

NICTA Advanced Course

Slide 1

Theorem Proving Principles, Techniques, Applications

CONTENT

- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
 - Lambda Calculus
 - Higher Order Logic, natural deduction

Slide 2

- Term rewriting
- → Proof & Specification Techniques
 - Inductively defined sets, rule induction
 - Datatypes, recursion, induction
 - Calculational reasoning, mathematics style proofs
 - Hoare logic, proofs about programs

LAST TIME

- → Conditional term rewriting
- → Congruence and AC rules
- → More on confluence

Slide 3

- → Completion
- → Isar: fix, obtain, abbreviations, moreover, ultimately

SETS IN ISABELLE

Type 'a set: sets over type 'a

- \rightarrow {}, { e_1, \ldots, e_n }, {x. P x}
- $\rightarrow e \in A, A \subseteq B$

Slide 4

- $\rightarrow A \cup B$, $A \cap B$, A B, -A
- $\rightarrow \bigcup x \in A. \ B \ x, \quad \bigcap x \in A. \ B \ x, \quad \bigcap A, \quad \bigcup A$
- **→** {*i..j*}
- \rightarrow insert :: $\alpha \Rightarrow \alpha$ set $\Rightarrow \alpha$ set
- $\rightarrow f'A \equiv \{y. \exists x \in A. y = f x\}$
- → ...

PROOFS ABOUT SETS

Natural deduction proofs:

- ightharpoonup equalityl: $[\![A\subseteq B;\; B\subseteq A]\!] \Longrightarrow A=B$
- \rightarrow subsetl: $(\bigwedge x. \ x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$

Slide 5

→ ... (see Tutorial)

BOUNDED QUANTIFIERS

- $\Rightarrow \forall x \in A. \ P \ x \equiv \forall x. \ x \in A \longrightarrow P \ x$
- $\Rightarrow \exists x \in A. \ P \ x \equiv \exists x. \ x \in A \land P \ x$

Slide 6

- \rightarrow balli: $(\bigwedge x. \ x \in A \Longrightarrow P \ x) \Longrightarrow \forall x \in A. \ P \ x$
- ightharpoonup bspec: $[\![\forall x \in A.\ P\ x; x \in A]\!] \Longrightarrow P\ x$
- ightharpoonup bexl: $[\![P\ x;x\in A]\!]\Longrightarrow\exists x\in A.\ P\ x$

Slide 7

DEMO: SETS

Slide 8

INDUCTIVE DEFINITIONS

EXAMPLE

$$\frac{[\![e]\!]\sigma = v}{\langle \mathsf{skip}, \sigma \rangle \longrightarrow \sigma} \qquad \frac{[\![e]\!]\sigma = v}{\langle \mathsf{x} := \mathsf{e}, \sigma \rangle \longrightarrow \sigma[x \mapsto v]}$$

$$\frac{\langle c_1, \sigma \rangle \longrightarrow \sigma' \quad \langle c_2, \sigma' \rangle \longrightarrow \sigma''}{\langle c_1; c_2, \sigma \rangle \longrightarrow \sigma''}$$

Slide 9

$$\frac{[\![b]\!]\sigma = \mathsf{False}}{\langle \mathsf{while}\ b\ \mathsf{do}\ c, \sigma \rangle \longrightarrow \sigma}$$

$$\frac{[\![b]\!]\sigma = \mathsf{True} \quad \langle c, \sigma \rangle \longrightarrow \sigma' \quad \langle \mathsf{while} \ b \ \mathsf{do} \ c, \sigma' \rangle \longrightarrow \sigma''}{\langle \mathsf{while} \ b \ \mathsf{do} \ c, \sigma \rangle \longrightarrow \sigma''}$$

WHAT DOES THIS MEAN?

- \rightarrow relations are sets: $E :: (com \times state \times state)$ set
- → the rules define a set inductively

Slide 10

But which set?

SIMPLER EXAMPLE

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

- ightharpoonup N is the set of natural numbers ${\mathbb N}$
- \rightarrow But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- → N is the smallest set that is consistent with the rules.

Slide 11

Why the smallest set?

- \rightarrow Objective: **no junk**. Only what must be in X shall be in X.
- → Gives rise to a nice proof principle (rule induction)
- → Alternative (greatest set) occasionally also useful: coinduction

FORMALLY

Rules
$$\cfrac{a_1 \in X \quad \dots \quad a_n \in X}{a \in X}$$
 with $a_1, \dots, a_n, a \in A$

define set
$$X \subseteq A$$

Formally: set of rules $R \subseteq A$ set $\times A$ (R, X) possibly infinite)

Slide 12

Applying rules R to a set B: \hat{R} $B \equiv \{x. \exists H. (H, x) \in R \land H \subseteq B\}$

Example:

$$\begin{array}{lll} R & \equiv & \{(\{\},0)\} \cup \{(\{n\},n+1). \ n \in \mathbb{R}\} \\ \hat{R} \ \{3,6,10\} & = & \{0,4,7,11\} \end{array}$$

5

THE SET

Definition: B is R-closed iff \hat{R} $B \subseteq B$

Definition: X is the least R-closed subset of A

Slide 13

This does always exist:

Fact: B_1 R-closed \wedge B_2 R-closed \Longrightarrow $B_1 \cap B_2$ R-closed

Hence: $X = \bigcap \{B \subseteq A.\ B\ R - \mathsf{closed}\}$

GENERATION FROM ABOVE

Slide 14

RULE INDUCTION

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

induces induction principle

Slide 15

$$\llbracket P \ 0; \ \bigwedge n. \ P \ n \Longrightarrow P \ (n+1) \rrbracket \Longrightarrow \forall x \in X. \ P \ x$$

In general:

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$

WHY DOES THIS WORK?

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$

$$\forall (\{a_1,\ldots a_n\},a)\in R.\ P\ a_1\wedge\ldots\wedge P\ a_n\Longrightarrow P\ a$$
 says
$$\{x.\ Px\} \text{ is }R\text{-closed}$$

Slide 16

but: X is the least R-closed set

hence: $X \subseteq \{x. \ P \ x\}$ which means: $\forall x \in X. \ P \ x$

qed

8

RULES WITH SIDE CONDITIONS

$$\underbrace{a_1 \in X \quad \dots \quad a_n \in X \quad \quad C_1 \quad \dots \quad C_m}_{a \in X}$$

induction scheme:

Slide 17

$$(\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \wedge \dots \wedge P \ a_n \wedge$$

$$\begin{array}{c} C_1 \wedge \dots \wedge C_m \wedge \\ \{a_1, \dots, a_n\} \subseteq X \Longrightarrow P \ a) \\ \\ \Longrightarrow \\ \forall x \in X. \ P \ x \end{array}$$

\boldsymbol{X} as Fixpoint

How to compute X?

 $X = \bigcap \{B \subseteq A.\ B\ R - {\sf closed}\}$ hard to work with. **Instead:** view X as least fixpoint, X least set with $\hat{R}\ X = X$.

Fixpoints can be approximated by iteration:

Slide 18

$$\begin{split} X_0 &= \hat{R}^0 \; \{\} = \{\} \\ X_1 &= \hat{R}^1 \; \{\} = \text{rules without hypotheses} \\ \vdots \\ X_n &= \hat{R}^n \; \{\} \\ \\ X_\omega &= \bigcup_{n \in \mathbb{N}} (R^n \; \{\}) = X \end{split}$$

9

GENERATION FROM BELOW

Slide 19

Slide 20 DEMO: INDUCTIVE DEFINITONS

Slide 21

Slide 22

ISAR

INDUCTIVE DEFINITION IN ISABELLE

inductive ${\cal S}$

intros

 $\mathsf{rule}_1 \colon "\llbracket s \in S; A \rrbracket \Longrightarrow s' \in S"$

÷

 rule_n : . . .

RULE INDUCTION

```
\begin{array}{c} \mathbf{show} \ "x \in S \Longrightarrow P \ x" \\ \mathbf{proof} \ (\mathsf{induct} \ \mathsf{rule} \colon S.\mathsf{induct}) \\ \qquad \mathbf{fix} \ s \ \mathsf{and} \ s' \ \mathbf{assume} \ "s \in S" \ \mathsf{and} \ "A" \ \mathsf{and} \ "P \ s" \\ \qquad \dots \\ \qquad \mathbf{show} \ "P \ s'" \\ \\ \mathbf{Slide} \ \mathbf{23} \qquad \qquad \mathbf{next} \\ \qquad \vdots \\ \qquad \mathbf{qed} \end{array}
```

ABBREVIATIONS

```
\begin{array}{c} \mathbf{show} \ "x \in S \Longrightarrow P \ x" \\ \mathbf{proof} \ (\mathsf{induct} \ \mathsf{rule} \colon S.\mathsf{induct}) \\ \mathbf{case} \ \mathsf{rule}_1 \\ \dots \\ \mathbf{show} \ ?\mathsf{case} \\ \\ \mathbf{Slide} \ \mathbf{24} \\ \mathbf{next} \\ \vdots \\ \mathbf{next} \\ \mathbf{case} \ \mathsf{rule}_n \\ \dots \\ \mathbf{show} \ ?\mathsf{case} \\ \mathbf{qed} \\ \end{array}
```

```
IMPLICIT SELECTION OF INDUCTION RULE assume A: "x \in S" : show "P x" using A proof induct : qed lemma assumes A: "x \in S" shows "P x" using A proof induct : qed
```

RENAMING FREE VARIABLES IN RULE

case (rule_i $x_1 \dots x_k$)

Renames first k (alphabetically!) variables in rule_i to $x_1 \dots x_k$.

Slide 26

A REMARK ON STYLE

- → case (rule_i x y) ...show ?case is easy to write and maintain
- → fix x y assume formula ...show formula' is easier to read:
 - all information is shown locally

Slide 27

• no contextual references (e.g. ?case)

Slide 28 DEMO

A REMARK ON STYLE 13 WE HAVE SEEN TODAY ... 14

WE HAVE SEEN TODAY ...

- → Sets in Isabelle
- → Inductive Definitions
- → Rule induction

Slide 29

- → Fixpoints
- → Isar: induct and cases

EXERCISES

Formalize this lecture in Isabelle:

- ightharpoonup Define closed $f A :: (\alpha \operatorname{set} \Rightarrow \alpha \operatorname{set}) \Rightarrow \alpha \operatorname{set} \Rightarrow \operatorname{bool}$
- ullet Show closed $f\:A\land$ closed $f\:B\Longrightarrow$ closed $f\:(A\cap B)$ if f is monotone (mono is predefined)

Slide 30

- \rightarrow Define **Ifpt** f as the intersection of all f-closed sets
- \rightarrow Show that Ifpt f is a fixpoint of f if f is monotone
- → Show that Ifpt *f* is the least fixpoint of *f*
- ightharpoonup Declare a constant $R::(\alpha \operatorname{set} \times \alpha)\operatorname{set}$
- **→** Define $\hat{R} :: \alpha$ set $\Rightarrow \alpha$ set in terms of R
- ightharpoonup Show soundness of rule induction using R and Ifpt \hat{R}

EXERCISES 15