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Summarizing topological relations is fundamental to many spatial applications including spatial

query optimization. In this paper, we present several novel techniques to effectively construct
cell density based spatial histograms for range (window) summarizations restricted to the four

most important level-two topological relations: contains, contained, overlap, and disjoint. We
first present a novel framework to construct a multiscale Euler histogram in 2D space with the
guarantee of the exact summarization results for aligned windows in constant time. To minimize
the storage space in such a multiscale Euler histogram, an approximate algorithm with the ap-
proximate ratio 19/12 is presented, while the problem is shown NP-hard generally. To conform
to a limited storage space where a multiscale histogram may be allowed to have only k Euler

histograms, an effective algorithm is presented to construct multiscale histograms to achieve high
accuracy in approximately summarizing aligned windows. Then, we present a new approximate

algorithm to query an Euler histogram that cannot guarantee the exact answers; it runs in con-
stant time. We also investigate the problem of non-aligned windows and the problem of effectively

partitioning the data space to support non-aligned window queries. Finally, we extend our tech-
niques to 3D space. Our extensive experiments against both synthetic and real world datasets

demonstrate that the approximate multiscale histogram techniques may improve the accuracy of
the existing techniques by several orders of magnitude while retaining the cost efficiency, and the

exact multiscale histogram technique requires only a storage space linearly proportional to the
number of cells for many popular real datasets.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query Process-

ing; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—search

process

General Terms: Histograms, Spatial Query Processing and Optimization

1. INTRODUCTION

Research in spatial database management systems (SDBMS) has a great impact
on many applications, including geographic information systems, digital libraries,
robotics, image processing, CAD and VLSI. In the last 20 years, indexing and query
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processing in SDBMS have drawn a great deal of attention from research society.
A number of techniques have been developed [Gaede and Günther 1998; Lo and
Ravishankar 1996; Mamoulis and Papadias 1999; Patel and DeWitt 1996]. With the
recent availability of massive on-line spatial data, there are strong demands [Greene
et al. 1999; Sun et al. 2002a; Szalay et al. 2000] for developing efficient techniques
to browse large datasets for summarising spatial characteristics, so that users can
quickly identify relevant data among enormous available data resources. It becomes
extremely important in large digital libraries/archives to support interactive queries
by query preview [Beigel and Tanin 1998; Greene et al. 1999]. Summarizing spatial
datasets also plays an important role in spatial query processing optimization by
providing selectivity estimation [Aboulnaga and Naughton 2000; Acharya et al.
1999; Jin et al. 2000; Sun et al. 2002b].

Various techniques [Garofalakis and Gehrke 2002; Gilbert et al. 2002] have been
recently developed for effectively summarizing relational datasets. The most com-
mon techniques are samples/sketches [Garofalakis and Gehrke 2002; Lipton et al.
1990], histograms [Poosala 1997; Garofalakis and Gehrke 2002], and wavelets [Ma-
tias et al. 1998]. These paradigms have been extended to summarizing topological
relations against spatial datasets.

In this paper, we investigate the problem of summarizing rectangular objects for
range (window) queries. Several histogram based summarization techniques have
recently been developed to provide selectivity estimation for spatial range queries.
The existing techniques may be divided into two categories: 1) data partition tech-
niques, and 2) cell density. The Min-skew algorithm in [Acharya et al. 1999] and
the SQ-histogram technique in [Aboulnaga and Naughton 2000] belong to the first
category, and propose to group “similar” objects together according to some math-
ematical models to form a bucket for estimating the number of disjoint objects and
the number of non-disjoint objects in window queries.

Techniques based on cell density [Beigel and Tanin 1998; Jin et al. 2000] propose
to divide the data space into a number of disjoint cells, and to record some kind of
object density for each cell. To estimate the number of non-disjoint objects against
a window, a cumulative density based approach (CD) was proposed in [Jin et al.
2000], while the Euler formula [Harary 1969] has been effectively used in [Beigel and
Tanin 1998] for creating a cell density based histogram (called “Euler histogram”).

The above techniques were developed for summarizing the level-one topological
relations [Egenhofer and Herring 1994; Grigni et al. 1995; Sun et al. 2002a]: disjoint
and non-disjoint. The problem of summarizing level-one topological relations has
also been investigated for spatial temporal datasets; the techniques may be found in
[Hadjieleftheriou et al. 2003; Tao et al. 2003; Tao et al. 2004]. In contrast, little has
been done for summarizing level-two topological relations [Egenhofer and Herring
1994; Grigni et al. 1995; Sun et al. 2002a] though the level-two topological relations
are equally important for spatial window queries.

To the best of our knowledge, [Sun et al. 2002a] is the only paper investigating
the problem of summarizing the level-two topological relations. It applies the Euler
histogram techniques in a novel way for this purpose and demonstrates that a cell
density based histogram technique is very effective to approach such a problem.

In this paper, we study the problem of effectively summarizing the level-two
topological relations using cell density based histogram techniques. In the context of
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spatial data, a minimum bounding rectangle (MBR) is usually used to approximately
represent an arbitrary object for the purpose of data summarization. Therefore,
our investigation is restricted to summarizing rectangular objects.

As with relational datasets, the accuracy of such summarization against aligned
windows, which consist of whole cells only, is fundamental to the quality of a cell
density based histogram. Moreover, a cell density based histogram is practical if its
storage space is linearly proportional to the number of the disjoint cells to be used.
The histogram techniques in [Beigel and Tanin 1998; Jin et al. 2000; Sun et al.
2002a] are practical, and guarantee the exact solutions for computing the number
of level-one topological relations against aligned windows.

The histogram techniques in [Sun et al. 2002a] can also provide a highly accurate
approximate solution for summarizing level-two topological relations. However,
they rely on a few strong assumptions; the accuracy may greatly degrade if the
spatial data do not conform to the assumptions. Motivated by this, in the paper
we propose a novel multiscale paradigm by effective utilization of the object “scales”
(to be precisely defined in section 3). It consists of two steps: 1) group together
the objects with “similar” scales, and 2) for each group of objects, create an Euler
histogram. The main contributions of the paper may be summarized below.

(1) For a given “resolution” (to be defined in section 2), we propose a novel frame-
work to construct a multiscale histogram in a 2-dimensional space that is com-
posed of multiple Euler histograms. Such a multiscale histogram can generate
exact summarization results for aligned windows in constant time for level-two
topological relations.

(2) We investigate the problem of storage space minimization in a multiscale his-
togram. We show that the problem is generally NP-hard, and an application
of the Duh-Furer semi-local optimisation technique [Duh and Fürer 1997] can
guarantee the approximate ratio 19/12.

(3) To conform to a limited storage space where only k Euler histograms are al-
lowed, we present an effective algorithm to construct multiscale histograms
with high accuracy. We also develop a novel approximate algorithm to query
an Euler histogram that cannot guarantee exact answers; the algorithm runs
in constant time.

(4) We present new techniques to deal with non-aligned windows and to effectively
dividing the data space for a finer resolution. We extend our techniques from
a 2-dimensional space to a 3-dimensional space.

We evaluate our new techniques by both synthetic and real world datasets. Our
experiment results demonstrate that the approximate multiscale techniques may
improve the accuracy of the existing techniques by several orders of magnitude
while retaining the cost efficiency. The experiments also show that the exact multi-
scale histogram technique requires only a storage space linearly proportional to the
number of disjoint cells for many popular real world datasets; that is, it is practical.

The rest of the paper is organized as follows. In section 2, we provide preliminar-
ies and related work. In section 3, we present our first and second contributions of
the paper - efficient histogram construction algorithms for generating exact sum-
marization results against aligned windows while minimizing the storage space.
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Section 4 presents the third contribution of the paper. Sections 5-7 present our
fourth contribution. Section 8 presents a discussion on maintenance, generaliza-
tion, and application of our techniques. Section 9 presents the experiment results.
This is followed by conclusion and remarks.

2. PRELIMINARIES

In this paper, we study only axis-aligned rectangular objects, since different types
of objects are usually represented by their minimum bounding rectangles (MBR)
to approximate the spatial extents for data summarization. A set S of objects, in
this paper, always means a set of axis-aligned rectangles in 2D space except section
7 where we address 3D space.

A binary topological relation between two objects, D and Q, is based upon the
comparison [Egenhofer and Herring 1994] of D’s interior Di, boundary Db, exterior
De (see Figure 1(a)) with Q’s interior, boundary, and exterior. It can be classified
[Egenhofer and Herring 1994; Grigni et al. 1995; Sun et al. 2002a] into 8 high-
resolution (level 3) topological relations according to the 9-intersection model, and
can be also classified into the 5 medium-resolution (level 2) topological relations by
omitting 3 less important relations with boundary meeting tests. In this paper, we
focus only on the 4 medium-resolution topological relations (as depicted in Figures
1(b) - (e)) - disjoint (ds), overlap (ov), contains (cs), and contained (cd) by omitting
the equal relation since equal relation may be approximately treated as contains or
contained relation.
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Fig. 1. 4 Topological Relations between Two Objects

Below, we give a brief overview of Euler histograms [Beigel and Tanin 1998], and
the three algorithms (S-Euler, EulerApprox, and M-Euler) [Sun et al. 2002a] to
query an Euler histogram. These techniques are closely related to our work in this
paper. Then, we brief the motivation of this research.

2.1 Euler Histograms

To build an Euler histogram H for a set S of objects, a resolution is pre-given;
that is, the axis-aligned MBR containing the whole S is first divided into n1 × n2

disjoint cells, also called a grid of H or S. For instance, Figure 2(a) illustrates the
5× 4 grid.

Note that in an n1×n2 grid, each node on the grid is called grid point and labelled
by (i, j), lexicographically, with the integers i and j in the range of 1 ≤ i ≤ n1 + 1
and 1 ≤ j ≤ n2 + 1. There are n1 cells spanning the grid horizontally and n2 cells
spanning the grid vertically; thus, n1 is the width and n2 is the height of the grid.
The total number of cells, internal nodes, and internal edges is (2n1−1)×(2n2−1).

In an Euler histogram with a resolution n1 × n2, (2n1 − 1) × (2n2 − 1) buckets
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(b) align with the grid (c) scale (3, 2) (a) 5 x 4 grid
(1, 1)

(6, 5)

Fig. 2. Grid, Query Window, and Object Scale

are given where each cell is assigned a bucket to store an integer with initial value
0 as well as each internal edge and each internal node are allocated a bucket, such
that [Beigel and Tanin 1998; Sun et al. 2002a]:

—The integer, corresponding to a cell in the grid, is increased by 1 if an object
intersects the cell.

—The integer, corresponding to a node (grid point) in the grid, is increased by 1 if
an object contains the node.

—The integer, corresponding to an edge in the grid, is decreased by 1 if an object
crosses the edge.

Figure 3(a) gives an example of an Euler histogram. Note that in an Euler
histogram H, we do not deal with the information that a boundary of an object
aligns with the grid of H (see Figure 2(b) for example). This is because we can
always “shrink” an object a little bit to avoid the situation that the object aligns
with the grid; that is, an aligned object is treated as if it was contained by the
aligned query window spanned by the object even when it equals the aligned query
window.

(b) Object with Loop−Hole(a) Simply Connected Object 
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Fig. 3. Euler Histograms

Suppose that H is an Euler histogram for a set S of objects, and Q is an aligned
query window.

—|S| denotes the total number of objects in S.

—Nds denotes the number of objects in S which disjoint with Q.

—Nnds denotes the number of objects which non-disjoint with Q.

—Pi denotes the summation of all the bucket values inside Q (excluding the bound-
ary of Q, shown in Figure 4).

Assume that S has only one simply connected object (i.e. without holes). The
Euler formula [Harary 1969] implies that the summation of values from the buckets
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non-disjointing with the object is 1 (see Figure 3(a) for example). Therefore, Nnds =
Pi; this together with Nnds +Nds = |S| yield the exact solutions for Nnds and Nds.
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Fig. 4. Compute Pi and Pe

2.2 S-Euler Algorithm

In [Sun et al. 2002a], the non-disjoint relation is decomposed into 3 relations: over-
lap, contains, and contained, as depicted in Figure 1 since equal relation does not
occur in an Euler histogram. Sun, Agrawal, and El Abbadi then proposed to use
the histogram information outside a query window Q as well to summarize these 3
new relations. They extended the original Euler formula for processing an object
with a loop-hole inside, which is caused by summarizing the outside of a query
window but inside of an object. It can be shown that if we sum up the values of
the buckets that an object intersects, then the result will be 0 if the object has a
loop-hole inside (shown in Figure 3(b)). Here, a loop-hole means that there is at
least one cell on the grid which is not contained by the object but encompassed
by the “outside” boundary of the object; see Figure 3(b) for example. Note that
any object studied in this paper is assumed without holes; however by investigating
loop-holes we can effectively use the histogram information outside Q.

It has been shown that in an Euler histogram, the ov relation as illustrated in
Figure 1(c) has to be separated into 1) intersect (the left figure in Figure 1(c)), and
2) cross-over (the right figure in Figure 1(c)), since they contribute differently to the
outside of Q. Note that here, we abuse the original term “intersect” from [Egenhofer
and Herring 1994; Sun et al. 2002a] for a term simplification; the “intersect” relation
in [Egenhofer and Herring 1994; Sun et al. 2002a] corresponds to the “non-disjoint”
relation in this paper. Although in this paper we aim to count the number of ov
objects, we will have to first deal with the relations cross-over (cr) and intersect
(it), and then add them together to obtain the number of ov objects.

—Ncs denotes the number of objects in S which Q contains;

—Nit denotes the number of objects in S which intersect Q.

—Ncr denotes the number of objects in S which cross over Q.

—Ncd denotes the number of objects in S by which Q is contained.

—Pe denotes the summation of all the bucket values outside Q (shown in Figure
4).

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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By a generalized Euler formula [Sun et al. 2002a], we have

Pe = Nit + 2Ncr + Nds (1)

Note that here, we have to count a cr object twice in (1). Clearly, Nnds = Nit +
Ncr + Ncd + Ncs; this together with the equation (1) and the equations in the last
subsection lead to:

Nds = |S| − Pi (2)

Ncr =
1

2
(Pi + Pe − |S| −Nit) (3)

Ncs + Ncd =
1

2
(Pi − Pe + |S| −Nit) (4)

Clearly, Nds can be computed exactly since Pi can be computed from the his-
togram and |S| is known. In the equations (3) and (4), there are 4 variables to
be fixed. In fact, it is impossible to create more independent equations without
introducing new variables. This is because the information in one Euler histogram
is not enough to determine the 3 relations, cs, cd, and ov. For instance, in Figure 5
the two different scenarios (Figure 5(a) and Figure 5(b)) lead to the same histogram
(Figure 5(c)). If we use the shadow area as a query window, we have no idea about
what the scenario should be.

0 0

0 0 0

(b) contains=0,  overlap=2 (c) Histogram for (a) and (b)

00 00 00

0

(a) contains=1,  overlap=1

objects

0

1

0

00

00

1 2−1

0

−1

0

00 0

00

Fig. 5. A Counter Example

Motivated by this example, in S-Euler Ncr and Ncd are both removed from the
equations (3) and (4) for approximation. Therefore, the two equations are just
enough for the remaining two variables.

2.3 EulerApprox Algorithm

In this algorithm, Ncr is still assigned to 0 while Ncd, Nit, and Ncs remain in the
two equations (3) and (4). Therefore, one more equation is needed; consequently,
the following equation is added.

Nit + Ncd + Nds = Ncs(B) + Pe(A) (5)

As depicted in Figure 6, the whole space is split into two parts along one edge of
Q. Here, Ncs(B) is the number of objects contained in the shadow area B, which
can be calculated exactly by the algorithm S-Euler. Pe(A) is the summation of all
bucket values in the interior of the shadow area A. It has been shown that (5) holds
if we assume Ncr = 0 and the number of O1 type objects equals the number of O2

type objects.
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Ncs(B)

O2

O1

Pe(A)

A

Q

B

Fig. 6. EulerApprox

2.4 M-Euler Algorithm

This algorithm attempts to reduce the deficiency caused by those strong assump-
tions in S-Euler and EulerApprox by adopting multiple Euler histograms. In M-
Euler, the object areas are divided into k ranges and construct one Euler histogram
for the objects in each range.

Querying an Euler histogram H against an aligned query window Q in M-Euler
proceeds as follows. If the area of each object involved in H is smaller (greater)
than the area of Q then S-Euler algorithm is used (in the later Ncs = 0 instead of
Ncd = 0). Otherwise, EulerApprox is applied.

2.5 Costs of Euler Histograms

An Euler histogram H with a resolution n1×n2 has (2n1− 1)× (2n2− 1) buckets,
and each bucket stores an integer. Therefore, the storage space required by H is
O(n1 × n2).

Since |S| is given, S-Euler and EulerApprox run in constant time by solving
the linear equations if Pi and Pe are already obtained; consequently, M-Euler takes
O(k) time where k is the number of histograms. In fact, Pi and Pe can be computed
in constant time as follows if the prefix-sum techniques in [Ho et al. 1997] is applied
to representing Euler histograms.

In H, H(x, y) represents the value in the bucket (x, y) where (x, y) is a represen-
tation of a grid point, an edge, or a cell. For a n1 × n2 grid, the grid points are
{(i, j) : 1 ≤ i ≤ n1 + 1, 1 ≤ j ≤ n2 + 1}, an edge from the grid point (a, b) to the

grid point (a′, b′) is represented by (a+a′

2
, b+b′

2
), and a cell, with four grid points

(a, b), (a + 1, b), (a, b + 1), (a + 1, b + 1), is represented by (a + 0.5, b + 0.5). Note
that for presentation simplification, we use non-grid points to represent a cell and
an edge.

In the prefix-sum techniques, we use a cumulative representation H c(x, y) for
each (x, y), that is,

Hc(x, y) =
∑

x′≤x,y′≤y

H(x′, y′).

Note that we assume H(x, y) equals zero if there is no entry in the histogram for
(x, y). For a query window Q with the bottom-left corner (x1, y1) and the upper-
right corner (x2, y2), the corresponding Pi and Pe are:

Pi = Hc(x2 −
1

2
, y2 −

1

2
) + Hc(x1, y1)− (6)

Hc(x1, y2 −
1

2
)−Hc(x2 −

1

2
, y1),
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Pe = |S| −Hc(x2, y2) + Hc(x1 −
1

2
, y2) + (7)

Hc(x2, y1 −
1

2
)−Hc(x1 −

1

2
, y1 −

1

2
).

2.6 Motivation and Problem Statement

The strong assumptions that Ncr = 0 or/and Ncd = 0 in S-Euler and EulerApprox
greatly downgrade the performance of the two algorithms if the underlying data do
not follow the assumptions.

M-Euler aims to remove the disadvantages of S-Euler and EulerApprox by group-
ing objects together according to their areas. As rectangles with different shapes
may have the same area, the disadvantages of S-Euler and EulerApprox cannot be
removed effectively by M-Euler.

The full paper version of [Sun et al. 2002a] proved that in the worst case, any
cell density based histogram requires Ω(n2

1×n2
2) storage space to count Ncs exactly

for aligned windows with respect to a n1 × n2 resolution. Note that Ω(n2
1 × n2

2) is
quadratic with respect to n1 × n2 and the number of buckets is (2n1 − 1)× (2n2 −
1). Therefore, it is impossible to develop a cell density based spatial histogram
technique to be always practical (i.e., storage space linearly proportional to the
number of cells) that guarantees exact solutions to Ncs.

Problem Statement. Motivated by these, in this paper we will present a multi-
scale Euler histogram technique with the guarantee of exact solutions to the aligned
windows, which may be practical for many real applications where the number of
different scales is small. Then, we will also present another multiscale Euler his-
togram with high accuracy of approximation (though no guarantee of exact solu-
tions), which is always practical. Our new techniques remove the assumptions that
Ncr = 0 or/and Ncd = 0.

Note that in our investigation we assume that a resolution is pre-given and the
aligned windows are defined on a pre-given resolution. Such a pre-given resolution
may be from the semantics of applications (e.g., the resolution of the longitude and
latitude of a digital map) or from a resolution requirement of applications (i.e.,
specified according to users’ requirements).

3. MULTISCALE HISTOGRAMS

In this section, we will present a multiscale paradigm to construct Euler histograms
which can guarantee the exact solutions for Ncs, Ncd, Ncr, Nit, and Nds for aligned
windows. Note that in this section and the next section, we will focus only on
aligned query windows with respect to a given grid (resolution); thus, the expression
is abbreviated to “a query window” in these two sections whenever no ambiguities.
We begin with the framework.

3.1 Construction Techniques

The basic idea of our multiscale paradigm is to group the objects together according
to their scales. An object (rectangle) has the scale (w, h) with respect to a grid
(resolution) if its horizontal edge crosses w cells and its vertical edge crosses h cells

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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(see Figure 2(c) for example). The scale of a query window refers to the scale of its
corresponding rectangle.

The following theorem characterises a relationship between the scales and the
topological relations for a given query window. The theorem can be immediately
verified.

Theorem 3.1. Suppose that Q is a query window with the scale (i, j), and D is
an object with the scale (w, h) (both scales are referred to the same grid).

—If Q contains D, then w ≤ i and h ≤ j.

—If D crosses over Q, then (w ≤ i and h ≥ j + 2) or (w ≥ i + 2 and h ≤ j).

—If Q is contained by D, then w ≥ i + 2, and h ≥ j + 2.

The theorem below is the key to the correctness of our algorithm. It states that a
histogram based on the objects with 4 “adjacent” scales can guarantee the exact
solutions.

Theorem 3.2. Suppose that H is an Euler histogram with a n1×n2 resolution,
such that the objects involved in H have at most 4 scales, (w, h), (w+1, h), (w, h+1),
and (w + 1, h + 1). Then, H can provide the exact solutions to Nds, Nit, Ncs, Ncd

and Ncr for a query window Q.

Proof. Suppose that the scale of Q is (i, j) (1 ≤ i ≤ n1 and 1 ≤ j ≤ n2).
Clearly, Nds can be obtained exactly from equation (2). Below are the three cases
by comparing (w, h) with (i, j) while querying H against Q:

Case 1:. w ≤ i and h ≤ j (depicted in Figure 7(a)).

Case 2:. (w > i and h ≤ j) or (w ≤ i and h > j) (depicted in Figure 7(b)).

Case 3:. w > i and h > j (depicted in Figure 7(c)).

( b ) Case 2 ( c ) Case 3( a ) Case 1

j
i

i

 Cross−over       intersect        DisjointContains          intersect         Disjoint

i j ji

Contained        intersect      Disjoint

Fig. 7. Three Cases by Comparing Q with (w, h)

According to Theorem 3.1, in case 1 no object in this histogram can cross over
Q, nor Q is contained by an object. That is, Ncr ≡ 0 and Ncd ≡ 0. Clearly, the
remaining two variables Ncs and Nit can be fixed from the equations (3) and (4).

In case 2, clearly there is no cd relation nor cs relation; that is, Ncd ≡ 0 and
Ncs ≡ 0. Again, the two remaining variables can be fixed by the two equations.

In case 3, based on Theorem 3.1 there is no cr relation nor cs relation; that is,
Ncr ≡ 0 and Ncs ≡ 0. Thus, the two remaining variables can also be fixed by the
two equations.
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Fig. 8. Different Sets of Subsets

Let S denote a set of objects. In the rest of the paper, Qi,j always denotes a
query window with the scale (i, j); Sw,h denotes the set of objects, in S, with the

scale (w, h). Let Ŝ = {Sw,h : 1 ≤ w ≤ n1, 1 ≤ h ≤ n2, |Sw,h| 6= 0}.
To describe our techniques, each dataset Sw,h ∈ Ŝ is mapped into a grid point

(w, h) on the n1 × n2 grid. B
Ŝ

denotes the set of subsets of Ŝ with the property

that each of such subsets of Ŝ consists of the datasets whose corresponding grid
points lie within one cell. For example, regarding Figure 8, B

Ŝ
is

{{S1,2, S2,1, S2,2}, {S1,2, S2,1}, {S1,2, S2,2}, {S2,1, S2,2},
{S1,2}, {S2,1}, {S2,2}, {S2,1, S2,2, S3,1}, ...}.

It is immediate that |B
Ŝ
| = O(|Ŝ|). Note that B

Ŝ
is closed under intersection if we

add ∅ to B
Ŝ
. For a given S and a given resolution n1 × n2 of S, Ŝ is unique, and

B
Ŝ

is also unique.
An object D is involved in an element ξ of B

Ŝ
if D is in a dataset in ξ; for instance,

an object is involved in {S2,1, S2,2, S1,2} if the object is in one of S2,1, S2,2, and
S1,2. A subset of B

Ŝ
is well-separated if every pair of elements in the subset do

not share a common dataset; for instance, the subset, {{S1,2, S2,2}, {S2,1, S3,1}},
of B

Ŝ
is well-separated. However, the subset, {{S1,2, S2,2}, {S2,2, S2,1}}, of B

Ŝ
is

not well-separated since the two subsets, {S1,2, S2,2} and {S2,2, S2,1}, of Ŝ share
the common dataset S2,2.

Theorem 3.2 states that a set of objects, which are involved in one element in
B

Ŝ
, can be represented by the Euler histogram to support the exact solutions. Our

algorithm is to find a well-separated subset Λ of B
Ŝ

such that Ŝ is covered by Λ; it
consists of the following 3 steps.

Figure 8(a) illustrates such a Λ with 6 elements, where each element in Λ is
“circled”. Querying the set of histograms constructed by MESA for a query window
may be easily done by querying each histogram with respect to the three cases as
described in the proof of Theorem 3.2, respectively; then adding up the values over
all the histograms gives the global Ncr, Nit, Ncs, Ncd, and Nds. According to
Theorem 3.2, the algorithm MESA is correct; that is, the histograms constructed
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Algorithm 1 Multi-Scale Exact Algorithm (MESA)

INPUT. a data set S and a given resolution (the n1 × n2 grid).

OUTPUT. a set of histograms with respect to the given resolution.

Step 1. Scan S to generate Ŝ and B
Ŝ

according to the given resolution

Step 2. Find a well-separated subset Λ of B
Ŝ

such that Ŝ is covered by Λ.

Step 3. For each element ξ ∈ Λ, construct the Euler histogram Hξ, with respect to
the resolution, to represent the objects involved in ξ.

can provide the exact solutions to these five values for (aligned) window queries.
Since querying each histogram takes constant time (see section 2), querying |Λ|
Euler histograms constructed by MESA takes O(|Λ|) time.

Note that the Step 1 is immediate. An implementation of Step 3 has been briefly
described in section 2; the details may be found in [Beigel and Tanin 1998].

Suppose that Λ is chosen in the Step 2. The number (|Λ|) of histograms produced
by MESA is called the thickness of the set of histograms. Clearly, there may be
many well-separated subsets of B

Ŝ
to be chosen as an output of the Step 2. Figure

8 shows two different well-separated subsets of B
Ŝ
; both cover Ŝ. One (Figure

8(a)) gives the thickness 6 and another (Figure 8(b)) gives the thickness 5. In this
example, 5 is the minimum thickness.

Note that a multiscale histogram constructed by MESA requires O(|Λ| × n1 ×
n2) space for the resolution n1 × n2. The minimization of such a |Λ| means the
minimization of the histogram storage space for a given resolution, as well as the
query processing costs.

3.2 Minimization of Thickness

According to the construction of B
Ŝ
, it is immediate that for any such Λ produced

by MESA, k
4
≤ |Λ| ≤ k where k = |Ŝ|. The minimization problem is formally

defined below.

Optimal Data Partitioning Problem (ODP)

Instance: Suppose that Ŝ and B
Ŝ

are given as above.

Question: find a well-separated subset Λ of B
Ŝ
, such that Ŝ is covered by Λ and

|Λ| is minimized.
Recall that each element in B

Ŝ
corresponds to the grid points on one cell. ODP

is a special case of the 4-set cover problem [Duh and Fürer 1997]; the 4-set cover
problem is well-known NP-hard in general. Although a very special case of the
4-set cover problem, unfortunately ODP is still NP-hard. The proof of Theorem is
not trivial and will be shown in the Appendix.

Theorem 3.3. ODP is NP-hard.

An Approximate Algorithm to ODP. Below in Algorithm 2, we present an
approximate algorithm to solve ODP.

Note that in Step 2, after removing the elements from B
Ŝ

with an intersection to
an element selected in Step 1, each remaining element of B

Ŝ
has the cardinalities at

most 2. The remaining B
Ŝ

can be viewed as a graph G, where a vertex corresponds
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Algorithm 2 Minimizing the Thickness (MT)

INPUT. B
Ŝ

and Ŝ.

OUTPUT. an approximate solution λ to ODP.

Step 1. Iteratively, generate a well-separated subset λ1 of B
Ŝ

such that the cardi-
nality of each selected element from B

Ŝ
in each iteration is the maximum among

the qualified elements but not smaller than 3.

Step 2. Remove from B
Ŝ

the elements intersecting an element chosen in Step 1.
Run the graph maximum matching algorithm to obtain a subset λ2 of the remaining
B

Ŝ
.

Step 3. Return λ1 ∪ λ2 together with the uncovered singletons in B
Ŝ
.

to a remaining singleton, and each edge corresponds to a remaining element with
the cardinality 2. Thus, we can run the maximum matching algorithm to get
a maximum matching. Each edge in the maximum matching corresponds to an
element in the remaining B

Ŝ
, which will be chosen in Step 2. It is immediate that

Step 2 takes the dominant costs and runs in O(|Ŝ1.5|) [Micali and Vazirani 1980].

S1,3 S3,3

S4,2 S4,2

S2,1 S3,1

S4,2

S3,1

S2,4

S3,5

S4,4

S5,3

S1,2

S1,3

S2,4

S3,5

S3,3

S4,4

S5,3

S2,4

S3,5

S4,4

S5,3
S3,3

(b)(a) (c)

Fig. 9. Example Graphs in Step 2

With respect to the example in Figure 8, Step 1 can select only one element.
Suppose that we choose {S1,2, S2,1, S2,2} in Step 1, then after removing the rel-
evant elements from B

Ŝ
, we obtained a graph G with 8 vertices and 9 edges as

depicted in Figure 9(a). For this graph, a maximum matching can have only 3
edges. Suppose that {(S2,4, S3,5), (S4,4, S5,3), (S4,2, S3,1)} is output as a maximum
matching in Step2 as depicted in Figure 9(a) by thick edges. Then, S1,3 and S3,3

are chosen in Step 3. In this case, Λ is what is depicted in Figure 8(a).

The semi-local optimization technique in [Duh and Fürer 1997] may be used to
refine the result produced by the algorithm MT; this can guarantee [Duh and Fürer
1997] the approximate ratio 19

12
. The basic idea of this technique is to iteratively

improve the quality of current approximation result by a semi-local change in com-
bining with the algorithm MT. The interested readers may refer to [Duh and Fürer
1997] for the details. Below we show one example.

As depicted in Figure 8(a), suppose that the circled elements are the output
of the algorithm MT. Running the semi-local optimization algorithm, we need to
choose a replacement to {S1,2, S2,1, S2,2}. In this example, {S2,1, S2,2, S3,1} and
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{S1,3, S1,2, S2,2} are the options; both of them can guarantee the minimum thick-
ness 5 by the semi-local optimization algorithm. Figure 8(b) shows such an result
where the first option replacement is adopted and the remaining graph is depicted
in Figure 9(b). Note that Figure 9(c) shows the remaining graph if the second
replacement option is used; that is, {S1,3, S1,2, S2,2} is chosen.

Note that the Semi-local optimization may have O(|L|3) iterations in the worst
case where L is the number of elements in B

Ŝ
with cardinality 3; each iteration

runs in O(|Ŝ|1.5) time. However, in the real datasets used in our experiments, we
found that even the algorithm MT can generate the optimal thickness; this means
no iteration. For instance, for the Texas road segments data of US Census Tiger
[TIGER 2000] with the 360 × 180 resolution, the minimum thickness 13 can be
computed by our algorithm MT, while there are 35 different scales. Further, for
the datasets in our experiments semi-local optimization converges very fast. The
performance of MESA will be evaluated in section 9.

4. MULTISCALE HISTOGRAMS WITH A FIXED SPACE

The exact algorithm proposed in the last section suits for datasets with small num-
ber (|Ŝ|) of scales for a given resolution. When |Ŝ| is large and the storage space
is limited, MESA is not always applicable. Besides, we observed that in many real
world datasets the majority of objects have similar scales at a reasonable resolu-
tion while the total number of outliers (objects) may be very small; thus, it is not
economic to use more than one histogram to approximate a small set of objects.
Motivated by these, in this section we will present an effective paradigm to con-
struct a set of histograms, such that the number of histograms to be used is k + 1
for a fixed k.

The main idea of our algorithm is to construct k histograms which can provide
the exact solutions for the objects involved, while the remaining objects are all put
into the last histogram which cannot guarantee the exact solutions. Intuitively, less
objects are involved in the last histogram, higher accuracy of approximation may
be globally expected on average. Therefore, in our algorithm we aim to allocate the
objects to the first k histograms as many as possible while retaining the property
of providing exact solutions. Below is a description of our algorithm. For a set Λ
of subsets of Ŝ, ||Λ|| denotes the number of objects involved in Λ.

Algorithm 3 Multi-scale Approximate Algorithm (MAPA)

INPUT. a set S of objects in 2-d space, a given resolution (n1 × n2 grid), and an
integer k + 1.

OUTPUT. k + 1 histograms with respect to the resolution.

Step 1. Scan S to generate Ŝ and B
Ŝ

according to a given resolution (the n1×n2

grid).

Step 2. Find a well-separated subset Λ of B
Ŝ

such that |Λ| = k and ||Λ|| is maxi-
mized.

Step 3. For each element ξ ∈ Λ, construct the Euler histogram Hξ, with the n1×n2

resolution, to represent the objects involved in ξ.

Step 4. Construct the Euler histogram Hlast for the objects not involved in Λ.
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In MAPA, the Steps 1, 3, 4 are the same as those in the algorithm MESA. In
the subsection 4.1, we will present our results for Step 2. As with the algorithm
MESA, the first k histograms generated by the algorithm MAPA can guarantee the
exact solutions for Ncr, Nit, Ncs, Ncd, and Nds restricted to the objects involved
in Λ. In subsection 4.2, we will present a new algorithm to summarize the objects
involved in the last histogram Hlast.

4.1 Data Partition

The optimization problem in Step 2 may be formally described below.

Weighted k-Partitioning Problem (WkP)

Instance: Suppose that Ŝ and B
Ŝ

are given as described in section 3, and an
integer k is given.
Question: find a well-separated subset Λ of B

Ŝ
such that |Λ| = k and ||Λ|| is

maximized.

Theorem 4.1. WkP is NP-hard.

Proof. A special case of WkP, where each dataset in Ŝ has the same number of
objects, is more general than the corresponding decision problem of ODP. Therefore,
WkP is NP-hard.

A similar problem to WkP, called “Max k-cover” problem, was investigated in
[Feige 1998]. In Max k-cover problem, a collection F of subsets of V = {v1, ..., vn}
is given; select k elements (subsets) from F such that their union has maximum
cardinality. Note that Max k-cover problem is different to WkP where each vi has a
weight while each subset of V has the cardinality up-to 4. It has been shown [Feige
1998] that the Max k-cover problem may be solved by an approximate algorithm
with the approximate ratio 1 − 1

e
. Below, we show that a greedy heuristic to

approach WkP has the same performance.

Algorithm 4 GreedyWkP(B
Ŝ
, k,Λ)

1: Sort the elements in B
Ŝ

decreasingly based on the number of objects involved
in each element;

2: Λ← ∅;
3: while |Λ| 6= k and |B

Ŝ
| 6= 0 do

4: get the 1st element ξ from B
Ŝ
;

5: remove the element from B
Ŝ

intersecting ξ;
6: Λ← Λ ∪ {ξ};
7: end while

Theorem 4.2. The algorithm GreedyWkP guarantees the approximate ratio not
less than 1− 1

e
.

Proof. Let Λopt denote the solution to WkP, that is |Λopt| ≤ k and ||Λopt||
is maximized. Let ξi be the element chosen in the ith iteration of the algorithm
GreedyWkP and mi denote the total number of data objects involved in ξi. Then,
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for 1 ≤ i ≤ k, mi ≥
||Λopt||−

∑
i−1

j=1
mj

k
. This immediately implies that

k∑

j=1

mj ≥ ||Λopt||(1− (1− 1

k
)k) (8)

According to the definition of B
Ŝ
, there are a constant number of subsets (of Ŝ)

in B
Ŝ

intersecting another subset in B
Ŝ
. Thus, the dominant cost of GreedyWkP

is in sorting B
Ŝ
. Recalling that |B

Ŝ
| = O(|Ŝ|), GreedyWkP runs in time O(n log n)

where n = |Ŝ|.

4.2 Summarizing the Last Histogram

In this subsection, we present a new technique to summarize the object set involved
in the last histogram Hlast. It effectively uses scales in combining with the Euler
histogram.

Given an object scale (w, h) and a query window Qi,j with respect to the n1×n2

resolution, the 3 cases in Theorem 3.1 can be further divided into the following 5
cases:

Case 1. w ≤ i and h ≤ j - at most 3 relations: cs, it, and ds.

Case 2. w = i + 1 or h = j + 1 - at most 2 relations: it and ds.

Case 3a. w ≥ i + 2 and h ≤ j - at most 3 relations: cr, it, and ds.

Case 3b. w ≤ i and h ≥ j + 2 - at most 3 relations: cr, it, and ds.

Case 4. w ≥ i + 2 and h ≥ j + 2 - at most 3 relations: cd, it, and ds.

We should be able to estimate the occurring probabilities against the 5 relations
(cr, it, cs, cd, and ds), respectively, in the object scale (w, h) with respect to Qi,j .
For a given case and a given topological relation, we will calculate the ratio of the
number of possible grid points to be used as the bottom-left corner of an object with
the scale (w, h) to form the relation over the number of possible grid points to be
used as the bottom-left corner of an object with the scale (w, h).

As depicted by the rectangular areas in Figure 10, we use δcr, δit, δcs, δcd, and
δds to denote the number of grid points, possibly used as bottom-left object corners
for the 5 relations, respectively. Note that in Figure 10, we illustrate only three
cases: Case 1, Case 3a, and Case 4. Case 3b is similar to Case 3a; and Case 2 is
similar to all these three cases but without the white area in the middle.

Below we present the detailed formulae to identify those rectangles in Figure 10
with respect to each case. The formulae may be immediately obtained by elemen-
tary geometry; thus, we omit the deduction details from this paper. Note that the
size and position of each rectangle area in Figure 10 not only depend on the scales
(w, h) and (i, j) but also depend on the position of Qi,j .

Suppose that a query rectangle Qi,j with the bottom-left corner (qx, qy), and a
rectangle is represented by {(x, y), (a, b)} where (x, y) is the bottom-left corner and
(a, b) represents (width, height).
Case 1:

In this case, δcr ≡ 0 and δcd ≡ 0, while the others can be calculated as follows.
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Fig. 10. Different cases

δcs is the number of grid points in the rectangle rcs = {(xcs, ycs), (acs, bcs)} (the
white area in Figure 10(a)). Here,

—xcs = qx and ycs = qy;

—acs = i− w, and bcs = j − h.

Note that “in the rectangle” also include the points on the edge; this is also appli-
cable to the cases below. Note acs = 0 and bcs = 0 imply there is only one point
(xcs, ycs).

δit is the number of grid points in the rectangle (the one with slash lines in Figure
10(a)) rit = {(xit, yit), (ait, bit)} but exclude the points in rcs. Note that in this
case, rit is getting smaller when an edge of Qi,j approaches a boundary of the grid.
Below is a precise formula.

—xit = 1 + max{0, qx − w} and yit = 1 + max{0, qy − h};
—ait = qx + i− 1− xit −max{0, qx + i + w − n1 − 2} and bit = qy + j − 1− yit −

max{0, qy + j + h− n2 − 2}.
Note that an object with the scale (1, 1) never intersects Qi,j ; consequently δit ≡ 0
in this case. This can be reflected by the formula. In fact we can verify that rit is
always the same as rcs when w = 1 and h = 1; and thus δit is calculated as 0.

δds is the number of grid points in the rectangle rds = {(xds, yds), (ads, bds)} (the
one bounded by dashed line in Figure 10) except the grid points in rit. Here,

—xds = 1 and yds = 1;

—ads = n1 − w and bds = n2 − h.

Note that this rectangle is determined only by the object scale (w, h). In case 1,
the probabilities for cs, it, and ds, respectively, are

ρ1
cs =

δcs

δcs + δit + δds

, ρ1
it =

δit

δcs + δit + δds

,

ρ1
ds =

δds

δcs + δit + δds

.

It can be immediately verified that the rectangle rit always includes the rectangle
rcs, and is always included by rds. Therefore, the computation of δcs, δit, and δds

is simple. We first calculate δcs from rcs. We then calculate δit as the total points
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in rit minus δcs, and calculate δds as the total points in rds minus δcs and minus
δit. Therefore, ρ1

cs, ρ1
it, and ρ1

ds can be calculated in constant time.

Case 2:
In this case, δcs ≡ 0, δcr ≡ 0, and δcd ≡ 0, while δit and δds can be calculated

by the above formula. By similar reasons, ρ2
it = δit

δit+δds
and ρ2

ds = δds

δit+δds
can be

computed in constant time. Note that we can more precisely handle this case by
dividing it into two sub-cases: a) a = i+1 and b 6= j+1, and b) b = j+1. However,
our experiments show that we gain very marginally by doing this. Therefore, we
omit these from the paper.

Case 3a:
In this case, δcs ≡ 0 and δcd ≡ 0. We can calculate δcr as follows.

—δcr = 0 if qx = 1 or qx + i = n1 + 1, otherwise

—δcr is the number of grid points in the rectangle rcr = {(xcr, ycr), (acr, bcr)}
(white rectangle in Figure 10(b)). Here,

—xcr = 1 + max{0, qx + i− w} and ycr = qy;

—acr = qx − 1− xcr −max{0, qx + w − n1 − 2} and bcr = j − h.

Note that the rectangles for δit and δds can be calculated by the same formulae as
those in Case 1. Again, it can be immediately verified that the rectangle rit always
includes rcr and is included by rds. Similarly, ρ3a

cr = δcr

δcr+δit+δds
, ρ3a

it = δit

δcr+δit+δds
,

and ρ3a
ds = δds

δcr+δit+δds
can be computed in constant time, respectively.

Case 3b:
Every thing can be viewed as a reflectional image, by the diagonal of the query

rectangle, of case 3a; and thus may be calculated in a similar way to those in Case
3a. Therefore, ρ3b

cr, ρ3b
it , and ρ3b

ds can be computed in constant time.

Case 4:
In this case, δcs ≡ 0 and δcr ≡ 0. Clearly, δcd = 0 if qx = 1 or qy = 1 or

qx+i = n1+1 or qy+j = n2+1; otherwise the rectangle rcd = {(xcd, ycd), (acd, bcd)}
for calculating δcd is as follows.

—xcd = 1 + max{0, qx + i− w} and ycd = 1 + max{0, qy + j − h};
—acd = qx− 1−xcd−max{0, qx +w−n1− 2} and bcd = qy− 1− ycd−max{0, qy +

h− n2 − 2}.

Note that the rectangles for δit and δds can be calculated by the same formulae as
those in Case 1. It can be immediately verified that the rectangle rit includes rcd

but is included by rds. Similarly, ρ3
ds, ρ3

it, and ρ3
cd may be computed in constant

time.
Note that for a given query window Qi,j and a set of m objects with the scale

(w, h), we can estimate Ncr, Nit, Ncs, Ncd purely by the above probabilities; that
is, N ′

cr = ρcrm, N ′
it = ρitm, N ′

cs = ρcsm, N ′
cd = ρcdm, and N ′

ds = ρdsm. Since
we assume that mw,h = |Sw,h| is recorded for each Sw,h, we can immediately
calculate the above estimation. Therefore, by summing up all the above estimates,
respectively, we can get the global estimation of Ncr, Nit, Ncs, Ncd and Nds.
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The pure probability approach above has two limitations: 1) the running time
is O(k) (k is the number of object scales) which is not necessary a constant, 2) it
does not make the use of the advantages of an Euler histogram.

Now we present the algorithm Prob with constant time, combining the probability
approach above with the Euler histogram. The basic idea is to divide the objects
involved in Hlast into the possible 5 cases (groups) as stated above; then we use an
average rectangle to approximately represent the objects in each case together with
the number of objects. Thus, for each case we can use constant time to compute
the conditional possibility. Below (Algorithm 5) is a description of Algorithm Prob.

Algorithm 5 Prob (for a given Q)

1: α := 0; β := 0; µ := 0; γ := 0;
2: for each Case i (i ∈ {1, 2, 3a, 3b, 4} do
3: calculate mi; //the number of objects in this case;
4: calculate w̄i and h̄i; // average width and height;
5: calculate ρi

cr, ρi
it, ρi

cs, and ρi
cd against w̄i and h̄i;

6: α := α + miρ
i
cr; β := β + miρ

i
it; µ := µ + miρ

i
cs; γ := γ + miρ

i
cd;

7: end for
8: if γ + µ = 0 then
9: Ncs := 0; Ncd := 0;

10: calculate Ncr and Nit from (3) and (4);
11: else
12: get Ncr and Nit from (3) by Ncr : Nit = α : β;
13: get Ncd and Ncs from (4) by Ncs : Ncd = µ : γ;
14: end if

Note that in Prob, if each mi, w̄i and h̄i can be calculated in constant time
then the whole algorithm will run in constant time. Below we show a pre-fix data
structure to accommodate such a request.

Time Complexity of Algorithm Prob
We apply the prefix-sum technique to representing {ma,b : 1 ≤ a ≤ n1, 1 ≤ b ≤

n2}; for 1 ≤ a ≤ n1 and 1 ≤ b ≤ n2, m′
a,b =

∑
1≤w≤a,1≤h≤b mw,h.

Let wa,b and ha,b denote the total widths and total heights of the objects in the
scales [1, a]× [1, b], respectively. Besides Hlast, in algorithm Prob we also pre-store

{(m′
a,b, wa,b, ha,b) : 1 ≤ a ≤ n1, 1 ≤ b ≤ n2}.

By similar methods to those in section 2.5, the total width, total height, and total
number can be computed, respectively, for each case in constant time; then we can
calculate the average widths and heights accordingly. Consequently, the algorithm
Prob runs in constant time.

Note that the storage space to execute algorithm Prob is (2n1−1)(2n2−1)+3n1n2

which is about 75% more than the storage space ((2n1− 1)(2n2− 1)) for one Euler
histogram.

Since querying every histogram runs in constant time, querying a set of his-
tograms generated in MAPA runs in time O(k) for a window query, where k is the
number of histograms.
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4.3 Remarks

Intuitively, the larger k is, the more accurate summarization results are for a given
resolution. Our performance study conforms this. Consequently, given a storage
space bound C and a resolution n1 × n2, the number k + 1 of histograms can be
calculated from the following formula.

((k + 1)(2n1 − 1)(2n2 − 1) + 3n1 × n2)L = C. (9)

Here, L is the space required for storing an integer. Note that the scales used in
Algorithm 5 do not have to be the same as the scales for the resolution n1 × n2. If
this is the case, the formula (9) for calculating k needs to be adjusted accordingly.

5. NON-ALIGNED WINDOW QUERIES

In many applications, window queries from users are not necessarily aligned with
a given grid. We propose to use the following two approximation techniques to
resolve this problem. The first technique is to find the most similar window to a
given query window, while the second technique is based an interpolation between
the two closest windows.

5.1 Similar Query Window

Given two query windows Q and Q′, let Q be represented by {(qx, qy), (ux, uy)} and
Q′ be represented by {(q′x, q′y), (u′

x, u′
y)}. Here, (qx, qy) is the left-bottom corner of

Q, and (ux, uy) is the upper-right corner of Q, while {(q′x, q′y), (u′
x, u′

y)} are the
corresponding parameters for Q′. We use the total distances, below, between the
left-bottom corners and upper-right corners, respectively, to measure the similarity
of the two rectangles.

SM(Q,Q′) =
√

(qx − q′x)2 + (qy − q′y)2 +
√

(ux − u′
x)2 + (uy − u′

y)2 (10)

Clearly, Q is identical to Q′ iff SM(Q,Q′) = 0. For a given query window Q, we
propose to find an aligned window Q′ such that SM(Q,Q′) is minimized. Then,
use the query result of Q′ to approximately answer Q. Note that it is possible
that there are more than one aligned window minimizing SM(Q,Q′). In this case,
choose the one whose area is the closest to Q. As depicted by Figure 11, both aligned
windows {(1, 0), (4, 2)} and {(0, 0), (4, 2)} minimize SM ; however {(1, 0), (4, 2)} has
the closest area to that of Q.

( 0, 0 ) ( 1, 0 )

Q

Q’

( 4, 2 )

Fig. 11. Aligned Window Similar Object

Our algorithm is formally described in Algorithm 6.
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Algorithm 6 Non-Aligned Window Query 1

Input:
non-aligned window query Q and the Euler histograms

Output:
Ncr, Nit, Ncs, Ncd, Nds

Description:

Step 1. Obtain all Q′s which are aligned windows and minimize SM(Q,Q′).

Step 2. Choose the Q′ from Step 1 that minimizes the area difference between
Q and Q′.

Step 3. Query Euler histograms by Q′.

Step 4. Return Ncr, Nit, Ncs, Ncd, Nds by Q′ as the results for Q.

It should be clear that Algorithm 6 runs in constant time to get a Q′. This is
because we need only to examine at most 16 neighbour aligned windows of Q.

5.2 Interpolation

For a query window Q, let Qd denote the largest aligned rectangle that is contained
by Q, and let Qc denote the smallest aligned window that contains Q. Then we
calculate the results for Qd and Qc, respectively, for a linear interpolation.

Suppose that l1 and l2 denote the distances between the two left vertical edges
and the two right vertical edges in Qd and Qc, respectively. The distances between
the two top horizontal edges and the two bottom edges in Qd and Qc are denoted
by l3 and l4, respectively. We also denote the 4 corresponding distances between Q
and Qd by δ1, δ2, δ3, and δ4, respectively; see Figure 12 for illustration. Note that
if Q is aligned then Qd = Qc and li = δi = 0 for 1 ≤ i ≤ 4. Further, 0 ≤ δi ≤ li.

Qc

Qd

δ4

l1

δ1

l3δ3

l4

δ2

l2

Q

Fig. 12. Q, Qd, and Qc

Let N c
cs, N c

ds, and N c
cd denote the results Ncs, Nds, and Ncd regarding Qc, re-

spectively. The results Ncs, Nds, and Ncd regarding Qd are denoted by Nd
cs, Nd

ds,
and Nd

cd, respectively, while the results Ncs, Nds, and Ncd of Q are denoted by NQ
cs,

NQ
ds, and NQ

cd, respectively. Clearly,

Nd
cs ≤ NQ

cs ≤ N c
cs (11)

N c
ds ≤ NQ

ds ≤ Nd
ds

N c
cd ≤ NQ

cd ≤ Nd
cd
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Based on the properties above, we use a simple liner interpolation to calculate

NQ
cs, NQ

ds, and NQ
cd as follows. Let t =

∑
4

i=1
δi∑

4

i=1
li

and t = 0 if Q is aligned.

NQ
cs := (1− t)Nd

cs + tN c
cs (12)

NQ
ds := (1− t)Nd

ds + tN c
ds

NQ
cd := (1− t)Nd

cd + tN c
cd

Our techniques are summarized below in Algorithm 7.

Algorithm 7 Non-Aligned Window Query 2

Input:
non-aligned window query Q and the Euler histograms

Output:
Nop, Ncs, Ncd, Nds

Description:

Step 1. Obtain Qc and Qd.

Step 2. Calculate Nd
cs, N c

cs, Nd
ds, N c

ds, Nd
cd, and N c

cd with respect to Qd and Qc,
respectively, according the techniques for aligned windows.

Step 3. Calculate NQ
cs, NQ

ds, and NQ
cd, respectively, according to (12).

Step 4. NQ
op := |S| −NQ

cs −NQ
ds −NQ

cd.

Note that Algorithm 7 runs in constant time to get Qc and Qd, while the other
costs are the same as those to query the histograms for aligned windows. If Qd

does not exist, then this algorithm uses the summarization results against Qc as
the results against Q.

6. UNEVEN DIVISION OF A DATA SPACE

In this section, we investigate the problem of dividing a data space unevenly to
effectively support non-aligned window queries. We first present our results for
minimizing the total “non-aligness” by unevenly dividing space. Then, we present
histogram construction techniques and query processing techniques regarding an
unevenly partitioned space.

obj

obj

1

2

Fig. 13. Problems with Non-aligned Objects
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6.1 Minimizing Non-aligness

Given a resolution n1×n2, a non-aligned object (i.e., not align with the grid n1×n2)
is interpreted as the minimum aligned rectangle obj ′ that contains obj in an Euler
histogram. Such approximation leads to errors of data summarization against a
non-aligned window query.

As depicted in Figure 13, none of the two objects aligns with the partitioning
lines in the grid. According to the Euler histogram construction algorithm, obj1

is recorded in the histogram as the dotted-line rectangle containing obj1; conse-
quently, obj1 intersects the query window (thick-line rectangle) in the histogram
information while it actually disjoints with the query window. Such wrong topo-
logical relationship is also induced by obj2. Moreover, an approximation of query
windows makes the things more complicated.

It is immediate when all windows align with the grid or all objects align with
the grid, such wrong topological relationships as shown above will not occur. This
is why we do not investigate this issue in sections 3 and 4 while processing aligned
windows.

To process non-aligned window queries (possibly ad-hoc), we need to make all
objects be aligned with a grid to avoid such wrong topological relationships as
above. This can be immediately done by inserting more partitioning lines into a
given grid to make all objects aligned. However, this will cause a very large space
requirement in case if most objects do not align with any of partitioning lines in a
given grid.

To control the space usage, suppose that there are only l1 vertical partitioning
lines allowed and l2 horizontal partitioning lines in the final space division. More-
over, we assume that the aligned window queries have to be supported regarding a
given resolution n1 × n2. Thus, we are allowed only to insert k1 = l1 − n1 − 1 new
vertical lines and k2 = l2 − n2 − 1 new horizontal lines.

δi,4

iobj

δi,3

δi,1 i,2δ

Fig. 14. An Illustration

As depicted in Figure 14, for each object obji, δi,1 denotes the distance between
the left boundary of obji and the left boundary of the minimal aligned rectangle Qi

containing obji, δi,2 denotes the distance between the right boundary of obji and
the right boundary of Qi, δi,3 denotes the distance between the bottom boundary
of obji and the bottom boundary of Qi, and δi,4 denotes the distance between the
top boundary of obji and the top boundary of Qi. As obji is recorded in an Euler
histogram as if obji fully occupied Qi, we aim to insert k1 and k2 lines such that
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(13) (i.e., the total non-aligness) is minimized, where n is the number of objects.

n∑

i=1

(δi,1 + δi,2 + δi,3 + δi,4) (13)

Note that inserting k1 vertical lines to minimize
∑n

i=1(δi,1 + δi,2) is independent
of minimizing

∑n
i=1(δi,3 + δi,4) by optimally inserting k2 horizontal lines. Below

we present our algorithms to minimize
∑n

i=1(δi,1 + δi,2), which are based on “pro-
jecting” the problem on x-axis as follows. The minimization of

∑n
i=1(δi,3 + δi,4)

can be similarly done by “projecting” the problem on y-axis and our algorithms for
dealing with x-axis may be immediately applicable.

Suppose that we project the vertical partitioning lines in a given grid onto the
points, called projected grid points, in the x-axis. The left and right boundaries of
objects are also projected onto the points in the x-axis, called projected object left-
points and projected object right-points, respectively. We want to find k1 points in
the x-axis so that the cost function in (14) is minimized. Such k1 points correspond
to additional k1 vertical partitioning lines (i.e., each of these partitioning lines goes
through one of such k1 points), and are called new partitioning points.

n∑

i=1

(δi,1 + δi,2) (14)

Note that the problem of k-medians on a line [Fleischer et al. 2004; Hassin and
Tamir 1991] is similar to our problem; however the speed-up dynamic programming
techniques (using time O(k log n)) [Fleischer et al. 2004; Hassin and Tamir 1991] are
not applicable to our problem due to the inherent difference between our problem
and the problem of k-medians on a line. The following lemma is immediate.

Lemma 6.1. The problem of selecting k1 points to minimize (14) is equivalent
to the problem of selecting k1 projected object points to minimize (14).

Proof. Suppose that x is a point selected in the optimal solution and x is not
a projected object point. Suppose that a is the right-most projected object point
but on the left side of x, and b is the left-most projected object point but on the
right side of x. According to the definition of those δ values in (14), replacing x by
the one from a and b, which leads to a smaller value of (14) between a and b, will
never increase the value of (14).

Without loss of generality, we assume that no projected object points are at the
same positions as any projected grid points. Those projected object points at the
same positions as some grid points can be eliminated for a further consideration
since their δ values are already zero. Moreover, we may record one point in the
x-axis φ times if φ object boundary lines are projected onto this point. We label
the object points from 1 to n′ according to the increasing ordering of their values
where n′ ≤ 2n and n is the number of objects.

A Dynamic Programming Based Algorithm. For 1 ≤ i ≤ j ≤ n′, let M(i, j)
denote the summation of the δ values of the projected object points from i to
j if we select the ith projected object point and the jth projected object point,
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respectively, as two new partitioning points but no other new partitioning points
between i to j. We use M(0, j) to denote the situation where only the jth point
among the first j object points is chosen as the new partitioning point while the
left-most grid point is used as another partitioning point. M(i, n′ + 1) denotes the
situation where only the ith point is chosen as the new partitioning point among
the object points from i to n′ while the right-most grid point is used as another
partitioning point. Note that when we calculate M(i, j), we still should count the
originally given grid partitioning points; M(i, j) can be done in linear time. Let
M∗(j, l) denote the minimum value of (14) for optimally choosing at most l object
points from the first j object points and the jth object point is used as a new
partitioning point. Below is the crucial formula. For 1 ≤ j ≤ n′ + 1,

M∗(j, l) = min
1≤i<j

{M∗(i, l − 1) + M(i, j)} (15)

Applying the dynamic programming technique in [Jagadish et al. 1998], the op-
timal solution M∗(n′ + 1, k1 + 1), minimizing (14) by choosing k1 projected object
points, can be calculated in time O(k1(n

′)2). When n′ is large, say, 1 million, the
algorithm is too slow to finish though it is a polynomial time algorithm.

A Greedy Heuristic. We present an efficient algorithm based on a greedy
paradigm. The basic idea is to iteratively choose a projected object point to greedily
reduce the value of (14); the algorithm is outlined in Algorithm 8.

Algorithm 8 Greedy Data Space Partitioning

Input:
Projected grid points, object left-points, and object right-points.

Output:
New partitioning points

Description:
Iteratively choose a remaining object point to minimize (14) till k1 iterations.

The algorithm trivially run in time O(k1n
′). Below we present a more efficient

way to execute each iteration of the algorithm. Note that although Algorithm 8 does
not guarantee the optimality regarding minimizing (14), our performance evaluation
demonstrates that it is very effective to serve our purpose for constructing a good
histogram.

Speed-up. In each iteration, let xm and xM be a pair of two consecutive partition-
ing points (original or generated in earlier iterations), and let xm < xM . We denote
all projected object left-points between xm and xM by τ = {τi : 1 ≤ i ≤ m1} and de-
note all projected object right-points between xm and xM by r = {ri : 1 ≤ i ≤ m2}.
Note that both τ and r are sorted bags according to the increasing ordering. Sup-
pose that a point x between xm and xM is chosen as a new partitioning point in
this iteration. While the δ values of the other object points will not be changed,
the δ values for points in τ and r will be changed. Specifically, it may be immedi-
ately verified the summation of these δ values, denoted by σxm,x,xM

, is as follows
if τj < x ≤ τj+1, rj′ ≤ x < rj′+1, and x is chosen as a new partitioning point.
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σxm,x,xM
= [

m1∑

i=1

τi − jxm − (m1 − j)x] + [(m2 − j′)xM −
m2∑

i=1

ri + j′x] (16)

Note that in (16) if we treat x before τ1 as j = 0 and after τm1
as j = m1, the

formula still holds; similar treatment applies to x and rj′ . Since (j′ −m1 + j)x is
monotonic in [rj′ , rj′+1)∩ (τj , τj+1], we can immediately verify that only the object
points are the candidates of such x to greedily reduce the value of (14). Moreover,
such a cost function σxm,x,xM

can be calculated by one scan of τ and r for all object
points in τ and r. We can maintain a min-heap on all object points based on their
cost functions σ and pop-up the heap every time. After pop-up the heap, we update
the heap and the cost functions. To speed-up the computation, for each “bucket”
(i.e., objects in two consecutive partitioning points) we build a min-heap and then
build a min-heap on the bucket heaps. The time complexity of each iteration in
Algorithm 8 is O((m1 + m2) log(m1 + m2) + log(n1 + k1)); recall (n1 + k1) is the
number of buckets in the final space devision.

6.2 Histogram Construction and Query Processing Techniques

With the data partitioning technique above for supporting non-aligned query win-
dows, the data space division now is not necessarily even. Below we describe how
we build and query an Euler histogram for an uneven data space partition.

Histogram Construction. The construction of an Euler histogram may be pro-
cessed in the same way as that for even data space partition in section 2.5 using
prefix-sum.

Query Processing Technique. As described in section 5, a non-aligned window is
interpreted as a similar aligned window or an interpolation of two aligned windows.
Now, we present how an aligned window is queried. This involves 1) calculating Pi

and Pe, and 2) applying Algorithm 5.
Pi and Pe can be calculated using (6) and (7); however, O(log n1 + log n2) time

complexity is required to allocate the window to the histogram instead of constant
time for evenly partitioned space.

To run Algorithm 5 in section 4.2, we need to maintain the information of scales.
We could use exact scale (exact widths and heights) for each object; however this
will lead to a huge number of scales - in the worst case, it equals the number of
objects. To conform with the resolution in the histogram, a horizontal (or vertical)
line from a to b has the width (or height) d′− c if a falls in [c, c′] and b falls in [d, d′]
according to the histogram partitioning. As depicted in Figure 15(a), the bottom
line has the width 8 (= 9− 1), while the top line’s width is 5. Clearly, in the worst
case there are (n1 + k1) × (n2 + k2) scales though in practice, the number of the
scales could be much less than (n1 + k1) × (n2 + k2). With these scales specified,
we can run Algorithm 5 against the scales and the windows where we replace the
number of grid points by areas because the division is uneven.

Put Things Together. Suppose that we need to support aligned windows for a
given resolution n1 × n2 and we also have to support non-aligned windows with
resolution at least n1 × n2 (i.e. a non-aligned window contains at least a grid cell
in the grid n1 × n2.) Further suppose that we are allowed to build (k + 1) Euler
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1 3 9875

(a) (b)

Fig. 15. An Example

histograms such that the first k Euler histograms have resolution n1 × n2, while
the last histogram could be inserted k1 vertical lines and k2 horizontal lines to the
grid n1 × n2. There are two ways to build these (k + 1) histograms:

(a). Use Algorithm 3 to divide objects into (k +1) groups against the resolution
n1×n2 such that for each of first k groups, build an Euler histogram regarding the
resolution n1 × n2. Apply Algorithm 8 to the (k + 1)th group of objects regarding
n1 × n2, k1 and k2. Then, build the last histogram against the obtained uneven
partitioning for this group of objects.

(b). Again, use Algorithm 3 to divide objects into (k + 1) groups against the
resolution n1 × n2 such that for each of first k groups, build an Euler histogram
regarding the resolution n1 × n2. Apply Algorithm 8 to the whole set of objects
regarding n1 × n2, k1 and k2. Then, build the last histogram against the obtained
uneven partitioning for the whole set of objects.

Consider a multiscale histogram built by (a) or (b) has to support aligned window
queries, as well as (ad-hoc) non-aligned window queries. We always use multiple
histograms to process aligned window queries.

Querying an aligned window against the resolution n1 × n2 regarding (a) may
be executed in the same way as described in section 2.5 and section 4.2. Note that
although in (b) we record the last histogram information for the whole data set, Pi

and Pe regarding an aligned window with respect to the resolution n1×n2 (see the
solid lines in Figure 15(b), for example) for the (k + 1)th group of objects can be
recovered by 1) calculating Pi and Pe from the (k + 1)th histogram, and then 2)
subtract the corresponding Pis and Pes in the first k histograms. Apart from this
additional step, an aligned window against the resolution n1 × n2 regarding (b) is
executed exactly the same way as that in (a).

In (a) we keep the scales information for the (k +1)th group of objects regarding
the obtained uneven space division, while in (b) we record such scales information
for the (k+1)th group as well as the scales information for the whole set of objects.
Consequently, for an aligned window against the resolution n1×n2 we run Algorithm
5 with respect to the scale information built on the (k + 1)th group of objects. We
process a non-aligned window in the following ways:

—Regarding (a), find the similar aligned window (or do interpolation of two aligned
windows) against the resolution n1×n2 for the first k histograms and then obtain
the exact summarization results for the aligned window (or windows). Find the
similar aligned window (or do interpolation of two aligned windows) against the
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finer resolution for the last histogram, and then query the last histogram, as
described above, regarding these approximate windows.

—Regarding (b), find the similar aligned window (or do interpolation of two aligned
windows) against the finer resolution obtained for the last histogram, and then
query the last histogram, as described above, regarding these approximate win-
dows. Note that we need only query the last histogram as it contains the infor-
mation for the whole set of objects.

Intuitively, (a) does not support our space partitioning technique, Algorithm 8,
well if the last histogram contains very few objects; that is, the summarization
accuracy will remain almost the same regardless how many new partitioning lines
are added into the last histogram. Our performance study in section 9 confirms
this.

7. SUMMARIZING SPATIAL DATASET IN 3D

Our techniques in a 2-dimensional space can be immediately extended to a 3-
dimensional space for summarizing these four level-two topological relations. Be-
low is a variation [Beigel and Tanin 1998] of Euler theorem [Harary 1969] in a
d-dimensional space.

Theorem 7.1. If P is a bounded, connected d-dimensional polytope, then
∑

0≤j≤d

(−1)d−jfj(P ) = 1. (17)

Here, for 0 ≤ j ≤ d, fj(P ) denotes the number of j-dimensional interior faces of
P .

Observing Theorem 7.1, Beigel and Tanin [Beigel and Tanin 1998] proposed to
construct Euler Histogram for objects in a d-dimensional space. Restricted to a 3D
space, the whole data space in 3D-space is equally divided into n1 × n2 × n3 cells.
Then a bucket is allocated for each internal node, edge, face, and cell, such that:

—The integer, corresponding to a cell, is increased by 1 if an object intersects the
cell.

—The integer, corresponding to an internal edge, is increased by 1 if an object
crosses the edge.

—The integer, corresponding to an internal face, is decreased by 1 if an object
passes the face.

—The integer, corresponding to a node, is decreased by 1 if an object contains the
node.

Recall that Pi denotes the summation of all the bucket values inside an aligned
query window Q (excluding the boundary). Theorem 7.1 immediately implies that
Pi = Nnds where Nnds is the number of objects non-disjointing Q. Thus, Euler
Histogram can ensure exact solution of summarizing the level 1 relations for aligned
windows in 3D space.

As with 2D space, the level 2 topological relations in 3D spaces are limited to
four [Egenhofer 1989] after removing the boundary meeting conditions. This is
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Fig. 16. Level-two Topological Relations in 3D

to break-down the non-disjointing relation into contains (cs), contained (cd), and
overlap (op) (see Figure 16).

Similarly to the situation in a 2D space, the overlap relation in a 3D space should
be divided into several classes as these classes contribute differently to the outside
of Q: 1) intersect (Figure 17(a)), 2) cross-overA (Figure 17(b)), and 3) cross-overB
(Figure 17(c)). Note that Cross-overA relation and Cross-overB relation are dual to
each other. By Theorem 7.1 (a variation of Euler Theorem), the following theorem
can be immediately verified.

Q

(a) intersect

Q

P
Q

P

P

(c) cross−overB
(b) cross−overA

Fig. 17. Overlap Relations

Theorem 7.2. Suppose that P is an object and Q is an aligned window. Then,
P contributes to summation of outside Pe of Q

—by 1 if the relation is intersect or disjoint,

—by 2 if the relation is cross-overA or contained.

—by 0 if the relation is cross-overB or contains.

Suppose that H is a 3D Euler histogram for a set S of objects, and Q is an
aligned window query. Let

—NcrA denote the number of objects in S with cross-overA relations to Q.

—NcrB denote the number of objects in S with cross-overB relations to Q.

—Nit, Ncs, Ncd, and Nds are defined in the same way as those in 2D spaces (section
2).

Based on Theorem 7.1 and Theorem 7.2, we have:

|S| = Nit + NcrA + NcrB + Ncs + Ncd + Nds (18)
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Pi = Nit + NcrA + NcrB + Ncs + Ncd (19)

Pe = Nit + 2×NcrA + 2×Ncd + Nds (20)

Now, there are 6 variables but only 3 equations. As with 2D, the following
theorem states that a histogram based on the objects with 8 “adjacent” scales in
3D space can guarantee the exact solutions.

Theorem 7.3. Suppose H is an Euler histogram with n1 × n2 × n3 resolution.
H can provide exact solutions to level-two relations in 3D space if objects involved
in H with at most the 8 scales: (w, l, h), (w + 1, l, h), (w, l + 1, h), (w + 1, l + 1, h),
(w, l, h + 1), (w + 1, l, h + 1), (w, l + 1, h + 1), (w + 1, l + 1, h + 1).

Similar arguments to those in the proof of Theorem 3.2 immediately lead to a
proof of Theorem 7.3. Consequently, the algorithm MESA can be immediately
extended to a 3D space to obtain an exact solution for aligned windows, while
the 8 data sets on a 3D grid cell are used. Similarly, the problem to minimize
the number of histograms in Algorithm MESA is NP-hard and the general ver-
sion of semi-local optimization technique [Duh and Fürer 1997] can be applied as
an approximate algorithm. In our implementation, we found that the semi-local
optimization technique is also very effective in our 3D techniques.

If only k + 1 histograms are allowed, the 3D version of the problem WkP is also
NP-hard for the same reason as that in 2D space. The algorithm GreedyWkP can
be immediately extended to 3D space with the approximation ratio bounded by
1− 1

e
; this is because our proof of Theorem 4.2 does not depend on the dimensions.

Moreover, the techniques Algorithm Prob to summarize the last histogram can
also be immediately extended to a 3D space based on the 8 cases in Theorem 7.3.
Therefore, the algorithm MAPA has been extended to a 3D space. Finally, it should
be immediate that the two algorithms for querying non-aligned windows, as well as
our data space partitioning algorithms may be trivially extended to a 3D space.

8. MAINTENANCE AND APPLICATIONS

The Euler histograms generated by our techniques may be maintained as follows
upon updates of dataset. Below, we use 2D space as an example; 3D datasets can
be updated similarly. For an insertion, we need only to update the corresponding
histogram (if more than one histogram involved) for the relevant node and cell val-
ues, respectively, by increasing 1; and update the relevant edge values, respectively,
by decreasing 1. For a deletion, the updates to the corresponding histogram are
opposite to those for an insertion. Further, if an insertion or deletion is involved
in the last histogram, we need also to update their corresponding statistic values
accordingly. Note that as the histogram values and the statistic information are
stored in a cumulative fashion, an update needs to be propagated in a cumulative
fashion as well. Moreover, we can also keep a threshold for the number of updates
to trigger MAPA and our space partitioning algorithms (in section 6) to generate
a new set of histograms.

It should be mentioned that the Euler histogram techniques are not only applica-
ble to estimating spatial range query results but may also be immediately applicable
to spatial digital libraries, as discussed earlier, to support window browsers [Beigel
and Tanin 1998; Greene et al. 1999; Sun et al. 2002a; Szalay et al. 2000]. Further,
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our results are also fundamental to the development of new selectivity estimation
techniques in spatial joins with the join predicates, such as contains, intersection,
cross-over, etc.

9. PERFORMANCE EVALUATION

In this section we evaluate the performance of our new histogram techniques devel-
oped in this paper; Table I provides a summary. We first evaluate the techniques
in 2 dimensional space. Then, we present our performance study for techniques in
3 dimensional space. All the experiments were conducted on Pentium IV 1.80GHz
CPU with 512 Mbytes memory.

2D Histogram MESA Algorithm 1
Construction MAPA Algorithms 3 & 4
Aligned Window Prob, etc. Algorithm 5 &
Queries Techniques in Section 2.5
Non-Aligned NAQ1 Algorithm 6
Window Techniques NAQ2 Algorithm 7

GDSP Algorithm 8
Prob uneven Described in Section 6.2

3D Similar classification as Similar notation Described in Section 7
2D; All techniques in as 2D but add
2D are extendible to 3D 3D as a postfix

Table I. New Techniques

9.1 Techniques Evaluated in 2D Space

As the only technique [Sun et al. 2002a] dealing with the level-two topological
relations in the 2 dimensional space for aligned window query, M-Euler will be used
as a benchmark algorithm in the evaluation. Specifically, we evaluate the following
techniques:

—M-Euler: Multi-resolution Euler Histogram techniques in [Sun et al. 2002a].
When only one histogram is allowed, it is the EulerApprox. It is for aligned
windows.

—MAPA-Prob: Algorithm Prob is used to query the last histogram generated by
MAPA, together with the techniques in section 2.5 to query the other histograms.
It is for aligned windows.

—NAQ1: Similar window technique (Algorithm 6).

—NAQ2: Interpolation technique (Algorithm 7).

—MAPA-unevenA: MAPA is used to generate (k + 1) histograms and GDSP is
used to unevenly divide the grid for the (k+1)th histogram for a finer resolution.
Prob uneven and NAQ1 (or NAQ2) are used to query the last histogram, while
NAQ1 (or NAQ2) is used to query the first k histograms. Note that NAQ1
(or NAQ2) runs against two different grids - one for the first k histograms and
another for the last histogram.

—MAPA-unevenB: MAPA is used to generate (k+1) histograms and GDSP is used
to unevenly divide the grid for the (k+1)th histogram for a finer resolution. Here,
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the last histogram is used for representing the whole set of objects as described
in section 6. Prob uneven and NAQ1 (or NAQ2) are used to query the last
histogram. Although a non-aligned window query is processed against the last
histogram, aligned window queries regarding the original resolution are processed
against the (k + 1) Euler histograms in the same way as MAPA-Prob (discussed
in section 6.2).

We also evaluated the query time in these techniques as well as the histogram
construction costs. Note that we evaluate the performance of MESA only against
real datasets, since synthetic datasets used in the paper are designed to show the
disadvantages of MESA - the necessity of developing MAPA; that is, there are a
relatively large number of object scales.

9.2 Evaluating Aligned Window Queries in 2D Space

Datasets and Resolutions. In our experiment, real-world and synthetic datasets
are used. To do a fair comparison with M-Euler regarding accuracy, we first adopt
the 360× 180 resolution to evaluate the accuracy of our algorithms against aligned
windows, since this resolution was used in [Sun et al. 2002a] to provide experiment
results. The 360 × 180 grid is a simulation of the earth resolution by the longi-
tude and latitude. Then, we will also evaluate different resolutions to deliver a
comprehensive performance study. Below are the datasets used.

—Ca road consists of the 2, 851, 627 California road segments obtained from the
US Census TIGER [TIGER 2000] dataset. We normalized the dataset into the
360 × 180 grid; that is the space [1, 360] × [1, 180]. For each road segment, its
MBR is used.

—Ca Tx road consists of the 3, 653, 571 Texas road segments (Tx road) and
the 2, 851, 627 California road segments extracted from the US Census TIGER
[TIGER 2000] dataset. We combine them together by normalizing both of them
into the 360 × 180 grid. By combining the two real world datasets together, we
hope that Ncd and Ncr may be reasonably significant. For each road segment,
its MBR is used.

—SAME is a synthetic dataset used in [Sun et al. 2002a] such that each object
has width 3.6 and height 1.8 in the space [1, 360]× [1, 180], while object positions
follow a Zipf distribution [Zipf 1949]. This dataset is believed a simulation of
many real world datasets.

—Wet USA UT is a combination of two real datasets, Wetland and USA UT.
The dataset Wetland contains 146, 697 wetland rectangular objects (MBR) from
wetland map of US National Wetlands Inventory (www.uwi.fws.gov), while the
dataset USA UT contains 824, 585 rectangular stream objects in UT extracted
from SGID&GIS data provided by Utah Automated Geographic Reference Center
(agrc.utah.gov/agrc sgid/sgidlib/statewide gdb.htm). To merge them together,
we normalize both of them into the data space [1, 360] × [1, 180]. This set of
objects contains a relatively large number of scales; it has over 200 different
scales when the resolution is 210 × 105. It will be used to evaluate our MAPA
techniques.
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—Zipf1 is a synthetic dataset with one million square objects. The centers of the
objects are uniformly distributed over the 360× 180 grid, while the side lengths
follow a Zipf distribution and objects are all aligned with the grid.

—Zipf2 is to add 250, 000 objects with the scale (1, 50) and 250, 000 objects with
the scale (30, 30) on the top of Zipf1 dataset. This dataset will produce large
values of Ncr and Ncd. Though it is quite unusual in real world, it is expected
to further confirm the advantages of our algorithms.

Query Sets. We select the query windows to accommodate variously different user
query patterns. We divide query windows into two classes, small and non-small. A
query window in small class has a scale such that the width and height are both
smaller than 5, while a query window in non-small class has either height between 5
and 20 or width between 5 to 20. We randomly generate 3 different aligned window
query sets, Tl, Tm, and Ts, each of which has 100, 000 query windows.

In Tl, 20% of the 100, 000 query windows are in the small class. In Tm, 40% of
the query windows are in the small class, while in Ts, 80% of the query windows are
in the small class. In each of these 3 datasets, small queries and non-small queries
are all randomly generated regarding scales and locations, respectively.

Error Metrics. Let T be a set of query windows to be evaluated. For each
Q ∈ T , we record the relative errors for Ncs, Ncd and Nov, respectively, where
Nov = Nit + Ncr. Recall that the relations it and cr are subdivided from the
relation ov, and we aim only to summarize the relation ov. The relative error is
defined below.

ε =

{
|e−e′|

e
if e 6= 0

e′ otherwise
(21)

Here, e is the exact value and e′ is an approximate value. The average relative
error may be defined below.

∑
Q∈T εQ

|T | (22)

Here, εQ is the relative error for a query window Q.

Effectiveness of MESA. In the dataset SAME used in [Sun et al. 2002a], the
objects have 4 different scales with respect to the 360×180 resolution: (4, 2), (4, 3),
(5, 2), and (5, 3). While M-Euler cannot provide the exact solutions even with
4 histograms, MESA can always guarantee the exact solutions by only one Euler
histogram. Further, in this application the querying time of MESA is about 4 times
less than M-Euler when M-Euler uses 4 histograms. We will present the experiment
results regarding the histogram construction time and querying time later together
with the other algorithms.

We examined the number of histograms produced by MESA, respectively, against
the 3 resolutions 100× 50, 180× 90, and 360× 180 for Ca road and Tx road. The
numbers of histograms generated in Ca road are 3, 8, and 17, respectively, while
the breakdown numbers for Tx road are 4, 9, and 13, respectively. Consequently,
MESA is practical (i.e., requires small number of histograms) against Ca road and
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Tx road.
Note that the dataset Wet USA UT requires over 100 histograms for the resolu-

tion 360 × 180; this is because over 300 scales are presented. Therefore, for such
datasets the MAPA technique is necessary.

Accuracy of MAPA. We examine the approximation accuracy of the algorithms
M-Euler and MAPA-Prob, against 3 different storage space requirements: 1 his-
togram, 3 histograms, and 5 histograms. In our experiments, we examine only the
accuracies of Ncs, Ncd, and Nov but Nds is omitted; this is because these 2 algo-
rithms are always able to produce the exact answers to Nds (see equation (2)). We
recorded the average relative errors for a given storage space and a given query set
for these 2 algorithms, respectively.

Our algorithm MAPA automatically generates a set of histograms but in M-Euler
we need to intuitively, manually specify the data partitioning to obtain a good set
of histograms.
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Fig. 18. California Road Segments Data

In the first set of experiments, we do the performance evaluation regarding the
environment in [Sun et al. 2002a]; that is, the given resolution is 360× 180.

Figure 18 shows the experiment results against Ca road, where M-Euler 1, 3, 5
denote the experiment results of M-Euler while using 1, 3, 5 histograms, respec-
tively. Similar notation is also applied to MAPA-Prob. The experiment results
demonstrated that MAPA-Prob greatly improve the accuracy of M-Euler, while
MAPA-Prob 5 may improve the accuracy of M-Euler by up to two orders of mag-
nitude.
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Fig. 19. California & Texas Road Segments Data

The experiment results for dataset Ca Tx road continue the trends, as depicted
in Figure 19.
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Fig. 20. Synthetic Data – Zipf1

Figure 20 presents the experiment results for the synthetic dataset Zipf1. In our
implementation of M-Euler, we use the data partitioning suggested in [Sun et al.
2002a]. To generate 3 histograms, the first histogram contains the objects with the
areas 1 to 8, the second histogram contains the objects from areas 9 to 99, and the
third histogram contains the objects with the areas 100 and more. To generate 5
histograms, the first histogram contains the object with the areas from 1 to 8, the
second with the areas from 9 to 24, the third with the areas from 25 to 99, the
fourth with the areas from 100 to 224, and the fifth with the areas 225 and more.
The experiment results follow similar trends to those in Ca road. It is interesting
to note that MAPA-Prob 1 already greatly out-performs M-Euler 5 with respect to
Nov and Ncd though the storage space required by MAPA-Prob 1 is about 4 times
smaller than that in M-Euler 5.
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Fig. 21. Synthetic Data – Zipf2

Similar trends to those in Zipf1 continue in Zipf2, as depicted in Figure 21. It
is worth to note that the accuracy of estimating Nov in M-Euler is always fixed
regardless of the number of histograms to be used; this may be problematic as
illustrated by Figure 21 (b).

In the second set of experiments, we evaluate our techniques against different
resolutions from 60× 30 to 210× 105. For each resolution, we generate three query
sets Tl, Tm, and Ts in the same way as described above. Here, we limit the number
of queries in each dataset to be 50, 000 since the resolution 60× 30 has only about
80, 000 small windows. Note that different resolutions lead to different Tl, Tm, and
Ts.

Clearly, a higher resolution Euler histogram gives more aligned windows. How-
ever, a higher resolution does not necessarily imply higher accuracy for aligned
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window queries. An extreme case is the lowest resolution 1 × 1 which has only
one aligned window but the exact answers. In fact, aligned windows regarding two
different resolutions are often different. Moreover, if two aligned windows regarding
two different resolutions, respectively, happen to be the same, they will have the
same total Pis and Pes; in this case, the number and the scale distribution of ob-
jects in the last histogram determine the accuracy. This set of experiments verify
the above intuition.
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Fig. 22. Aligned Window Query: Ca Tx road Dataset

Figure 22 shows the experiment results against the dataset Ca Tx road regarding
the resolutions 60× 30 and 210× 105. Clearly, our techniques still outperform M-
Euler by several orders of magnitude in each different resolution. Note that in our
experiments, several results achieve 0% relative error (i.e., provide exact answers);
consequently, their error bars are not displayed. For this set of data, the lower
resolution 60×30 leads to a slightly higher accuracy for aligned windows than that
for the higher resolution 210 × 105 because only a few hundred objects left in the
last histogram regarding the resolution 60× 30.
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Fig. 23. Aligned Window Query: Zipf2 Dataset

Figure 23 reports the results of our performance study against the dataset Zipf2
regarding the resolutions 60×30 and 210×105, respectively. It also shows that the
significant improvement made by our technique over M-Euler. This experiment also
demonstrates that a lower resolution does not warrant a higher accuracy for aligned
window queries; in this dataset, the numbers of objects left in the last histogram
regarding the two resolutions, respectively, do not have a big difference as above.

Figure 24 depicts our experiment results against the dataset Wet USA UT re-
garding the resolutions 60× 45 and 120× 90, respectively. It further validates the
trends obtained in the last two experiments.

Accuracy vs k. In this set of experiments, we study the relationships between k
and accuracy. The 3 datasets are used: Ca Tx road, Zipf1, and Wet USA UT. We
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Fig. 24. Aligned Window Query: Wet USA UT Dataset

conduct the experiment against two resolutions: 180× 90 and 360× 180. For each
resolution, 3 sets of aligned window queries, Tl, Tm, and Ts, are generated in the
same way as described earlier. Each query set has 50, 000 queries.
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Fig. 25. Histograms for Different k (res. 180× 90)
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Fig. 26. Histograms for Different k (res. 360× 180)

The experiment results are depicted in Figures 25 & 26. We record average
relative errors by averaging relative errors regarding Ncs, Nov, and Ncd, respectively.
We evaluate 1 histogram to 10 histograms. They show that MAPA always leads to
significantly smaller errors than those by the existing technique M-Euler.

9.3 Evaluating Non-Aligned Window Queries

We evaluate our techniques only since there is no existing technique to process
non-aligned window queries with respect level-two topological relations.

NAQ1 & NAQ2. In our first set of experiments, we evaluate NAQ1 and NAQ2
only and do not apply our space partitioning algorithm. We conduct experiments
against the 360× 180 resolution. The following data is used in addition to the real
dataset Ca road.

—Zipf3 is a synthetic dataset with one million square objects. It is designed to
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test our non-aligned window querying techniques. The objects are not necessarily
aligned to the grid and distributed to any positions over the 360×180 grid, while
the side lengths follow a Zipf distribution. The maximum side length is designed
by
√

180.

Three sets of window queries are generated, T1, T2, and T3, each of which has
50, 000 query windows. To simulate real applications, in each query window set
we generate 50% non-aligned window queries and 50% aligned window queries.
The window size distributions in T1, T2, and T3 are similar to Tl, Tm, and Ts,
respectively.
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Fig. 27. Non-Aligned Window Queries: Ca road Dataset

Figure 27 reports our experiment results for query sets T1, T2, and T3 against
the Ca road dataset. It is interesting to notice that both algorithms are not very
sensitive to the increment of the number of histograms when the number is increased
to 3. While NAQ2 outperforms NAQ1 for Ncs and Nov, NAQ1 and NAQ2 perform
similarly regarding Ncd when the number of histograms is at least 3.
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Fig. 28. Non-Aligned Window Queries: Zipf3 Dataset

We also evaluate NAQ1 and NAQ2 against the Zipf3 dataset. This time an
increment of the number of histograms does improve the accuracy especially for
Ncs and Ncd. Interestingly, NAQ1 significantly outperforms NAQ2 regarding Ncs

and Nov, while they still perform similarly for Ncd.
Our experiment results demonstrated that both NAQ1 and NAQ2 are effective.

NAQ1 is more accurate than NAQ2 for synthetic data, while NAQ2 gives an edge
over NAQ1 for the real dataset used. In the remaining part of evaluating non-
aligned windows, we use NAQ1 in MAPA-unevenA and MAPA-unevenB.

Grid Partitioning Algorithm. We evaluate all of our techniques for process-
ing non-aligned windows; that is, MAPA-unevenA and MAPA-unevenB. The real
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dataset used is Wet USA UT that has a big number of scales; for example, it has
458 different scales when the resolution is 480 × 360. To challenge our data space
partitioning techniques, the following synthetic dataset Zipf4 is generated with a
large number of scales. We also give a Zipf distribution of the object locations in
Zipf4.

—Zipf4 is a synthetic dataset consisting of 3 millions rectangle objects which are
allocated in the space [1, 360]×[1, 180]. We generate 180 different scales as follows.
For each scale, one side length a follows a Zipf (z=1) distribution for the integers
in [1, 180], while another side length b is randomly chosen from [1, 180]. The
centers of objects follow a Zipf (z=0.5) distribution on the grid cells regarding
the resolution 360 × 180, and the actual locations of the centers in a cell follow
a random (uniform) distribution.

In the second set of experiments, we evaluate only non-aligned windows. We
define three non-aligned windows T4, T5, and T6 such that the percentages of small
and non-small are the same as Tl, Tm, and Ts, respectively, as well as the locations
and scales’ distributions. To ensure each window covers at least one cell, a small
window regarding a given resolution has the constraint that both height and width
intersect 3 to 7 cells, respectively. A non-small window has one side intersecting 7
to 20 cells and another side intersecting 3 to 7 cells.
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Fig. 29. Non-Aligned Window Query: Wet USA UT Dataset

Figure 29 demonstrates our experiment results against the dataset Wet USA UT,
and T4, T5, and T6 specified on 60×45. In this experiment, we increase the resolution
by inserting additional 60 vertical lines and 45 horizontal lines to make a resolution
120 × 90 using GDSP (Algorithm 8). Applying GDSP, the obtained resolution
120× 90 is increased to 240× 180; applying GDSP again, the resolution 240× 180
is increased to 480 × 360. The experiment clearly demonstrates that in MAPA-
unevenB, the accuracy is increased while the resolution is increased. However,
MAPA-unevenA 5 does not share the trends. This is because in MAPA-unevenA
5, the number of objects is relatively small - only a few hundreds regarding a very
low resolution 60 × 30 and we only increase the resolution in the last histogram,
while the errors (the dominant part) in the first 4 histogram remain unchanged.
In such a situation, MAPA-unevenB, dealing the whole set of objects by using one
histogram, outperforms MAPA-unevenA 5.

To further validate the above observation, we do the experiment against Zipf4
starting from a relatively high resolution 360×180. Here, there are about 1, 917, 364
objects left in the last histogram of MAPA-unevenA 5. Figure 30 shows the exper-
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Fig. 30. Non-Aligned Window Query: Zipf4 Dataset

iment results against the dataset Zipf4 and T4-T6 specified on 360×180. Instead of
applying GDSP to increase the resolution 360× 180 to 720× 360 at once, we break
down this into three stages from 360×180 to 480×240, then to 600×300, and then
to 720× 360. We evaluate our techniques against each stage. This experiment also
demonstrates that in MAPA-unevenB a higher resolution leads to a higher accu-
racy for non-aligned window summarizations. However, as about two third objects
left in the last histogram, in MAPA-unevenA 5 a higher resolution also leads to a
higher accuracy. Moreover, MAPA-unevenB does not always outperforms MAPA-
unevenA as MAPA-unevenA distributes the objects into another 4 histograms (e.g.
MAPA-unevenA 5) and makes the use of the information in these 4 histograms.

As discussed and demonstrated in section 9.2, summarization against aligned
windows regarding different resolutions does not imply a relationship between the
accuracy and resolution. This is simply because aligned windows against two differ-
ent resolutions are usually different. The above two experiments, however, showed
a strong co-relation between a higher resolution and a higher accuracy for a same
set of window queries (non-aligned windows in general).

Finally, we evaluate the effectiveness of grid partitioning algorithms by examining
whether or not it improves the accuracy by using equal partitions only. Since
grid re-partitioning techniques are applied to the last histogram only, we focus on
one histogram for such a performance evaluation; consequently, MAPA-unevenA
degenerates into MAPA-unevenB.
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Fig. 31. Wet USA UT Dataset for Queries Favouring Even Partitioning

We conduct the experiment against the real dataset Wet USA UT. The re-
partitioning process starts from the resolution 30× 30. We record the experiment
results for resolutions 60 × 45, 120 × 90, and 240 × 180, with respect to three
techniques NAQ1, NAQ2, and MAPA-unevenB. In MAPA-unevenB, our grid re-

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



Summarizing Level-Two Topological Relations in Large Spatial Datasets · 41

partitioning algorithms are used to get those 3 high resolutions, while in NAQ1 and
NAQ2 equal grid partitions are used in combining with NAQ1 and NAQ2, respec-
tively. We record the average relative errors over all estimations for Ncs, Nov, and
Ncd, respectively.
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Fig. 32. Wet USA UT Dataset for Queries Favouring Non-even Partitioning

The 3 query sets T4, T5, T6, defined on 60× 45, are used with some perturbation
towards grid partitioning lines. Each query set Ti (for i = 4, 5, 6) is perturbed
into 3 query sets. In the first perturbed query set, 20% queries are randomly se-
lected, so that each boundary line of a selected query window is assigned a random
distance (not greater than 0.2) away from its closest partitioning grid line, respec-
tively, if the original distance is greater than 0.2; for example, for the left boundary
line of an object we always choose the right-most grid partitioning line but on the
left side of this object line. In the second perturbed query set, 40% queries are
randomly chosen to do the same perturbation, while in the third perturbed query
set, 80% queries are chosen. For the experiment results depicted in Figure 31,
such perturbation favours equal partitions; that is, partition lines are chosen from
equal grid partitions. For the experiment results depicted in Figure 32, pertur-
bations are against partition lines generated by our partitioning algorithms. The
experiment results clearly demonstrate that MAPA-unevenB outperforms NAQ1
and NAQ2. However, when resolution increases, the accuracy differences between
MAPA-unevenB and NAQ1 (or NAQ2) get smaller; this is because those queries
become large window queries when the resolution increases.

9.4 Query Processing, Histogram Construction, and Update Costs

As analyzed earlier, the time for querying an Euler histogram in M-Euler and
MAPA-Prob, is constant, respectively, which is irrelevant to the size of the Eu-
ler histogram and the underlying spatial data. Our experiment results (based on
Ca Tx road) in Figure 33 confirmed this.
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Fig. 33. Query Time

In fact, our implementation of these 2 algorithms against all the data demon-
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strated that the query time depends only on the number of histograms required
and the types of the algorithm used. Note that the algorithm Prob is slightly
slower than the algorithm EulerApprox, and the algorithm EulerApprox is slightly
slower than the algorithm for solving the linear equations (2) - (4) directly when
two variables are zero. These have been reflected in the experiment results.

We implemented MESA against Ca Tx road; it takes about 5 seconds for 100, 000
window queries; this is because there are 19 histograms involved.

We also evaluated the efficiency of NAQ1 and NAQ2. Both techniques need
to calculate some aligned windows first to answer a query. As these aligned win-
dows are calculated in constant time, the total costs for NAQ1 and NAQ2 are still
constant, respectively. In fact, they are very close to those for MAPA-Prob.

Finally, we evaluate the query processing time of MAPA-unevenB against Zipf4
regarding T4-T6 against the resolution 480×360 obtained by further dividing 360×
180 using GDSP. On average, each query is processed by 7.2× 10−5 second. Note
that the query processing time of MAPA-unevenA is about the total time of running
MAPA-unevenB and MESA (for k histograms).

Histogram Construction and Update Time. We first evaluate the running
time to construct the histograms against an evenly divided data space. In the
datasets used in the experiments, Ca Tx road has the largest number of objects,
about 6, 500, 000. The time costs for constructing the histograms in M-Euler and
MAPA-Prob, respectively, for 1 histogram, 3 histograms, and 5 histograms with the
two resolutions, 360× 180 and 180× 90 are between 40 seconds and 41 seconds. In
fact, the costs of these 3 algorithms, for constructing the histograms, are dominated
by the costs of scanning the dataset; this is why those construction costs are similar.

We also recorded the histogram construction time in MESA against the data
Ca Tx road. It takes about 49 seconds for the resolution 360× 180, and about 42
seconds for the resolution 180× 90. The construction time in MESA for 360× 180
is significantly higher than those of M-Euler and MAPA-Prob due to the costs of
a search for the right histogram for each object and the costs for computing the
bucket values, as there are 19 histograms involved.

Finally, we record the total time of applying GDSP to divide the data space to
increase a grid resolution 360×180 to 720×360 regarding the dataset Ca Tx road,
and then building the histogram based on such a resolution 720×360 for the dataset
Ca Tx road. The total time is 5.4 seconds among which 3 seconds are used to do
an initial sorting on 6.5M objects in Algorithm 8; and 2 seconds are used to build
the histogram. Only 0.4 seconds are used to do iterations in Algorithm 8.

We also record the average time for inserting 10, 000 random objects into the
above histogram; it is 1.51× 10−3 seconds. Note that the cost of deleting an object
is similar to that of inserting.

9.5 Performance Study of 3D Techniques

As the efficiencies of our techniques in 3D space are very similar to those for 2D
space, In this subsection we present only our performance study results regarding
approximation accuracy.

Dataset and Resolution. A 180 × 180 × 180 grid resolution is used in our
performance study. Below is the dataset used. Zipf5 is a synthetic dataset with
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five million 3 dimensional hype-rectangular objects in 3D space. The object centers
are random generated over the 180 × 180 × 180 grid, while the side lengths follow
a Zipf distribution. The maximum side length is designed by

√
180.

Query Sets. Three query sets, T7, T8 and T9, are generated, each of which has
50, 000 objects. The distributions of window sizes in T7, T8, and T9 are similar to
those of T4, T5, and T6, respectively. Moreover, as with 2D experiments in each of
T7, T8, and T9 there are 50% non-aligned window queries and 50% aligned window
queries.

Error Metrics. The relative error metrics as described in the last subsection.
That is, for each Q ∈ Ti (7 ≤ i ≤ 9), we record the relative errors for Ncs, Ncd and
Nov, respectively, where Nov = Nit + NcrA + NcrB .
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Fig. 34. 3D Zipf5 Dataset

Approximation Accuracy. In our experiment, we evaluate the accuracy of
NAQ1 3D, NAQ2 3D, MAPA 3D. Figure 34 gives our experiment results. Our
experiment demonstrated that NAQ1 and NAQ2, in combining with MAPA 3D,
are effective and can achieve accuracy not worse than 5% when 5 histograms are
used.

9.6 Summary

Our performance study in this section showed that the techniques developed in
this paper are not only highly accurate but also very efficient. Our techniques
outperform the existing techniques (for aligned windows) in 2D space by several
orders of magnitude regarding accuracy in most cases. This is because our multi-
scale techniques effectively capture the properties of exact solutions, as well as the
effectiveness of our new techniques for summarizing one histogram which does not
guarantee the exact answers.

Moreover, our techniques MAPA-unevenA and MAPA-unevenB for processing
non-aligned windows are both very efficient and effective (accurate). Our experi-
ments demonstrate that in case that not many objects are left in the last histogram,
MAPA-unevenB is a much better choice if we are allowed to increase the resolution.

Our experiments not only cover the applications with limited number of scales
but also demonstrate high accuracy and efficiency against the possible applications
where the number of scales is large. Note that our grid partitioning techniques
do not address the query patterns. Consequently, for non-aligned window queries
increasing resolution becomes the only alternative when errors are large (see Figure

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



44 · Xuemin Lin et al.

29 for example).

10. CONCLUSION AND REMARKS

In this paper, we investigate the problem of effectively summarizing the level-two
topological relations against large spatial datasets by histograms. By effectively
utilising the object scale information, we first present an efficient algorithm MESA
to construct a small set of histograms, based on a multi-scale paradigm, to provide
exact summarization results for aligned windows. To conform to a limited storage
space, we provide an effective algorithm MAPA to construct a fixed number of
histograms with the aim to minimize the estimation errors. We also present a
novel and effective approximate algorithm, Prob, to query one histogram; it runs in
constant time. Then, we present novel techniques to process non-aligned windows
Finally, we extend our techniques to 3D space. Our experiment results demonstrate
that our techniques, developed in this paper, greatly improve the accuracy of the
existing techniques while retaining the costs efficiency.

Electronic Appendix

The electronic appendix for this article may be accessed in the ACM Digital Library.
The appendix contains the proof of Theorem 3.3.
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