respect to large error threshold on the UNIREF
dataset. Note that large threshold is often used when search-
ing or clustering similar protein sequences. The results for
τ up to 20 are shown in Figure 6(c).

The running time for all three algorithms increases rapidly
with τ . It is clear that Ed-Join outperforms Ed-Join-l. Both
are superior to All-Pairs-Ed by a large margin, especially
when τ is large. The result shows that Ed-Join is the algo-
rithm of choice for large thresholds.

6.6 Discussion of Our Findings
Summarizing our experimental results, we have the fol-

lowing two findings:

1. The choice of q (i.e., q-gram length) is important to the
performance of the edit similarity join. Very small or
large q values usually give worst performance.16

2. Large-scale edit similarity join with medium range edit
distance threshold (τ ∈ [4, 20]) can be efficiently com-
puted in reasonable amount of time.

The first finding deserves some discussion. [14] tested
q ∈ [2, 5] and recommended q = 2 or q = 3 for best per-
formance and q = 2 for minimum space overhead. In our
experiments, small q values, however, always result in the
worst performance.

We note that

1. [14]’s implementation is on top of a relational DBMS and
implements the three filtering techniques using a non-
equijoin followed by HAVING constraints. We conjecture
that the DBMS might not be able to fully optimize the

16q ∈ [4, 8] is probably a good choice for datasets of similar nature
to those used in our experiments.

execution of this complex query and the time to gener-
ate all the candidates will be approximately the same for
different q values.

2. Count filtering is less effective for large q, which results
in more verification by the expensive edit distance UDF
function.

Our method prefers a larger q because

1. Our Ed-Join algorithm is based on the prefix filtering,
which does not work well for small q as it will result in a
small alphabet.17

2. The location-based mismatch filtering effectively reduces
the growth of prefix length, while the additional content-
based mismatch filtering reduces the amount of edit dis-
tance verification.

Therefore, we’ve found the best q for a dataset is usually
larger than 3 (e.g., q = 8 for TREC and q = 5 for DBLP).
The best q value also varies with the dataset and edit dis-
tance threshold and currently can only be determined ex-
perimentally.

We note that this conclusion also holds for All-Pairs-Ed,
a standalone implementation of the existing prefix filtering
and count filtering. Interesting, the best q for All-Pairs-Ed is
usually smaller, e.g., q = 4 is best for DBLP. This is mainly
because it does not have any additional means to alleviate
the adverse effect bought by a large q value.

A possible issue with using long q-gram is that short
strings whose length is no greater than ξ = q · (τ +1) cannot
be processed. We can select the subset of data whose string
length is no greater than ξ + τ and use, say, bi-grams to
find out meaningful edit similarity join results that involve
at least one string whose length is within [2(τ + 1), ξ] [15].

7. RELATED WORK
Similarity join has been studied by many researchers due

to its importance in many applications, including record
linkage [33], merge-purge [19], data deduplication [29], and
name matching [4].

In the early stage, only binary similarity functions for
sets were studied, including set containment [17, 28, 24], set
equality and non-empty set intersection [22]. More general
similarity/distance functions were later considered [14, 30,
12, 2, 3, 34], including edit distance, set overlap, Jaccard
similarity, cosine similarity, Hamming distance and their
variants. Similarity join in Euclidean space has also been
studied (e.g., [5]). [10] considered similarity joins with mul-
tiple conjunctive similarity predicates. [8] compared a large
number of similarity functions experimentally with an em-
phasis on their performance and accuracy.

Another line of work is to solve the similarity join prob-
lem approximately. Locality Sensitive Hashing (LSH) [13] is
a widely adopted for technique for nearest neighbor search
and can be adapted to similarity join [2, 3]. [6] proposed a
shingle-based approach to approximately identify near du-
plicate Web pages. Another synopsis-based algorithm was
proposed [9] based on randomized projection.

Similarity join on strings is also closely related to approx-
imate string matching, an extensively studied topic in algo-
rithm and pattern matching communities. Due to the large
amount of related literature, we refer readers to [26] and [16].

Edit distance is a common distance function for strings.
It can be computed in O(n2) time and O(n) space using the

17First observed in [2].

standard dynamic programming [32]. The time complex-
ity of calculating edit distance can be reduced from O(n2)
to O(n2/ log n) using the Four-Russians technique [23] or
O(n2/w) using bit-parallel algorithm [25]. [31] provides a
worst case O(nd)-time, average case O(n + d2)-time algo-
rithm for edit distance, where d is the edit distance between
the two strings.

q-grams are widely used for approximate string match. It
is especially useful for edit distance constraints due to its
ability to lower bound the edit distance. Gapped q-gram is
shown to have better filtering powers than standard q-gram,
but is only suitable for edit distance threshold of 1 [7]. Re-
cently, a variable length q-gram was proposed in [21] and
was shown to speed up many computation tasks originally
based on q-gram.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we study new algorithms for the edit sim-

ilarity join problem. Unlike previous approaches that pose
constraints on the number of matching q-grams, we develop
two new filtering methods by analyzing the locations and
contents of mismatching q-grams. The two new filters are
combined with existing filters in our Ed-Join algorithm. Ex-
tensive experiments on large-scale real datasets demonstrate
that the new Ed-Join algorithm outperforms alternative meth-
ods. We also report several interesting findings, including
the recommendation of using longer q-grams for implement-
ing the edit similarity join algorithm.

Our future work includes implementing our proposed al-
gorithm on top of a RDBMS. A key issue is how to optimize
our algorithm to leverage the existing set- and group-based
query processing capabilities of RDBMSs. Another future
work is to explore compression-based techniques to reduce
the memory footprint of the algorithm.

REFERENCES
[1] A. Andoni, M. Deza, A. Gupta, P. Indyk, and S. Raskhod-

nikova. Lower bounds for embedding edit distance into
normed spaces. In SODA, pages 523–526, 2003.

[2] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In VLDB, 2006.

[3] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs
similarity search. In WWW, 2007.

[4] M. Bilenko, R. J. Mooney, W. W. Cohen, P. Ravikumar,
and S. E. Fienberg. Adaptive name matching in informa-
tion integration. IEEE Intelligent Sys., 18(5):16–23, 2003.

[5] C. Böhm, B. Braunmüller, F. Krebs, and H.-P. Kriegel.
Epsilon grid order: An algorithm for the similarity join
on massive high-dimensional data. In SIGMOD, pages
379–388, 2001.

[6] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. Computer
Networks, 29(8-13):1157–1166, 1997.

[7] S. Burkhardt and J. Kärkkäinen. One-gapped q-gram
filters for Levenshtein distance. In CPM, pages 225–234,
2002.

[8] A. Chandel, O. Hassanzadeh, N. Koudas, M. Sadoghi,
and D. Srivastava. Benchmarking declarative approximate
selection predicates. In SIGMOD, pages 353–364, 2007.

[9] M. Charikar. Similarity estimation techniques from
rounding algorithms. In STOC, 2002.

[10] S. Chaudhuri, B.-C. Chen, V. Ganti, and R. Kaushik.
Example-driven design of efficient record matching queries.
In VLDB, pages 327–338, 2007.

[11] S. Chaudhuri, V. Ganti, and R. Kaushik. Data debugger:

An operator-centric approach for data quality solutions.
IEEE Data Eng. Bull., 29(2):60–66, 2006.

[12] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive oper-
ator for similarity joins in data cleaning. In ICDE, 2006.

[13] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In VLDB, 1999.

[14] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free. In VLDB, 2001.

[15] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free (erratum). Technical
Report CUCS-011-03, Columbia University, 2003.

[16] D. Gusfield. Algorithms on Strings, Trees, and Sequences.
Computer Science and Computational Biology. Cambridge
University Press, 1997.

[17] S. Helmer and G. Moerkotte. Evaluation of main mem-
ory join algorithms for joins with set comparison join
predicates. In VLDB, pages 386–395, 1997.

[18] M. R. Henzinger. Finding near-duplicate web pages: a
large-scale evaluation of algorithms. In SIGIR, 2006.

[19] M. A. Hernández and S. J. Stolfo. Real-world data is dirty:
Data cleansing and the merge/purge problem. Data Mining
and Knowledge Discovery, 2(1):9–37, 1998.

[20] H. Lee, R. T. Ng, and K. Shim. Extending q-grams to
estimate selectivity of string matching with low edit
distance. In VLDB, pages 195–206, 2007.

[21] C. Li, B. Wang, and X. Yang. VGRAM: Improving
performance of approximate queries on string collections
using variable-length grams. In VLDB, 2007.

[22] N. Mamoulis. Efficient processing of joins on set-valued
attributes. In SIGMOD, pages 157–168, 2003.

[23] W. J. Masek and M. Paterson. A faster algorithm
computing string edit distances. J. Comput. Syst. Sci.,
20(1):18–31, 1980.

[24] S. Melnik and H. Garcia-Molina. Adaptive algorithms
for set containment joins. ACM Trans. Database Syst.,
28:56–99, 2003.

[25] G. Myers. A fast bit-vector algorithm for approximate
string matching based on dynamic programming. J. ACM,
46(3):395–415, 1999.

[26] G. Navarro. A guided tour to approximate string matching.
ACM Comput. Surv., 33(1):31–88, 2001.

[27] M. V. Ramakrishna and J. Zobel. Performance in practice
of string hashing functions. In DASFAA, pages 215–224,
1997.

[28] K. Ramasamy, J. M. Patel, J. F. Naughton, and
R. Kaushik. Set containment joins: The good, the bad and
the ugly. In VLDB, pages 351–362, 2000.

[29] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In KDD, 2002.

[30] S. Sarawagi and A. Kirpal. Efficient set joins on similarity
predicates. In SIGMOD, 2004.

[31] E. Ukkonen. On approximate string matching. In FCT,
1983.

[32] R. A. Wagner and M. J. Fischer. The string-to-string
correction problem. J. ACM, 21(1):168–173, 1974.

[33] W. E. Winkler. The state of record linkage and current
research problems. Technical report, U.S. Bureau of the
Census, 1999.

[34] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similar-
ity joins for near duplicate detection. In WWW, 2008.

[35] J. Zobel and A. Moffat. Inverted files for text search
engines. ACM Comput. Surv., 38(2), 2006.

	Introduction
	Preliminaries
	Problem Definition and Backgrounds
	q-gram-based Filtering
	Prefix Filtering
	The All-Pairs-Ed Algorithm

	Location-based Mismatch Filtering and Ed-Join
	Overview of the Ed-Join Algorithm
	Location-based Mismatch Filtering
	Minimum Prefix for Edit Similarity Join
	The Ed-Join Algorithm

	Content-based Mismatch Filtering
	Content-based Mismatch Filtering
	Tightening the Lower Bound
	The Verification Algorithm based on Multiple Filters

	Implementation Details
	Optimizing Index Probing
	q-gram Related Optimizations
	Memory Usage

	Experiments
	Experiment Setup
	Effect of q-gram Length
	Effect of Filters
	Comparison with PartEnum
	Large Edit Error Thresholds
	Discussion of Our Findings

	Related Work
	Conclusions and Future Work

