
HOL

The HOL theorem-proving system

Michael Norrish
Michael.Norrish@nicta.com.au

National ICT Australia

8 September 2004



HOL

Outline

Introduction
History
High-level description

Build a HOL kernel
Design philosophy
Basic types
Logic
Implementation
Theories

Theorem-proving applications
BDDs and symbolic model-checking
TCP/IP trace-checking



HOL

Introduction

What is HOL?

I A family of theorem-provers, stemming from University of
Cambridge and work by Mike Gordon

I I will describe most recent implementation on the most active
branch of development, HOL4

I HOLs on other branches of development include Harrison’s
HOL Light, and ProofPower

I Ancestors of HOL4 are hol98, HOL90 and HOL88.

I Principal development of HOL is now done by me and Konrad
Slind.

I See http://hol.sourceforge.net for downloads &c.

http://hol.sourceforge.net


HOL

Introduction

History

Where does HOL come from?

I Everything begins with LCF
I Developed by Milner, Gordon and others in Stanford and

Edinburgh starting in 1972. (One of the early developers was
Malcolm Newey, now at ANU’s Dept. of Computer Science.)

I LCF is a theorem-proving system for proving theorems in the
Logic of Computable Functions (due to Dana Scott).

I The Edinburgh LCF system introduced two crucial
innovations:

I Theorems as a protected abstract data type; and
I Use of ML

I Isabelle, HOL, Coq and the Nuprl systems all acknowledge this
ancestry: they embody the “LCF philosophy”



HOL

Introduction

History

Birth of HOL

I HOL evolved from LCF because Mike Gordon wanted to do
hardware verification

I LCF is a logic for computable functions using denotational
semantics, where every type is modelled via a domain.

I Hardware’s demands are much simpler



HOL

Introduction

History

Birth of HOL

I HOL evolved from LCF because Mike Gordon wanted to do
hardware verification

I LCF is a logic for computable functions using denotational
semantics, where every type is modelled via a domain.

I Hardware’s demands are much simpler

I But naturally higher order
I Signals are functions from time to bool
I Devices are relations from signals to signals



HOL

Introduction

History

HOL since the 1980s

I First implementation effort was in “Classic ML” on top of
Common Lisp — this led to HOL88 (described in book by
Gordon and Melham)

I Konrad Slind wrote a version in Standard ML (SML/NJ
implementation) — HOL90

I Slind also main author of hol98, which switched to
Moscow ML, and a new representation for theories on disk

I Slind and I are the main authors of HOL4 (since June 2002).
Other developers update the SourceForge repository from
Cambridge, Oxford and the USA.



HOL

Introduction

High-level description

The core of HOL

The LCF design philosophy:

inference rules

:thm

axioms

}

ML functions











abstract
data type of
theorems

The ML inference rules both depend on the core type of thm and
manipulate theorems to derive new ones.



HOL

Introduction

High-level description

How HOL is used in practice

I HOL is a programming environment
I system command = a programming language
I proof = computation of theorems

I Theory-creation in the HOL system

User
source















ML source text:

I specifications
I proofs

HOL

theory














HOL theory file:

I definitions
I theorems



HOL

Introduction

High-level description

Standard theorem-proving facilities

HOL4 comes with standard theorem-proving technology:

I Definition tools:
I For types: inductive/algebraic, quotients, records and

abbreviations
I For terms: well-founded or primitive recursive function

definition, inductive relations

I Proof support:
I Simplifier (contextual rewriting with conditional rewrites,

embedded decision procedures)
I First-order reasoning (resolution and model elimination)
I Arithmetic decision procedures (for N, Z and R)



HOL

Introduction

High-level description

A hardware verification example

I Fragment of an adder circuit:

¯
°

¥
¦
¥
¦ ¯

°
¥
¦
¥
¦ o

cin
i1

i2

p

I We wish to verify that

o = (i1+ i2+ cin) MOD 2

I There are three steps:

I write a specification of the circuit in logic
I formulate the correctness of the circuit
I prove the correctness of the circuit



HOL

Introduction

High-level description

Specify the circuit

I Specification of an XOR gate:

¯
°

¥
¦
¥
¦i2

i1
o

` Xor(i1, i2, o) = (o = ¬(i1 = i2))

I Specification of the adder circuit:

¯
°

¥
¦
¥
¦ ¯

°
¥
¦
¥
¦ o

cin

i1

i2

p

` Add(cin, i1, i2, o) = ∃p. Xor(cin, i1, p) ∧ Xor(p, i2, o)



HOL

Introduction

High-level description

Specify the circuit

I ML source text:

val Xor =

Define‘Xor(i1,i2,o) = (o = ¬(i1:bool = i2))‘;

val Add =

Define‘Add(cin,i1,i2,o) =

∃p. Xor(cin,i1,p) ∧ Xor(i2,p,o)‘;



HOL

Introduction

High-level description

Formulate correctness

I Abstraction function from bool to num:

bool

T

F

num

1
0

` Bv(b) = if b then 1 else 0

I Logical formulation of correctness:

` ∀cin i1 i2 o.
Add(cin, i1, i2, o) ⇒
Bv o = (Bv i1+ Bv i2+ Bv cin) MOD 2



HOL

Introduction

High-level description

Formulate correctness

I ML source text:

val Bv = Define ‘Bv b = if b then 1 else 0‘;

g ‘∀cin i1 i2 o.

Add(cin,i1,i2,o) ⇒
(Bv o = (Bv i1 + Bv i2 + Bv cin) MOD 2)‘;

I The g function establishes a formula as a goal that we wish to
prove



HOL

Introduction

High-level description

Develop the proof interactively

I In an interactive ML session, we have stated the ‘goal’:

‘∀cin i1 i2 o.

Add (cin,i1,i2,o) ⇒
(Bv o = (Bv i1 + Bv i2 + Bv cin) MOD 2)‘

I Expand with definitions of the circuit:

- e(RW_TAC arith_ss [Add,Xor]);

OK..

1 subgoal:

> val it =

Bv ¬(i2 = ¬(cin = i1)) =

(Bv cin + (Bv i1 + Bv i2)) MOD 2

: goalstack



HOL

Introduction

High-level description

Develop the proof interactively

I Rewrite with the definition of Bv

- e (RW_TAC arith_ss [Bv]);

OK..

Goal proved.

|- Bv ¬(i2 = ¬(cin = i1)) =

(Bv cin + (Bv i1 + Bv i2)) MOD 2

> val it =

Initial goal proved.

|- ∀cin i1 i2 out.

Add (cin,i1,i2,out) ⇒
(Bv out = (Bv i1 + Bv i2 + Bv cin) MOD 2)

I Could combine two steps into one;
RW_TAC arith_ss [Bv,Add,Xor] solves the goal.



HOL

Introduction

High-level description

The ML deliverable

val Xor =

Define‘Xor(i1,i2,out) = (out = ¬(i1:bool = i2))‘;

val Add =

Define‘Add(cin,i1,i2,out) =

∃p. Xor(cin,i1,p) ∧ Xor(i2,p,out)‘;

val Bv = Define‘Bv b = if b then 1 else 0‘;

val Add_CORRECT = store_thm(

"Add_CORRECT",

‘‘∀cin i1 i2 out.

Add(cin,i1,i2,out) ⇒
(Bv out = (Bv i1 + Bv i2 + Bv cin) MOD 2)‘‘,

RW_TAC arith_ss [Add,Xor,Bv]);



HOL

Introduction

High-level description

Other modes of use

I HOL as proof engine

User
specialized
application

HOL

Example: TCP protocol trace-checking.

I Hybrid theorem-proving:

User HOL

another
theorem
prover

Examples: links with Gandalf [Hurd], ACL2 [Staples],
Voss [Joyce/Seger].



HOL

Build a HOL kernel

Introduction
History
High-level description

Build a HOL kernel
Design philosophy
Basic types
Logic
Implementation
Theories

Theorem-proving applications
BDDs and symbolic model-checking
TCP/IP trace-checking



HOL

Build a HOL kernel

Build your own HOL

I HOL is a relatively small system, built on a small kernel

I It’s designed to be experimented with

I Numerous people have re-implemented significant parts of the
kernel

I The kernel supports a narrow API, so it’s easy to provide new
implementations



HOL

Build a HOL kernel

Build your own HOL

I HOL is a relatively small system, built on a small kernel

I It’s designed to be experimented with

I Numerous people have re-implemented significant parts of the
kernel

I The kernel supports a narrow API, so it’s easy to provide new
implementations

I In slides to come, I’ll present an idealised kernel’s API



HOL

Build a HOL kernel

Build your own HOL

I HOL is a relatively small system, built on a small kernel

I It’s designed to be experimented with

I Numerous people have re-implemented significant parts of the
kernel

I The kernel supports a narrow API, so it’s easy to provide new
implementations

I In slides to come, I’ll present an idealised kernel’s API

I The HOL4 kernel is a “distorted” version of this ideal



HOL

Build a HOL kernel

Design philosophy

Design keywords

Modularity: To support custom applications, it must
be possible to assemble different subsets
of HOL functionality into real systems

Separability: Custom applications should only link or
include the code they use

Efficiency: Code should perform as well as possi-
ble on big terms/theorems (thousands of
conjuncts, lots of binders, &c)



HOL

Build a HOL kernel

Basic types

Introduction
History
High-level description

Build a HOL kernel
Design philosophy
Basic types
Logic
Implementation
Theories

Theorem-proving applications
BDDs and symbolic model-checking
TCP/IP trace-checking



HOL

Build a HOL kernel

Basic types

Types

Types are either variables, or an operator of arity n applied to n

types.

eqtype hol_type

val mk_type : string * hol_type list -> hol_type

val mk_vartype : string -> hol_type

val dest_type : hol_type -> string * hol_type list

val dest_vartype : hol_type -> string

For example: α, (α)list, and (()num)list
(where list has arity 1, and num has arity 0)



HOL

Build a HOL kernel

Basic types

Operations on types

val type_subst : (hol_type,hol_type) subst ->

hol_type -> hol_type

val new_type : string * int -> unit

I type subst substitutes for type variables only

I new type updates a global table of known types.

I mk type fails if it fails to respect this table’s stored arities.



HOL

Build a HOL kernel

Basic types

Terms

val mk_var : string * hol_type -> term

val mk_const : string * hol_type -> term

val mk_comb : term * term -> term

val mk_abs : term * term -> term

val new_const : string * hol_type -> unit

I Terms are either variables, constants, applications or
abstractions.

I mk const(s,ty) fails if the ty is not an instantiation of some
ty’, where new const(s,ty’) was called earlier

I mk comb fails if the types are incompatible

I mk abs(v,t) fails if v is not a variable



HOL

Build a HOL kernel

Basic types

Operations on terms

val inst : (hol_type, hol_type) subst ->

term -> term

val subst : (term, term) subst ->

term -> term

val free_vars : term -> term set

val compare : term * term -> order

val match_term : hol_type set * term set ->

term -> term ->

((hol_type,hol_type) subst *

(term, term) subst)

(There are also dest inversions for all the mk functions.)



HOL

Build a HOL kernel

Basic types

Theorems

val dest_thm : thm -> term set * term

The only way to create theorems is through rules of inference!



HOL

Build a HOL kernel

Logic

Introduction
History
High-level description

Build a HOL kernel
Design philosophy
Basic types
Logic
Implementation
Theories

Theorem-proving applications
BDDs and symbolic model-checking
TCP/IP trace-checking



HOL

Build a HOL kernel

Logic

The kernel’s logic

I There at least as many different presentations of higher-order
logic as there are HOL systems

I In slides to come, I will present one very idealised version,
similar to that used in Harrison’s HOL Light system



HOL

Build a HOL kernel

Logic

The kernel’s logic

I There at least as many different presentations of higher-order
logic as there are HOL systems

I In slides to come, I will present one very idealised version,
similar to that used in Harrison’s HOL Light system

I HOL4 is not as purist as this, for (possibly misplaced)
efficiency reasons, and because it gained all sorts of baggage
as the system evolved



HOL

Build a HOL kernel

Logic

The primitive context

I Three types: bool (arity 0), ind (arity 0) and fun (arity 2).
((α, β)fun is written α → β.)

I Two constants:

= : α → α → bool
ε : (α → bool) → α



HOL

Build a HOL kernel

Logic

Rules of inference—I

` t = t
REFL

Γ ` f = g ∆ ` x = y

Γ ∪∆ ` f x = g y
MK COMB

Γ ` t = u
Γ ` (λx . t) = (λx . u)

ABS

` (λx . t)x = t
BETA

Side-conditions:

I In MK COMB, f x (and g y) must be valid terms (well-typed)

I In ABS, x must not be free in Γ



HOL

Build a HOL kernel

Logic

Rules of inference—II

{t : bool} ` t
ASSUME

Γ ` t = u ∆ ` (t : bool)

Γ ∪∆ ` u
EQ MP

Γ ` (u : bool) ∆ ` (v : bool)

(Γ\{v}) ∪ (∆\{u}) ` u = v
DED ANTISYM

Γ ` t
Γ[τ1/α1 . . . τn/αn] ` t[τ1/α1 . . . τn/αn]

INST TYPE

Γ ` t
Γ[M1/v1 . . .Mn/vn] ` t[M1/v1 . . .Mn/vn]

INST



HOL

Build a HOL kernel

Logic

Rules of inference—III

` (λx . t x) = t
ETA

Γ ` (P : α → bool) x

Γ ` P (ε P)
SELECT

ETA could just as well be regarded as an axiom.

SELECT is equivalent to the Axiom of Choice.



HOL

Build a HOL kernel

Logic

Principles of definition

I Terms:
c = e

is a legitimate definition of c, if
I e contains no free variables;
I all the type variables that occur in e are in the type of c

I Types:

` (P : τ → bool) t

` abs (rep a) = (a : τ ′) ` P r = (rep (abs r) = r)

where τ is an existing type, τ ′ is the new type, P has no free
variables, and abs and rep are new constants.



HOL

Build a HOL kernel

Logic

One last axiom

When ∀, ∃, ¬, ∧ and ⇒ have all been defined, the last axiom can
be added:

` ∃(f : ind → ind).
(∀x1 x2. (f x1 = f x2) ⇒ (x1 = x2)) ∧
∃y . ∀x . ¬(y = f x)

This states that ind is infinite (it forms the basis of the definition
of N)



HOL

Build a HOL kernel

Logic

More signature for Thm

val REFL : term -> thm (* could be an axiom *)

val MK_COMB : thm -> thm -> thm

val ABS : thm -> thm

val BETA : term -> thm (* can’t be an axiom *)

val ASSUME : term -> thm

val EQ_MP : thm -> thm -> thm

val DED_ANTISYM : thm -> thm -> thm

val INST_TYPE : (hol_type, hol_type) subst ->

thm -> thm

val INST : (term, term) subst ->

thm -> thm

val ETA : term -> thm (* could be an axiom *)

val SELECT : thm -> thm



HOL

Build a HOL kernel

Logic

More signature for Thm

val new_definition : term -> thm

val new_type_definition : thm -> thm * thm

val new_axiom : term -> thm (* eek *)



HOL

Build a HOL kernel

Logic

Derived rules

I The system is extended by providing derived rules; ML
functions which use the kernel’s facilities to implement logical
manipulations.

I For example,

Γ ` x = y

Γ ` f x = f y
AP TERM

val AP TERM : term -> thm -> thm



HOL

Build a HOL kernel

Logic

Derived rules

I The system is extended by providing derived rules; ML
functions which use the kernel’s facilities to implement logical
manipulations.

I For example,

` f = f
REFL

Γ ` x = y

Γ ` f x = f y
MK COMB

val AP TERM : term -> thm -> thm

fun AP TERM f th = MK COMB (REFL f) th



HOL

Build a HOL kernel

Implementation

Introduction
History
High-level description

Build a HOL kernel
Design philosophy
Basic types
Logic
Implementation
Theories

Theorem-proving applications
BDDs and symbolic model-checking
TCP/IP trace-checking



HOL

Build a HOL kernel

Implementation

Implementing the HOL API

I The basic API has been specified; how do we implement it?

I Experimentation in this area is only just beginning

I Harrison’s HOL Light system demonstrates that a “näıve”
implementation can do well



HOL

Build a HOL kernel

Implementation

Implementing the HOL API

I The basic API has been specified; how do we implement it?

I Experimentation in this area is only just beginning

I Harrison’s HOL Light system demonstrates that a “näıve”
implementation can do well

I . . . but even there, the implementation of substitution is
fine-tuned, and complicated!



HOL

Build a HOL kernel

Implementation

Implementing types

I Types are straightforward:

datatype hol_type = Varty of string

| Tyop of string * hol_type list

I Could almost expose this to the user
I But: to insist that types are well-formed, must check calls to

mk type
I mk type("list", [alpha, beta]) must fail

I Implementation must include a global “symbol table”, linking
types to arities



HOL

Build a HOL kernel

Implementation

Implementing terms

I Terms are much more complicated than types:
I They can be large (a CNF propositional formula of 1000s of

variables is very large, but its largest type is
bool → bool → bool)

I They include bound variables

I Approaches to implementing terms include
I name-carrying terms
I use of de Bruijn indices
I free variable caching
I explicit substitutions

I All of these have been tried in HOL’s history



HOL

Build a HOL kernel

Implementation

Name-carrying terms

The “näıve” approach:

datatype term = Var of string * hol_type

| Const of string * hol_type

| App of term * term

| Abs of term * term

The first argument to Abs is a term and not a string because
(λx : num. x ∧ x > 4) 6= (λx : bool. x ∧ x > 4)

I Conceptually simple

I Efficient construction/destruction:
I Building App terms requires a type-check
I Making a Const requires a check with the global symbol table

for constants
I Abs and Var construction is O(1)



HOL

Build a HOL kernel

Implementation

Name-carrying terms—the problems

I Implementing comparison is complicated:

(λx y . x (λy . f y x) y) = (λu v . u (λw . f w u) v)

I Substitution is worse:
I When performing (λu. N)[v 7→ M], must check if u ∈ FV(M),

and if so do N[u 7→ u′], with u′ “fresh”
I Done poorly, easy to create an exponential cost algorithm.



HOL

Build a HOL kernel

Implementation

de Bruijn terms

I Core idea: represent bound variables as numbers “pointing”
back to binding site. Names for bound variable disappear.

(λx y . x (λy . f y x) y)Ã (λ.λ. 2 (λ. f 1 3) 1)

I In ML

datatype term = FVar of string * hol_type

| BVar of int

| Const of string * hol_type

| App of term * term

| Abs of hol_type * term

I Advantages: substitution, matching and free variable
calculations are easy.



HOL

Build a HOL kernel

Implementation

de Bruijn terms—the problems

I Users can’t cope with (λ.λ. 2 (λ. f 1 3) 1); they want names
to look at:

I Data type declaration for Abs constructor changes to
Abs of term * term

I Very nice canonicity property disappears

I Construction and destruction of abstractions takes time linear
in size of term:

I mk abs(x, t) must traverse t looking for occurrences of x ,
turning them into de Bruijn indices

I conversely dest abs must undo this
I term traversals happen a lot (though abstractions are

comparatively rare)



HOL

Build a HOL kernel

Implementation

Explicit substitutions

I When asked to calculate N[v 7→ M] as part of β-reduction, it
can be efficient to defer the work (like laziness in a language
like Haskell)

I HOL4 provides a library for doing efficient “applicative” or
“call-by-value” rewriting, written by Bruno Barras

I The CBV code uses lazy-substitution to merge pending
substitutions and to avoid doing unnecessary work

I Implemented with an extra constructor:

LzSub : (term * int) list * term -> term



HOL

Build a HOL kernel

Implementation

Free variable caching

I One of the most frequently called operations in HOL is the free
variable calculation:

FV : term -> term set

I A classic time-space tradeoff is to cache the results of calls to
free variable calculations (memoisation)

I Extend Abs and App constructors with extra arguments. E.g.:

App of term * term * term set option ref

I The reference initially points to the NONE value

I After a free variable calculation, it’s updated to point to
SOME(s) where s is the result

I Experiments continue. . .



HOL

Build a HOL kernel

Theories

Introduction
History
High-level description

Build a HOL kernel
Design philosophy
Basic types
Logic
Implementation
Theories

Theorem-proving applications
BDDs and symbolic model-checking
TCP/IP trace-checking



HOL

Build a HOL kernel

Theories

Theories on disk (persistence)

I Users save work to disk as theory files

I Theories can be
I independently reloaded into interactive sessions (extending the

logical context)
I independently included in custom applications

I Before hol98, theory files were data files, with their own
format

I Konrad Slind and Ken Friis Larsen realised that theories
looked just like SML modules:

I they link names to values

I Now, HOL theories (generated by export theory) are SML
source code



HOL

Build a HOL kernel

Theories

Theories as SML modules

I Logical dependencies can now be analysed statically:
I Before:

val th = theorem "arithmetic" "ADD_CLAUSES"

The theorem function looks up theorem values in a
dynamically updated database; static analysis impossible

I Now:

val th = arithmeticTheory.ADD_CLAUSES

Dependency on arithmeticTheory is clear.

I Moscow ML linker automatically resolves theory references
and includes theory object code in custom applications



HOL

Theorem-proving applications

Introduction
History
High-level description

Build a HOL kernel
Design philosophy
Basic types
Logic
Implementation
Theories

Theorem-proving applications
BDDs and symbolic model-checking
TCP/IP trace-checking



HOL

Theorem-proving applications

BDDs and symbolic model-checking

Linking to the Buddy BDD package

I Buddy is an efficient C implementation of BDDs (Binary
Decision Diagrams)

I BDDs are at the heart of important hardware theorem-proving
techniques:

I Equivalence checking: determining if two combinational
circuits are equivalent on all inputs

I Symbolic model-checking: checking temporal properties of
transition systems

I Buddy is linked to Moscow ML through the Muddy package:
I BDDs become a type manipulable in ML programs

I Gordon’s HolBdd package allows linked BDD and HOL

reasoning.



HOL

Theorem-proving applications

BDDs and symbolic model-checking

Using BDDs in HOL

I Use of tagged oracles, allows BDD theorems to be treated as
HOL theorems

I Standard BDD algorithms can be implemented



HOL

Theorem-proving applications

BDDs and symbolic model-checking

Using BDDs in HOL

I Use of tagged oracles, allows BDD theorems to be treated as
HOL theorems

I Standard BDD algorithms can be implemented

I But more interesting to investigate combination of styles

I When you can do proofs by induction and analyse finite
sytems in the same environment, what is possible?

I Much current research in this area



HOL

Theorem-proving applications

BDDs and symbolic model-checking

Verified model-checking in HOL

I BDDs are at the core of the standard model-checking
algorithm

I Hasan Amjad implemented model-checking algorithm for
propositional µ-calculus on top of HolBdd

I This algorithm is implemented as a derived rule

I The core algorithm is simple enough, but in this framework
I embeddings of other logics
I abstraction optimisations

can also be implemented and known to be correct.

I HOL becomes a framework for the development of
high-assurance model-checking algorithms

I Efficiency is not necessarily bad either



HOL

Theorem-proving applications

TCP/IP trace-checking

TCP/IP trace-checking

I [Joint work with Peter Sewell, Keith Wansbrough and others
at the University of Cambridge]

I Have developed a detailed specification of the TCP/IP
protocol, and the accompanying sockets API

I all written in HOL

I This is a post hoc specification:
I if it and current implementations disagree, the spec. is likely

wrong

I How to spot if specification is wrong?

I NB: Without a specification, you certainly can’t tell if an
implementation is wrong



HOL

Theorem-proving applications

TCP/IP trace-checking

Specification validation

I Use experimental infrastructure to generate detailed traces of
socket/TCP activity

I Test: does the formal model agree that the observed behavour
is possible?

I Instance of

User
specialized
application

HOL

I Users have a command-line tool (distributes work over
multiple hosts), and do not interact with HOL directly


	Introduction
	History
	High-level description

	Build a HOL kernel
	Design philosophy
	Basic types
	Logic
	Implementation
	Theories

	Theorem-proving applications
	BDDs and symbolic model-checking
	TCP/IP trace-checking


