The HOL theorem-proving system

Michael Norrish
Michael.Norrish@nicta.com.au

National ICT Australia

8 September 2004

Outline

Introduction

History

High-level description

Build a HOL kernel

Design philosophy

Basic types

Logic

Implementation

Theories

Theorem-proving applications

BDDs and symbolic model-checking

TCP/IP trace-checking

What is HOL?

- ▶ A family of theorem-provers, stemming from University of Cambridge and work by Mike Gordon
- ▶ I will describe most recent implementation on the most active branch of development, HOL4
- ▶ HOLs on other branches of development include Harrison's HOL Light, and ProofPower
- ▶ Ancestors of HOL4 are hol98, HOL90 and HOL88.
- Principal development of HOL is now done by me and Konrad Slind.
- ▶ See http://hol.sourceforge.net for downloads &c.

Where does HOL come from?

- Everything begins with LCF
 - Developed by Milner, Gordon and others in Stanford and Edinburgh starting in 1972. (One of the early developers was Malcolm Newey, now at ANU's Dept. of Computer Science.)
- ▶ LCF is a theorem-proving system for proving theorems in the Logic of Computable Functions (due to Dana Scott).
- The Edinburgh LCF system introduced two crucial innovations:
 - ▶ Theorems as a protected abstract data type; and
 - Use of ML
- ▶ Isabelle, HOL, Coq and the Nuprl systems all acknowledge this ancestry: they embody the "LCF philosophy"

Birth of HOL

- ► HOL evolved from LCF because Mike Gordon wanted to do hardware verification
- ▶ LCF is a logic for computable functions using denotational semantics, where every type is modelled via a domain.
- ► Hardware's demands are much simpler

Birth of HOL

- ▶ HOL evolved from LCF because Mike Gordon wanted to do hardware verification
- ▶ LCF is a logic for computable functions using denotational semantics, where every type is modelled via a *domain*.
- Hardware's demands are much simpler

- ▶ But naturally higher order
 - Signals are functions from time to bool
 - Devices are relations from signals to signals

HOL since the 1980s

- First implementation effort was in "Classic ML" on top of Common Lisp — this led to HOL88 (described in book by Gordon and Melham)
- Konrad Slind wrote a version in Standard ML (SML/NJ implementation) HOL90
- Slind also main author of hol98, which switched to Moscow ML, and a new representation for theories on disk
- ► Slind and I are the main authors of HOL4 (since June 2002). Other developers update the SourceForge repository from Cambridge, Oxford and the USA.

The core of HOL

The LCF design philosophy:

The ML inference rules both depend on the core type of thm and manipulate theorems to derive new ones.

How HOL is used in practice

- ▶ HOL is a programming environment
 - system command = a programming language
 - proof = computation of theorems
- ► Theory-creation in the HOL system

Standard theorem-proving facilities

HOL4 comes with standard theorem-proving technology:

- Definition tools:
 - For types: inductive/algebraic, quotients, records and abbreviations
 - For terms: well-founded or primitive recursive function definition, inductive relations
- Proof support:
 - Simplifier (contextual rewriting with conditional rewrites, embedded decision procedures)
 - First-order reasoning (resolution and model elimination)
 - ightharpoonup Arithmetic decision procedures (for \mathbb{N} , \mathbb{Z} and \mathbb{R})

A hardware verification example

Fragment of an adder circuit:

▶ We wish to verify that

$$o = (i1 + i2 + cin) MOD 2$$

- There are three steps:
 - write a specification of the circuit in logic
 - formulate the correctness of the circuit
 - prove the correctness of the circuit

Specify the circuit

► Specification of an XOR gate:

i1 o o
$$\vdash$$
 Xor(i1, i2, o) = (o = \neg (i1 = i2))

Specification of the adder circuit:

Specify the circuit

▶ ML source text:

Formulate correctness

▶ Abstraction function from bool to num:

$$\vdash$$
 Bv(b) = if b then 1 else 0

Logical formulation of correctness:

$$\vdash \forall \text{cin i1 i2 o.}$$

$$Add(\text{cin, i1, i2, o}) \Rightarrow$$

$$Bv o = (Bv i1 + Bv i2 + Bv cin) MOD 2$$

Formulate correctness

▶ ML source text:

```
val Bv = Define 'Bv b = if b then 1 else 0';
g '∀cin i1 i2 o.
    Add(cin,i1,i2,o) ⇒
    (Bv o = (Bv i1 + Bv i2 + Bv cin) MOD 2)';
```

► The g function establishes a formula as a goal that we wish to prove

Develop the proof interactively

▶ In an interactive ML session, we have stated the 'goal':

```
'∀cin i1 i2 o.
Add (cin,i1,i2,o) ⇒
(Bv o = (Bv i1 + Bv i2 + Bv cin) MOD 2)'
```

Expand with definitions of the circuit:

```
- e(RW_TAC arith_ss [Add,Xor]);

OK..

1 subgoal:

> val it =

    Bv ¬(i2 = ¬(cin = i1)) =

        (Bv cin + (Bv i1 + Bv i2)) MOD 2

: goalstack
```

Develop the proof interactively

Rewrite with the definition of Bv

```
- e (RW_TAC arith_ss [Bv]);
OK..
Goal proved.
|-Bv \neg (i2 = \neg (cin = i1)) =
     (Bv cin + (Bv i1 + Bv i2)) MOD 2
> val it =
    Initial goal proved.
    I- ∀cin i1 i2 out.
          Add (cin,i1,i2,out) \Rightarrow
          (Bv out = (Bv i1 + Bv i2 + Bv cin) MOD 2)
```

Could combine two steps into one; RW_TAC arith_ss [Bv,Add,Xor] solves the goal.

The ML deliverable

```
val Xor =
  Define 'Xor(i1,i2,out) = (out = \neg(i1:bool = i2))';
val Add =
  Define 'Add(cin, i1, i2, out) =
            \exists p. Xor(cin,i1,p) \land Xor(i2,p,out)';
val Bv = Define'Bv b = if b then 1 else 0';
val Add_CORRECT = store_thm(
  "Add_CORRECT",
  "∀cin i1 i2 out.
       Add(cin,i1,i2,out) \Rightarrow
        (Bv out = (Bv i1 + Bv i2 + Bv cin) MOD 2),
  RW_TAC arith_ss [Add,Xor,Bv]);
```

Other modes of use

► HOL as proof engine

Example: TCP protocol trace-checking.

► Hybrid theorem-proving:

Examples: links with Gandalf [Hurd], ACL2 [Staples], Voss [Joyce/Seger].

Introduction

History High-level descriptior

Build a HOL kernel

Design philosophy
Basic types
Logic
Implementation

Theories

Theorem-proving applications

BDDs and symbolic model-checking TCP/IP trace-checking

Build your own HOL

- ▶ HOL is a relatively small system, built on a small kernel
- It's designed to be experimented with
- Numerous people have re-implemented significant parts of the kernel
- ► The kernel supports a narrow API, so it's easy to provide new implementations

Build your own HOL

- ▶ HOL is a relatively small system, built on a small kernel
- It's designed to be experimented with
- Numerous people have re-implemented significant parts of the kernel
- ► The kernel supports a narrow API, so it's easy to provide new implementations
- ▶ In slides to come, I'll present an idealised kernel's API

Build your own HOL

- ▶ HOL is a relatively small system, built on a small kernel
- It's designed to be experimented with
- Numerous people have re-implemented significant parts of the kernel
- ► The kernel supports a narrow API, so it's easy to provide new implementations
- ▶ In slides to come, I'll present an idealised kernel's API
- ▶ The HOL4 kernel is a "distorted" version of this ideal

Design keywords

Modularity: To support custom applications, it must

be possible to assemble different subsets of HOL functionality into real systems

Separability: Custom applications should only link or

include the code they use

Efficiency: Code should perform as well as possi-

ble on big terms/theorems (thousands of

conjuncts, lots of binders, &c)

Introduction

History High-level descriptior

Build a HOL kernel

Design philosophy

Basic types

Logic

Implementation

Theories

Theorem-proving applications

BDDs and symbolic model-checking TCP/IP trace-checking

Types

Types are either *variables*, or an *operator* of arity n applied to n types.

For example: α , (α) list, and (()num)list (where list has arity 1, and num has arity 0)

Operations on types

- type_subst substitutes for type variables only
- new_type updates a global table of known types.
- mk_type fails if it fails to respect this table's stored arities.

Terms

```
val mk_var : string * hol_type -> term
val mk_const : string * hol_type -> term
val mk_comb : term * term -> term
val mk_abs : term * term -> term
val new_const : string * hol_type -> unit
```

- ► Terms are either *variables*, *constants*, *applications* or *abstractions*.
- mk_const(s,ty) fails if the ty is not an instantiation of some ty', where new_const(s,ty') was called earlier
- mk_comb fails if the types are incompatible
- ▶ mk_abs(v,t) fails if v is not a variable

Operations on terms

(There are also dest_ inversions for all the mk_ functions.)

4D> 4A> 4E> E 990

Theorems

```
val dest_thm : thm -> term set * term
```

The only way to *create* theorems is through rules of inference!

Introduction

History High-level description

Build a HOL kernel

Design philosophy Basic types

Logic

Implementation

Theorem-proving applications

BDDs and symbolic model-checking TCP/IP trace-checking

The kernel's logic

- ► There at least as many different presentations of higher-order logic as there are HOL systems
- ► In slides to come, I will present one very idealised version, similar to that used in Harrison's HOL Light system

The kernel's logic

- ► There at least as many different presentations of higher-order logic as there are HOL systems
- ► In slides to come, I will present one very idealised version, similar to that used in Harrison's HOL Light system
- ► HOL4 is not as purist as this, for (possibly misplaced) efficiency reasons, and because it gained all sorts of baggage as the system evolved

The primitive context

- ► Three types: bool (arity 0), ind (arity 0) and fun (arity 2). $((\alpha, \beta)$ fun is written $\alpha \to \beta$.)
- Two constants:

$$= : \alpha \to \alpha \to \mathsf{bool}$$

$$\varepsilon : (\alpha \to \mathsf{bool}) \to \alpha$$

Rules of inference—I

$$\overline{\vdash t = t} \text{ REFL}$$

$$\frac{\Gamma \vdash f = g \quad \Delta \vdash x = y}{\Gamma \cup \Delta \vdash f \quad x = g \quad y} \text{ MK_COMB}$$

$$\frac{\Gamma \vdash t = u}{\Gamma \vdash (\lambda x. \ t) = (\lambda x. \ u)} \text{ ABS}$$

$$\overline{\vdash (\lambda x. \ t)x = t} \text{ BETA}$$

Side-conditions:

- ▶ In MK_COMB, $f \times (\text{and } g \text{ } y)$ must be valid terms (well-typed)
- In ABS, x must not be free in Γ

Rules of inference—II

$$\frac{\{t: \mathsf{bool}\} \vdash t}{\{t: \mathsf{bool}\} \vdash t} \mathsf{ASSUME}$$

$$\frac{\Gamma \vdash t = u \quad \Delta \vdash (t: \mathsf{bool})}{\Gamma \cup \Delta \vdash u} \; \mathsf{EQ_MP}$$

$$\frac{\Gamma \vdash (u: \mathsf{bool}) \quad \Delta \vdash (v: \mathsf{bool})}{(\Gamma \backslash \{v\}) \cup (\Delta \backslash \{u\}) \vdash u = v} \; \mathsf{DED_ANTISYM}$$

$$\frac{\Gamma \vdash t}{\Gamma[\tau_1/\alpha_1 \dots \tau_n/\alpha_n] \vdash t[\tau_1/\alpha_1 \dots \tau_n/\alpha_n]} \; \mathsf{INST_TYPE}$$

$$\frac{\Gamma \vdash t}{\Gamma[M_1/v_1 \dots M_n/v_n] \vdash t[M_1/v_1 \dots M_n/v_n]} \; \mathsf{INST}$$

Rules of inference—III

$$\frac{\Gamma \vdash (\lambda x. \ t \ x) = t}{\Gamma \vdash (P : \alpha \to \text{bool}) \ x} \text{ SELECT}$$

$$\frac{\Gamma \vdash (P : \alpha \to \text{bool}) \ x}{\Gamma \vdash P \ (\varepsilon \ P)}$$

ETA could just as well be regarded as an axiom.

SELECT is equivalent to the Axiom of Choice.

Principles of definition

Terms:

$$c = e$$

is a legitimate definition of c, if

- e contains no free variables;
- ▶ all the type variables that occur in e are in the type of c
- Types:

$$\frac{\vdash (P : \tau \to \mathsf{bool}) \ t}{\vdash \mathsf{abs} \ (\mathsf{rep} \ \mathsf{a}) = (\mathsf{a} : \tau') \quad \vdash P \ \mathsf{r} = (\mathsf{rep} \ (\mathsf{abs} \ \mathsf{r}) = \mathsf{r})}$$

where τ is an existing type, τ' is the new type, P has no free variables, and *abs* and *rep* are new constants.

One last axiom

When \forall , \exists , \neg , \land and \Rightarrow have all been defined, the last axiom can be added:

$$\vdash \exists (f : \mathsf{ind} \to \mathsf{ind}).$$

$$(\forall x_1 \, x_2. \ (f \, x_1 = f \, x_2) \Rightarrow (x_1 = x_2)) \land$$

$$\exists y. \ \forall x. \ \neg (y = f \, x)$$

This states that ind is infinite (it forms the basis of the definition of \mathbb{N})

More signature for Thm

val MK COMB

val R.F.FI.

```
val ABS
                 : thm -> thm
                 : term -> thm (* can't be an axiom *)
val BETA
val ASSUME
           : term -> thm
val EQ_MP
                 : thm -> thm -> thm
val DED_ANTISYM : thm -> thm -> thm
val INST_TYPE
                 : (hol_type, hol_type) subst ->
                   t.hm \rightarrow t.hm
val INST
                 : (term, term) subst ->
                   t.hm \rightarrow t.hm
                 : term -> thm (* could be an axiom *)
val ETA
val SELECT
                 · thm -> thm
```

: thm -> thm -> thm

: term -> thm (* could be an axiom *)

More signature for Thm

```
val new_definition : term -> thm
```

val new_type_definition : thm -> thm * thm

```
val new_axiom : term -> thm (* eek *)
```

Derived rules

- ► The system is extended by providing *derived rules*; ML functions which use the kernel's facilities to implement logical manipulations.
- For example,

$$\frac{\Gamma \vdash x = y}{\Gamma \vdash f \ x = f \ y} \text{ AP_TERM}$$

val AP_TERM : term -> thm -> thm

Derived rules

- ► The system is extended by providing *derived rules*; ML functions which use the kernel's facilities to implement logical manipulations.
- ► For example,

$$\frac{\vdash f = f}{\vdash f = f} \stackrel{\text{REFL}}{\vdash f = f} \frac{\vdash x = y}{\downarrow f} \text{ MK_COMB}$$

val AP_TERM : term -> thm -> thm

fun AP_TERM f th = MK_COMB (REFL f) th

Introduction

History High-level descriptior

Build a HOL kernel

Design philosophy Basic types Logic

Implementation

Theories

Theorem-proving applications

BDDs and symbolic model-checking TCP/IP trace-checking

Implementing the HOL API

- ▶ The basic API has been specified; how do we implement it?
- Experimentation in this area is only just beginning
- Harrison's HOL Light system demonstrates that a "naïve" implementation can do well

Implementing the HOL API

- The basic API has been specified; how do we implement it?
- Experimentation in this area is only just beginning
- Harrison's HOL Light system demonstrates that a "naïve" implementation can do well
- ... but even there, the implementation of substitution is fine-tuned, and complicated!

Implementing types

► Types are straightforward:

- Could almost expose this to the user
 - But: to insist that types are well-formed, must check calls to mk_type
 - mk_type("list", [alpha, beta]) must fail
- Implementation must include a global "symbol table", linking types to arities

Implementing terms

- ▶ Terms are much more complicated than types:
 - They can be large (a CNF propositional formula of 1000s of variables is very large, but its largest type is bool → bool → bool)
 - They include bound variables
- Approaches to implementing terms include
 - name-carrying terms
 - use of de Bruijn indices
 - ▶ free variable caching
 - explicit substitutions
- ► All of these have been tried in HOL's history

Name-carrying terms

The "naïve" approach:

The first argument to Abs is a term and not a string because $(\lambda x : \text{num}. \ x \land x > 4) \neq (\lambda x : \text{bool}. \ x \land x > 4)$

- Conceptually simple
- Efficient construction/destruction:
 - Building App terms requires a type-check
 - Making a Const requires a check with the global symbol table for constants
 - ▶ Abs and Var construction is O(1)

Name-carrying terms—the problems

Implementing comparison is complicated:

$$(\lambda x y. x (\lambda y. f y x) y) = (\lambda u v. u (\lambda w. f w u) v)$$

- Substitution is worse:
 - ▶ When performing $(\lambda u. N)[v \mapsto M]$, must check if $u \in FV(M)$, and if so do $N[u \mapsto u']$, with u' "fresh"
 - ▶ Done poorly, easy to create an exponential cost algorithm.

de Bruijn terms

► Core idea: represent bound variables as numbers "pointing" back to binding site. Names for bound variable disappear.

$$(\lambda x y. \ x \ (\lambda y. \ f \ y \ x) \ y) \rightsquigarrow (\lambda.\lambda. \ 2 \ (\lambda.f \ 1 \ 3) \ 1)$$

► In ML

Advantages: substitution, matching and free variable calculations are easy.

de Bruijn terms—the problems

- ▶ Users can't cope with $(\lambda.\lambda.\ 2\ (\lambda.\ f\ 1\ 3)\ 1)$; they want names to look at:
 - Data type declaration for Abs constructor changes to Abs of term * term
 - Very nice canonicity property disappears
- Construction and destruction of abstractions takes time linear in size of term:
 - mk_abs(x, t) must traverse t looking for occurrences of x, turning them into de Bruijn indices
 - conversely dest_abs must undo this
 - term traversals happen a lot (though abstractions are comparatively rare)

Explicit substitutions

- ▶ When asked to calculate $N[v \mapsto M]$ as part of β -reduction, it can be efficient to defer the work (like laziness in a language like Haskell)
- ► H0L4 provides a library for doing efficient "applicative" or "call-by-value" rewriting, written by Bruno Barras
- ► The CBV code uses lazy-substitution to merge pending substitutions and to avoid doing unnecessary work
- ▶ Implemented with an extra constructor:

```
LzSub : (term * int) list * term -> term
```

Free variable caching

One of the most frequently called operations in HOL is the free variable calculation:

```
FV : term -> term set
```

- A classic time-space tradeoff is to cache the results of calls to free variable calculations (memoisation)
- Extend Abs and App constructors with extra arguments. E.g.: App of term * term * term set option ref
- ▶ The reference initially points to the NONE value
- After a free variable calculation, it's updated to point to SOME(s) where s is the result
- Experiments continue...

Introduction

History High-level description

Build a HOL kernel

Design philosophy
Basic types
Logic
Implementation

Theories

Theorem-proving applications

BDDs and symbolic model-checking TCP/IP trace-checking

Theories on disk (persistence)

- Users save work to disk as theory files
- Theories can be
 - independently reloaded into interactive sessions (extending the logical context)
 - independently included in custom applications
- Before hol98, theory files were data files, with their own format
- Konrad Slind and Ken Friis Larsen realised that theories looked just like SML modules:
 - they link names to values
- Now, HOL theories (generated by export_theory) are SML source code

Theories as SML modules

- ▶ Logical dependencies can now be analysed statically:
 - ► Before:

```
val th = theorem "arithmetic" "ADD_CLAUSES"
```

The theorem function looks up theorem values in a dynamically updated database; static analysis impossible

► Now:

```
val th = arithmeticTheory.ADD_CLAUSES
```

Dependency on arithmeticTheory is clear.

 Moscow ML linker automatically resolves theory references and includes theory object code in custom applications

Introduction

History High-level description

Build a HOL kernel

Design philosophy
Basic types
Logic
Implementation

Theorem-proving applications

BDDs and symbolic model-checking TCP/IP trace-checking

Linking to the Buddy BDD package

- Buddy is an efficient C implementation of BDDs (Binary Decision Diagrams)
- ▶ BDDs are at the heart of important hardware theorem-proving techniques:
 - ► Equivalence checking: determining if two combinational circuits are equivalent on all inputs
 - Symbolic model-checking: checking temporal properties of transition systems
- ▶ Buddy is linked to Moscow ML through the Muddy package:
 - ▶ BDDs become a type manipulable in ML programs
- Gordon's Ho1Bdd package allows linked BDD and HOL reasoning.

Using BDDs in HOL

- ▶ Use of tagged oracles, allows BDD theorems to be treated as HOL theorems
- Standard BDD algorithms can be implemented

Using BDDs in HOL

- ▶ Use of tagged oracles, allows BDD theorems to be treated as HOL theorems
- Standard BDD algorithms can be implemented
- ▶ But more interesting to investigate combination of styles
- ▶ When you can do proofs by induction *and* analyse finite sytems in the same environment, what is possible?
- Much current research in this area

Verified model-checking in HOL

- ▶ BDDs are at the core of the standard model-checking algorithm
- ▶ Hasan Amjad implemented model-checking algorithm for propositional μ -calculus on top of HolBdd
- ▶ This algorithm is implemented as a derived rule
- ▶ The core algorithm is simple enough, but in this framework
 - embeddings of other logics
 - abstraction optimisations

can also be implemented and known to be correct.

- ▶ HOL becomes a framework for the development of high-assurance model-checking algorithms
- ▶ Efficiency is not necessarily bad either

TCP/IP trace-checking

- ► [Joint work with Peter Sewell, Keith Wansbrough and others at the University of Cambridge]
- Have developed a detailed specification of the TCP/IP protocol, and the accompanying sockets API
 - ▶ all written in HOL
- ▶ This is a *post hoc* specification:
 - if it and current implementations disagree, the spec. is likely wrong
- How to spot if specification is wrong?
- ▶ NB: Without a specification, you *certainly* can't tell if an implementation is wrong

Specification validation

- Use experimental infrastructure to generate detailed traces of socket/TCP activity
- ▶ Test: does the formal model agree that the observed behavour is possible?
- Instance of

 Users have a command-line tool (distributes work over multiple hosts), and do not interact with HOL directly