NATIONAL
ICT AUSTRALIA

LIMITED

NICTA Advanced Course

Theorem Proving
Principles, Techniques, Applications

[1 Proof & Specification Techniques
e Inductively defined sets, rule induction
o
o

CONTENT

[1 Conditional term rewriting

LAST TIME

[1 Conditional term rewriting

[1 Congruence and AC rules

LAST TIME

3-A

[1 Conditional term rewriting
[1 Congruence and AC rules

[More on confluence

LAST TIME

I I N R

Conditional term rewriting
Congruence and AC rules
More on confluence

Completion

LAST TIME

3-C

o O 0O o 0O

Conditional term rewriting
Congruence and AC rules
More on confluence
Completion

Isar: fix, obtain, abbreviations, moreover, ultimately

LAST TIME

Type 'a set: sets over type 'a

SETS IN ISABELLE

Type 'a set: sets over type 'a

O {}, {ei,...,en}, {x. Px}

SETS IN ISABELLE

4-A

Type 'a set: sets over type 'a

O {}, {ei,...,en}, {z. Pz}
0 ec A, ACB

SETS IN ISABELLE

Type 'a set: sets over type 'a

] {}’ {617"'7671}; {CUPZU
0 ec A, ACB

0 AUB, ANB, A-B,

}

—A

SETS IN ISABELLE

4-c

Type 'a set: sets over type 'a

0 {}, {e1,....en}, {z. Pz}
0 ec A, ACB
|:| AUB; AHB; A_B, _A

0 UrcA Bz, NNzcA Br,

N A,

A

SETS IN ISABELLE

Type 'a set: sets over type 'a

{}, {ei,...,en}, {z. Px}
ec A, ACB

[]

O

0 AuB, AnB, A-B, —-A
0 UzceA Bz, (Nz€ A Bu,
[]

fi..j}

N A,

UA

SETS IN ISABELLE

Type 'a set: sets over type 'a

{}, {ei,...,en}, {z. Px}
ec A, ACB

AUB, AnB, A-B, -A
UreA. Bz, Nx€eA. Bz, A4 UA
{i..4)

insert :: a = a set = « set

] [] []]] []

SETS IN ISABELLE

Type 'a set: sets over type 'a

{}, {ei,...,en}, {z. Px}
ec A, ACB

AuB, AnB, A-B, —-A

UreA. Bz, Nx€eA. Bz, A4 UA
i)

insert :: a = a set = « set

fA={y.Jx e A y= fx}

[]]] [] []]]]

SETS IN ISABELLE

Natural deduction proofs:

0 equalityl: [AC B; BCAl— A=18B

PROOFS ABOUT SETS

Natural deduction proofs:
0 equalityl: [AC B; BCAl— A=18B

[0 subsetl: (Nz.z€e A—zxz€B)— ACB

PROOFS ABOUT SETS

5-A

Natural deduction proofs:
0 equalityl: [AC B; BCAl— A=18B
[0 subsetl: (Nz.z€e A—zxz€B)— ACB

[... (see Tutorial)

PROOFS ABOUT SETS

BOUNDED QUANTIFIERS

[0 Vee A . Px

BOUNDED QUANTIFIERS

BOUNDED QUANTIFIERS

0 Vee A Px=Ve. 2 € A— Px

BOUNDED QUANTIFIERS

6-A

BOUNDED QUANTIFIERS

0 Vee A Px=Ve. 2 € A— Px

[0 dee A . Px

BOUNDED QUANTIFIERS

BOUNDED QUANTIFIERS

0 Vee A Px=Ve. 2 € A— Px

0 dx € A . Px=dz. 2 € ANPzx

BOUNDED QUANTIFIERS

6-C

BOUNDED QUANTIFIERS

0 Vee A Px=Ve. 2 € A— Px

0 dx € A . Px=dz. 2 € ANPzx

O ball: Az.x€e A— Pz)=—=Vr e A Pz

[0 bspec: [Vx € A. Px;x € A]— P«

BOUNDED QUANTIFIERS

0 Vee A Px=Ve. 2 € A— Px

0 dx e A . Prx=dz. 2 € ANPx

0 ball: (A\z.z2 € A= Pz)=Vz €A Px

[0 bspec: [Vx € A. Px;x € A]— P«

O bexl: [Pz;z € Al = Jx € A. Px

0 bexE:[dx € A. Pz; \Nz. [r € A;Pz] = Q] = Q

BOUNDED QUANTIFIERS

DEMO: SETS

INDUCTIVE DEFINITIONS

[b]o = False

(whilebdo ¢c,0) — o

[b]c = True {(c,0) — o’ (whilebdoc,o’) — o”

(while b do ¢,0) — o”

EXAMPLE

WHAT DOES THIS MEAN?

WHAT DOES THIS MEAN?

10

WHAT DOES THIS MEAN?

0 (c,0) — o' fancy syntax for a relation (c,0,0’) € E

WHAT DOES THIS MEAN? 10-A

0 (c,0) — o' fancy syntax for a relation (c,0,0’) € E

[J relations are sets: E :: (com X state X state) set

WHAT DOES THIS MEAN?

10-B

0 (c,0) — o' fancy syntax for a relation (c,0,0’) € E
[J relations are sets: E :: (com X state X state) set

[1 the rules define a set inductively

WHAT DOES THIS MEAN? 10-c

0 (c,0) — o' fancy syntax for a relation (c,0,0’) € E
[J relations are sets: E :: (com X state X state) set

[1 the rules define a set inductively

But which set?

WHAT DOES THIS MEAN?

10-D

SIMPLER EXAMPLE

neN
0e N n+1e&eN

SIMPLER EXAMPLE

11

neN
0e N n+1e&eN

[1 N is the set of natural numbers IN

SIMPLER EXAMPLE 11-A

neN
0e N n+1e&eN

[1 N is the set of natural numbers IN

[1 But why not the set of real numbers? 0 c R,n € IR=—=n+1€ R

SIMPLER EXAMPLE 11-B

neN
0e N n+1e&eN

[1 N is the set of natural numbers IN
[1 But why not the set of real numbers? 0 c R,n € IR=—=n+1€ R

[1 IN is the smallest set that is consistent with the rules.

SIMPLER EXAMPLE 11-c

neN
0e N n+1e&eN

[1 N is the set of natural numbers IN
[1 But why not the set of real numbers? 0 c R,n € IR=—=n+1€ R

[1 IN is the smallest set that is consistent with the rules.

Why the smallest set?

SIMPLER EXAMPLE

11-D

neN
0e N n+1e&eN

[1 N is the set of natural numbers IN
[1 But why not the set of real numbers? 0 c R,n € IR=—=n+1€ R

[1 IN is the smallest set that is consistent with the rules.

Why the smallest set?

[1 Objective: no junk. Only what must be in X shall be in X.

SIMPLER EXAMPLE 11-e

neN
0e N n+1e&eN

[1 N is the set of natural numbers IN
[1 But why not the set of real numbers? 0 c R,n € IR=—=n+1€ R

[1 IN is the smallest set that is consistent with the rules.

Why the smallest set?
[1 Objective: no junk. Only what must be in X shall be in X.

[1 Gives rise to a nice proof principle (rule induction)

SIMPLER EXAMPLE 11-F

neN
0e N n+1e&eN

[1 N is the set of natural numbers IN
[1 But why not the set of real numbers? 0 c R,n € IR=—=n+1€ R

[1 IN is the smallest set that is consistent with the rules.

Why the smallest set?
[1 Objective: no junk. Only what must be in X shall be in X.
[1 Gives rise to a nice proof principle (rule induction)

[1 Alternative (greatest set) occasionally also useful: coinduction

SIMPLER EXAMPLE 11-G

Rules

Formally:

a; € X

a, € X

aec X

defineset X C A

with ai, ..

L, GQp,a €A

FORMALLY

12

a1 €X ... a, €X
a € X

Rules

with a1,...,a,,a € A

defineset X C A

Formally: setofrules R C Aset x A (R, X possibly infinite)

Applying rules R to a set B:

FORMALLY 12-A

a1 €X ... a, €X
a € X

Rules

with a1,...,a,,a € A

defineset X C A

Formally: setofrules R C Aset x A (R, X possibly infinite)

Applying rules Rtoaset B: RB={z.3H. (H,z) ¢ RAH C B}

Example:

FORMALLY

12-B

a1 €X ... a, €X
a € X

Rules with a1,...,a,,a € A

defineset X C A

Formally: setofrules R C Aset x A (R, X possibly infinite)

Applying rules Rtoaset B: RB={z.3H. (H,z) ¢ RAH C B}

Example:

R
R {3,6,10} =

{50} Uintn+1).nc R}

FORMALLY 12-C

a1 €X ... a, €X
a € X

Rules with a1,...,a,,a € A

defineset X C A

Formally: setofrules R C Aset x A (R, X possibly infinite)

Applying rules Rtoaset B: RB={z.3H. (H,z) ¢ RAH C B}

Example:
R = {{},0}u{(n},n+1).ne R}
R{3,6,10} = {0,4,7,11}

FORMALLY 12-D

Definition:

Bis R-closed iff R B C B

THE SET

13

Definition: B is R-closed iff R B C B

Definition: X Is the least R-closed subset of A

This does always exist:

THE SET 13-A

Definition: B is R-closed iff R B C B

Definition: X Is the least R-closed subset of A

This does always exist:

Fact: B, R-closed A B>, R-closed — B; N B> R-closed

THE SET

13-B

Definition: B is R-closed iff R B C B

Definition: X Is the least R-closed subset of A

This does always exist:

Fact: B, R-closed A B>, R-closed — B; N B> R-closed

Hence: X =(){B C A. B R—closed}

THE SET 13-c

GENERATION FROM ABOVE

14

R-closed

GENERATION FROM ABOVE

14-A

R-closed

R-closed

GENERATION FROM ABOVE

14-B

R-closed

R-closed

GENERATION FROM ABOVE

14-c

R-closed

GENERATION FROM ABOVE

14-D

neN
0e N n+1eN

Induces induction principle

[PO; An.Pn—P(n+1)] =Vere X. Px

RULE INDUCTION

15

neN
0e N n+1eN

Induces induction principle

[PO; An.Pn—P(n+1)] =Vere X. Px

In general:

V({ai,...an}t,a) e R.PaiN...NPa, = Pa
Vee X. Px

RULE INDUCTION 15-A

V({ai,...apn},a) e R.PayN...ANPa, = Pa

Vee X. Px

V({ai,...ap},a) e R.PayN...ANPa, = Pa
says

WHY DOES THIS WORK?

16

V({ai,...apn},a) e R.PayN...ANPa, = Pa
Vre X. Px

V({ai,...ap},a) e R.PayN...ANPa, = Pa
says
{z. Pz} is R-closed

but:

WHY DOES THIS WORK? 16-A

V({&l, ..

.ant,a) € R.PaiN...NPa, = Pa

V({&l, ..

but:

hence:

Vee X. Px

.ant,a) € R.PaiN...NPa, = Pa

says
{z. Pz} is R-closed

X is the least R-closed set

WHY DOES THIS WORK?

16-B

V({ai,...apn},a) e R.PayN...ANPa, = Pa
Vre X. Px

V({ai,...ap},a) e R.PayN...ANPa, = Pa
says
{z. Pz} is R-closed

but: X is the least R-closed set
hence: X C{zx. Pz}

which means:

WHY DOES THIS WORK? 16-C

V({ai,...apn},a) e R.PayN...ANPa, = Pa

Vee X. Px

V({ai,...ap},a) e R.PayN...ANPa, = Pa
says
{z. Pz} is R-closed

but: X is the least R-closed set
hence: X C{zx. Pz}

which means: Vze X.Px

WHY DOES THIS WORK?

16-D

V({ai,...apn},a) e R.PayN...ANPa, = Pa
Vre X. Px

V({ai,...ap},a) e R.PayN...ANPa, = Pa
says
{z. Pz} is R-closed

but: X is the least R-closed set
hence: X C{zx. Pz}

which means: Vze X.Px

ged

WHY DOES THIS WORK? 16-E

RULES WITH SIDE CONDITIONS

a1 eX ... a,€X c; ... O,

aec X

RULES WITH SIDE CONDITIONS

17

RULES WITH SIDE CONDITIONS

a1 €X ... a,€X cy ... O,
ac X

Induction scheme:

V({a1,...an},a) e R.Pay AN... NP a, A
CyN...NC,, A
{ai,...,a,} C X = P a)

—
Vre X. Px

RULES WITH SIDE CONDITIONS 17-A

How to compute X?

X AS FIXPOINT

18

How to compute X?
X =({B C A. B R — closed} hard to work with.
Instead:

X AS FIXPOINT 18-A

How to compute X?
X =({B C A. B R — closed} hard to work with.
Instead: view X as least fixpoint, X least set withR X = X.

X AS FIXPOINT

18-B

How to compute X?
X =({B C A. B R — closed} hard to work with.
Instead: view X as least fixpoint, X least set withR X = X.

Fixpoints can be approximated by iteration:

Xo=R"{}={}

X AS FIXPOINT 18-c

How to compute X?
X =({B C A. B R — closed} hard to work with.

Instead: view X as least fixpoint, X least set withR X = X.

Fixpoints can be approximated by iteration:

Xo =R {} = {}
X; = R! {} = rules without hypotheses

X AS FIXPOINT

18-D

How to compute X?
X =({B C A. B R — closed} hard to work with.

Instead: view X as least fixpoint, X least set withR X = X.

Fixpoints can be approximated by iteration:

Xo =R {} = {}
X; = R! {} = rules without hypotheses

Xn = R" {}

X AS FIXPOINT

18-E

How to compute X?
X =({B C A. B R — closed} hard to work with.
Instead: view X as least fixpoint, X least set withR X = X.

Fixpoints can be approximated by iteration:

Xo =R {} = {}
X; = R! {} = rules without hypotheses

Xn = R" {}

Xo = Upen(B" }) = X

X AS FIXPOINT

18-F

R {}

GENERATION FROM BELOW

19

RO {}UR" {}

GENERATION FROM BELOW

19-A

RO {}UR' {}UR®{}

GENERATION FROM BELOW

19-B

GENERATION FROM BELOW 19-c

DEMO: INDUCTIVE DEFINITONS

20

21

INDUCTIVE DEFINITION IN ISABELLE

iInductive S
Intros

rule;: "[s € S;A] = ' € §”

rule,,: ...

INDUCTIVE DEFINITION IN ISABELLE

22

show’x € S = P 1’
proof (induct rule: S.induct)
fix s and s’ assume "s € S”and "A" and "P s”

show "P s’
next

ged

RULE INDUCTION

23

show’z € S = P 2"
proof (induct rule: S.induct)
case rule;

show ?case
next

next
case rule,,

show ?case
ged

ABBREVIATIONS

24

IMPLICIT SELECTION OF INDUCTION RULE

assume A: "x € S”

show "P z”

using A proof induct

ged

IMPLICIT SELECTION OF INDUCTION RULE

25

IMPLICIT SELECTION OF INDUCTION RULE

assume A: "x € S”

show "P z”

using A proof induct

ged

lemma assumes A: "z € S” shows "P "

using A proof induct

ged

IMPLICIT SELECTION OF INDUCTION RULE 25-A

RENAMING FREE VARIABLES IN RULE

case (rule; x1...x)

Renames first k& (alphabetically!) variables in rule to x4 ... x;.

RENAMING FREE VARIABLES IN RULE

26

[1 case (rule; x y) ...show ?case
IS easy to write and maintain

A REMARK ON STYLE

27

[1 case (rule; x y) ...show ?case
IS easy to write and maintain

O fix z yassume formula ...show formuld
IS easier to read:

e all information is shown locally

e NO contextual references (e.g. ?case)

A REMARK ON STYLE 27-A

28

[] Sets in Isabelle

WE HAVE SEEN TODAY ...

WE HAVE SEEN TODAY ...

29

[] Sets in Isabelle

[1 Inductive Definitions

WE HAVE SEEN TODAY ... 29-A

[] Sets in Isabelle
[1 Inductive Definitions

[1 Rule induction

WE HAVE SEEN TODAY ...

29-B

Sets in Isabelle
Inductive Definitions

Rule induction

I I N R

Fixpoints

WE HAVE SEEN TODAY ... 29-C

Sets in Isabelle
Inductive Definitions
Rule induction

Fixpoints

[]]] [] []

Isar: induct and cases

WE HAVE SEEN TODAY ...

29-D

Formalize this lecture in Isabelle:

[

) I A A N N B

Define closed f A :: (a set = a set) = a set = bool

Show closed f A A closed f B = closed f (AN B) if f is monotone
(mono is predefined)

Define Ifpt f as the intersection of all f-closed sets
Show that Ifpt f is a fixpoint of f if f is monotone
Show that Ifpt f is the least fixpoint of f

Declare a constant R :: (« set X «) set

Define R :: o set = «a set in terms of R

Show soundness of rule induction using R and lfpt R

EXERCISES

30

