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HOL
L Introduction

What is HOL?

v

A family of theorem-provers, stemming from University of
Cambridge and work by Mike Gordon

| will describe most recent implementation on the most active
branch of development, HOL4

HOLs on other branches of development include Harrison's
HOL Light, and ProofPower

Ancestors of HOL4 are hol98, HOL90 and HOLS8S.

» Principal development of HOL is now done by me and Konrad

Slind.
See http://hol.sourceforge.net for downloads &c.


http://hol.sourceforge.net
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L Introduction
History

Where does HOL come from?

v

Everything begins with LCF
» Developed by Milner, Gordon and others in Stanford and
Edinburgh starting in 1972. (One of the early developers was
Malcolm Newey, now at ANU's Dept. of Computer Science.)

v

LCF is a theorem-proving system for proving theorems in the
Logic of Computable Functions (due to Dana Scott).
The Edinburgh LCF system introduced two crucial
innovations:

» Theorems as a protected abstract data type; and

» Use of ML
Isabelle, HOL, Coq and the Nuprl systems all acknowledge this
ancestry: they embody the “LCF philosophy”

v

v
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History

Birth of HOL

» HOL evolved from LCF because Mike Gordon wanted to do
hardware verification

» LCF is a logic for computable functions using denotational
semantics, where every type is modelled via a domain.

» Hardware's demands are much simpler
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History

Birth of HOL

» HOL evolved from LCF because Mike Gordon wanted to do
hardware verification

» LCF is a logic for computable functions using denotational
semantics, where every type is modelled via a domain.

» Hardware's demands are much simpler

» But naturally higher order

» Signals are functions from time to bool
> Devices are relations from signals to signals
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HOL since the 1980s

» First implementation effort was in “Classic ML" on top of
Common Lisp — this led to HOL88 (described in book by
Gordon and Melham)

» Konrad Slind wrote a version in Standard ML (SML/NJ
implementation) — HOL90

» Slind also main author of hol98, which switched to
Moscow ML, and a new representation for theories on disk

» Slind and | are the main authors of HOL4 (since June 2002).

Other developers update the SourceForge repository from
Cambridge, Oxford and the USA.
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High-level description

The core of HOL

The LCF design philosophy:

inference rules

} ML functions

:thm abstract
data type Of
axioms theorems

The ML inference rules both depend on the core type of thm and
manipulate theorems to derive new ones.
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High-level description

How HOL is used in practice

» HOL is a programming environment

» system command = a programming language
» proof = computation of theorems

» Theory-creation in the HOL system

source

User | —

ML source text:

» specifications
> proofs

theory

Fe— HOL theory file:
—_— ::‘:' » definitions

O » theorems
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High-level description

Standard theorem-proving facilities

HOL4 comes with standard theorem-proving technology:
» Definition tools:
» For types: inductive/algebraic, quotients, records and
abbreviations
» For terms: well-founded or primitive recursive function
definition, inductive relations

» Proof support:
» Simplifier (contextual rewriting with conditional rewrites,
embedded decision procedures)
» First-order reasoning (resolution and model elimination)
» Arithmetic decision procedures (for N, Z and R)
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A hardware verification example
» Fragment of an adder circuit:

cin
2] e
i2 ] ) °

.

» We wish to verify that
o= (il + 12+ cin) MOD 2

» There are three steps:

» write a specification of the circuit in logic
» formulate the correctness of the circuit
> prove the correctness of the circuit
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Specify the circuit

» Specification of an XOR gate:

i1

b

F Xor(il,i2,0) = (o = (il = i2))
» Specification of the adder circuit:

cin
= ] e

i2

Ik_JI
o

F Add(cin, i1,i2,0) = Jp. Xor

—~

cin, i1,p) A Xor(p,i2,0)



HOL
L Introduction
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Specify the circuit

» ML source text:

val Xor =
Define‘Xor(il,i2,0) = (o = = (il:bool = i2))°¢;

val Add =
Define‘Add(cin,il,i2,0) =
dp. Xor(cin,il,p) A Xor(i2,p,o0)°;
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Formulate correctness

» Abstraction function from bool to num:

bool num
T
F 0

F Bv(b) = if bthen 1 else 0
» Logical formulation of correctness:

FVcin i1 i2 o.
Add(cin,i1,i2,0) =
Bv o= (Bv i1+ Bv i2+Bv cin) MOD 2
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High-level description

Formulate correctness

» ML source text:

val Bv = Define ‘Bv b = if b then 1 else 0¢;

g ‘VYcin il i2 o.
Add(cin,il1,i2,0) =
(Bv o = (Bv i1 + Bv i2 + Bv cin) MOD 2)°;

» The g function establishes a formula as a goal that we wish to
prove
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Develop the proof interactively

» In an interactive ML session, we have stated the ‘goal’:

‘Yecin i1 i2 o.
Add (cin,il,i2,0) =
(Bv o = (Bv il + Bv i2 + Bv cin) MOD 2)°¢

» Expand with definitions of the circuit:

- e(RW_TAC arith_ss [Add,Xor]);
OK..
1 subgoal:
> val it =
Bv =(i2 = —(cin = i1)) =
(Bv cin + (Bv il + Bv i2)) MOD 2

: goalstack
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Develop the proof interactively

» Rewrite with the definition of Bv

- e (RW_TAC arith_ss [Bv]);
OK. .

Goal proved.
|- Bv =(i2 = =(cin = i1)) =
(Bv cin + (Bv il + Bv i2)) MOD 2
> val it =
Initial goal proved.
|- Vcin il i2 out.
Add (cin,il,i2,out) =
(Bv out = (Bv il + Bv i2 + Bv cin) MOD 2)

» Could combine two steps into one;
RW_TAC arith_ss [Bv,Add,Xor] solves the goal.
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The ML deliverable

val Xor =
Define‘Xor(il,i2,out) = (out = —(il:bool = i2))¢;

val Add =
Define‘Add(cin,il,i2,out) =
Jp. Xor(cin,il,p) A Xor(i2,p,out)‘;

val Bv = Define‘Bv b = if b then 1 else 0¢;

val Add_CORRECT = store_thm(
"Add_CORRECT",
‘‘Ycin il i2 out.
Add(cin,il,i2,out) =
(Bv out = (Bv il + Bv i2 + Bv cin) MOD 2) ‘¢,
RW_TAC arith_ss [Add,Xor,Bv]);
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High-level description

Other modes of use

» HOL as proof engine

specialized

User HOL

application

Example: TCP protocol trace-checking.
» Hybrid theorem-proving:

another
User — HOL <« | theorem
prover

Examples: links with Gandalf [Hurd], ACL2 [Staples],
Voss [Joyce/Seger].
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L Build a HOL kernel

Build your own HOL

» HOL is a relatively small system, built on a small kernel
» It's designed to be experimented with

» Numerous people have re-implemented significant parts of the
kernel

» The kernel supports a narrow API, so it's easy to provide new
implementations
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Build your own HOL

» HOL is a relatively small system, built on a small kernel
» It's designed to be experimented with

» Numerous people have re-implemented significant parts of the
kernel

» The kernel supports a narrow API, so it's easy to provide new
implementations

» In slides to come, I'll present an idealised kernel's API
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Build your own HOL

» HOL is a relatively small system, built on a small kernel
» It's designed to be experimented with

» Numerous people have re-implemented significant parts of the
kernel

» The kernel supports a narrow API, so it's easy to provide new
implementations

» In slides to come, I'll present an idealised kernel's API

» The HOL4 kernel is a “distorted” version of this ideal
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Design keywords

Modularity:

Separability:

Efficiency:

To support custom applications, it must
be possible to assemble different subsets
of HOL functionality into real systems

Custom applications should only link or
include the code they use

Code should perform as well as possi-
ble on big terms/theorems (thousands of
conjuncts, lots of binders, &c)
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Basic types

Types

Types are either variables, or an operator of arity n applied to n
types.

eqtype hol_type

val mk_type : string * hol_type list -> hol_type
val mk_vartype : string -> hol_type
val dest_type : hol_type -> string * hol_type list

val dest_vartype : hol_type —-> string

For example: «, («)list, and (()num)list
(where list has arity 1, and num has arity 0)
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Basic types

Operations on types

val type_subst : (hol_type,hol_type) subst ->
hol_type -> hol_type
val new_type : string * int -> unit

> type_subst substitutes for type variables only
» new_type updates a global table of known types.

» mk_type fails if it fails to respect this table's stored arities.
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Terms
val mk_var : string * hol_type -> term
val mk_const : string * hol_type -> term
val mk_comb . term * term -> term
val mk_abs : term * term -> term

val new_const : string * hol_type -> unit

» Terms are either variables, constants, applications or
abstractions.

» mk_const(s,ty) fails if the ty is not an instantiation of some
ty’, where new_const(s,ty’) was called earlier

» mk_comb fails if the types are incompatible

» mk_abs(v,t) fails if v is not a variable
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Basic types

Operations on terms

val inst : (hol_type, hol_type) subst ->
term -> term

val subst : (term, term) subst ->
term -> term

val free_vars : term -> term set

val compare : term * term -> order

val match_term : hol_type set * term set ->
term -> term ->
((hol_type,hol_type) subst *
(term, term) subst)

(There are also dest_ inversions for all the mk_ functions.)
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Theorems

val dest_thm : thm -> term set * term

The only way to create theorems is through rules of inference!
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The kernel’s logic

» There at least as many different presentations of higher-order
logic as there are HOL systems

» In slides to come, | will present one very idealised version,
similar to that used in Harrison’s HOL Light system
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Logic

The kernel’s logic

» There at least as many different presentations of higher-order
logic as there are HOL systems

» In slides to come, | will present one very idealised version,
similar to that used in Harrison’s HOL Light system

» HOL4 is not as purist as this, for (possibly misplaced)
efficiency reasons, and because it gained all sorts of baggage
as the system evolved
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The primitive context

» Three types: bool (arity 0), ind (arity 0) and fun (arity 2).
((r, B)fun is written o — 3.)
» Two constants:

= :a — a— bool
e (o — bool) — «
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Rules of inference—I

Side-conditions:
» In MK_COMB, f x (and g y) must be valid terms (well-typed)

» In ABS, x must not be free in
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Rules of inference—I|
— ASSUME
{t : bool} -t

NEt=u Ak (t:bool)
FTUAFu

EQ_MP

' (u:bool) AF (v:bool)
(M{vhu@A\{u}) Fu=v

-t
Mr/a1...m/an) b tfr/ag ... Th/an)

-t
r[Ml/Vl I\/I,,/v,,] H t[Ml/Vl M,,/Vn]

DED_ANTISYM

INST_TYPE

INST
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Logic

Rules of inference—II|I

F(Ax.t x)=t ETA

(P :a— bool) x
P (c P)

SELECT

ETA could just as well be regarded as an axiom.

SELECT is equivalent to the Axiom of Choice.
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Principles of definition

» Terms:
c—=e

is a legitimate definition of ¢, if

> e contains no free variables;
> all the type variables that occur in e are in the type of ¢

» Types:

F(P:7— bool) t
Fabs (rep a)=(a:7) P r=(rep (abs r)=r)

where 7 is an existing type, 7’ is the new type, P has no free
variables, and abs and rep are new constants.
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One last axiom

When V, 3, =, A and = have all been defined, the last axiom can
be added:

F3(f : ind — ind).
(VXl X2. (f x1=f Xg) = (Xl = Xg)) VAN
Jy. Vx. =(y =f x)

This states that ind is infinite (it forms the basis of the definition
of N)
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More signature for Thm

val
val
val
val

val
val
val
val

val

val
val

REFL
MK_COMB
ABS
BETA

ASSUME
EQ_MP

INST_TYPE

INST

ETA
SELECT

: term -> thm (* could be an
: thm -> thm -> thm

: thm -> thm

: term -> thm (* can’t be an

: term -> thm
: thm -> thm -> thm
DED_ANTISYM :

thm -> thm -> thm
(hol_type, hol_type) subst
thm -> thm

(term, term) subst ->

thm -> thm

: term -> thm (* could be an
: thm -> thm

axiom *)

axiom *)

axiom *)
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More signature for Thm

val new_definition

val new_type_definition :

val new_axiom

: term -> thm

thm -> thm * thm

: term -> thm (* eek *)
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Derived rules

» The system is extended by providing derived rules; ML
functions which use the kernel's facilities to implement logical
manipulations.

» For example,

NEx=y

THFx=fy MPTER

val AP_TERM : term -> thm -> thm
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Derived rules

» The system is extended by providing derived rules; ML
functions which use the kernel's facilities to implement logical
manipulations.

» For example,

FF=f Rl oy

Fr-fx=f~fy

MK_COMB

val AP_TERM : term -> thm -> thm

fun AP TERM f th = MK_COMB (REFL f) th
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Implementation

Implementing the HOL API

» The basic API has been specified; how do we implement it?
» Experimentation in this area is only just beginning

» Harrison's HOL Light system demonstrates that a “naive”
implementation can do well



HOL
L Build a HOL kernel

Implementation

Implementing the HOL API

» The basic API has been specified; how do we implement it?
» Experimentation in this area is only just beginning

» Harrison's HOL Light system demonstrates that a “naive”
implementation can do well

» ...but even there, the implementation of substitution is
fine-tuned, and complicated!
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Implementation

Implementing types

» Types are straightforward:

datatype hol_type = Varty of string
| Tyop of string * hol_type list

» Could almost expose this to the user
» But: to insist that types are well-formed, must check calls to
mk_type
» mk_type("list", [alpha, betal]) must fail
» Implementation must include a global “symbol table”, linking
types to arities
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Implementation

Implementing terms

» Terms are much more complicated than types:

» They can be large (a CNF propositional formula of 1000s of
variables is very large, but its largest type is
bool — bool — bool)

» They include bound variables

» Approaches to implementing terms include

name-carrying terms
use of de Bruijn indices
free variable caching
explicit substitutions

» All of these have been tried in HOL's history

vV vy VvVYyy
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Implementation

Name-carrying terms

The “naive” approach:

datatype term = Var of string * hol_type

| Const of string * hol_type
| App of term * term

I

Abs of term * term

The first argument to Abs is a term and not a string because
(Ax :inum. x A x > 4) # (Ax :bool. x A x > 4)

» Conceptually simple
» Efficient construction/destruction:
» Building App terms requires a type-check
» Making a Const requires a check with the global symbol table
for constants
» Abs and Var construction is O(1)
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Implementation

Name-carrying terms—the problems

» Implementing comparison is complicated:
(Mxy. x (Ay. fyx)y)=0Quv. u (Aw. f w u) v)

» Substitution is worse:
» When performing (Au. N)[v +— M], must check if u € FV(M),
and if so do N[u — u'], with v’ “fresh”
» Done poorly, easy to create an exponential cost algorithm.
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Implementation
de Bruijn terms

» Core idea: represent bound variables as numbers “pointing”
back to binding site. Names for bound variable disappear.

(Axy. x (Ay. fyx)y)~QAAX2((AF13)1)

» In ML

datatype term = FVar of string * hol_type
BVar of int

Const of string * hol_type
App of term * term

Abs of hol_type * term

» Advantages: substitution, matching and free variable
calculations are easy.
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L Implementation

de Bruijn terms—the problems

» Users can't cope with (A.A. 2 (A. f 1 3) 1); they want names
to look at:

» Data type declaration for Abs constructor changes to
Abs of term * term
» Very nice canonicity property disappears

» Construction and destruction of abstractions takes time linear
in size of term:

» mk_abs(x, t) must traverse t looking for occurrences of x,
turning them into de Bruijn indices

» conversely dest_abs must undo this

» term traversals happen a lot (though abstractions are
comparatively rare)
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Implementation

Explicit substitutions

» When asked to calculate N[v — M] as part of 3-reduction, it
can be efficient to defer the work (like laziness in a language
like Haskell)

» HOL4 provides a library for doing efficient “applicative” or
“call-by-value” rewriting, written by Bruno Barras

» The CBV code uses lazy-substitution to merge pending
substitutions and to avoid doing unnecessary work

» Implemented with an extra constructor:

LzSub : (term * int) list * term -> term
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Implementation

Free variable caching

» One of the most frequently called operations in HOL is the free

variable calculation:

FV : term -> term set

A classic time-space tradeoff is to cache the results of calls to
free variable calculations (memoisation)

Extend Abs and App constructors with extra arguments. E.g.:

App of term * term * term set option ref

» The reference initially points to the NONE value

» After a free variable calculation, it's updated to point to

SOME (s) where s is the result

Experiments continue. . .
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Theories

Theories on disk (persistence)

> Users save work to disk as theory files

» Theories can be
» independently reloaded into interactive sessions (extending the
logical context)
» independently included in custom applications
» Before hol98, theory files were data files, with their own
format

» Konrad Slind and Ken Friis Larsen realised that theories
looked just like SML modules:

> they link names to values

» Now, HOL theories (generated by export_theory) are SML
source code
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LTheories

Theories as SML modules

» Logical dependencies can now be analysed statically:
» Before:

val th = theorem "arithmetic" "ADD_CLAUSES"

The theorem function looks up theorem values in a

dynamically updated database; static analysis impossible
> Now:

val th = arithmeticTheory.ADD_CLAUSES
Dependency on arithmeticTheory is clear.

» Moscow ML linker automatically resolves theory references
and includes theory object code in custom applications
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BDDs and symbolic model-checking
TCP/IP trace-checking
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Linking to the Buddy BDD package

» Buddy is an efficient C implementation of BDDs (Binary
Decision Diagrams)
» BDDs are at the heart of important hardware theorem-proving
techniques:
» Equivalence checking: determining if two combinational
circuits are equivalent on all inputs
» Symbolic model-checking: checking temporal properties of
transition systems
» Buddy is linked to Moscow ML through the Muddy package:
» BDDs become a type manipulable in ML programs

» Gordon's HolBdd package allows linked BDD and HOL
reasoning.
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Using BDDs in HOL

» Use of tagged oracles, allows BDD theorems to be treated as
HOL theorems

» Standard BDD algorithms can be implemented
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Using BDDs in HOL

v

Use of tagged oracles, allows BDD theorems to be treated as
HOL theorems

Standard BDD algorithms can be implemented

v

v

But more interesting to investigate combination of styles

v

When you can do proofs by induction and analyse finite
sytems in the same environment, what is possible?

» Much current research in this area
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Verified model-checking in HOL

» BDDs are at the core of the standard model-checking
algorithm

» Hasan Amjad implemented model-checking algorithm for
propositional p-calculus on top of HolBdd

» This algorithm is implemented as a derived rule

» The core algorithm is simple enough, but in this framework

» embeddings of other logics
> abstraction optimisations

can also be implemented and known to be correct.

» HOL becomes a framework for the development of
high-assurance model-checking algorithms

» Efficiency is not necessarily bad either
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TCP/IP trace-checking

» [Joint work with Peter Sewell, Keith Wansbrough and others

>

at the University of Cambridge]

Have developed a detailed specification of the TCP/IP
protocol, and the accompanying sockets API

> all written in HOL
This is a post hoc specification:

» if it and current implementations disagree, the spec. is likely
wrong

How to spot if specification is wrong?

NB: Without a specification, you certainly can't tell if an
implementation is wrong
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Specification validation

» Use experimental infrastructure to generate detailed traces of

socket/ TCP activity

» Test: does the formal model agree that the observed behavour

is possible?

» Instance of

User

specialized

. HOL
application

» Users have a command-line tool (distributes work over
multiple hosts), and do not interact with HOL directly
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