
NICTA Advanced Course

Theorem Proving

Principles, Techniques, Applications

{}

1



CONTENT

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction

• Datatypes, recursion, induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs

CONTENT 2



LAST TIME

➜ Conditional term rewriting

➜ Congruence and AC rules

➜ More on confluence

➜ Completion

➜ Isar: fix, obtain, abbreviations, moreover, ultimately

LAST TIME 3



LAST TIME

➜ Conditional term rewriting

➜ Congruence and AC rules

➜ More on confluence

➜ Completion

➜ Isar: fix, obtain, abbreviations, moreover, ultimately

LAST TIME 3-A



LAST TIME

➜ Conditional term rewriting

➜ Congruence and AC rules

➜ More on confluence

➜ Completion

➜ Isar: fix, obtain, abbreviations, moreover, ultimately

LAST TIME 3-B



LAST TIME

➜ Conditional term rewriting

➜ Congruence and AC rules

➜ More on confluence

➜ Completion

➜ Isar: fix, obtain, abbreviations, moreover, ultimately

LAST TIME 3-C



LAST TIME

➜ Conditional term rewriting

➜ Congruence and AC rules

➜ More on confluence

➜ Completion

➜ Isar: fix, obtain, abbreviations, moreover, ultimately

LAST TIME 3-D



SETS IN ISABELLE

Type ’a set: sets over type ’a

➜ {}, {e1, . . . , en}, {x. P x}

➜ e ∈ A, A ⊆ B

➜ A ∪ B, A ∩ B, A − B, −A

➜
S

x ∈ A. B x,
T

x ∈ A. B x,
T

A,
S

A

➜ {i..j}

➜ insert :: α ⇒ α set ⇒ α set

➜ f ‘A ≡ {y. ∃x ∈ A. y = f x}

➜ . . .

SETS IN ISABELLE 4



SETS IN ISABELLE

Type ’a set: sets over type ’a

➜ {}, {e1, . . . , en}, {x. P x}

➜ e ∈ A, A ⊆ B

➜ A ∪ B, A ∩ B, A − B, −A

➜
S

x ∈ A. B x,
T

x ∈ A. B x,
T

A,
S

A

➜ {i..j}

➜ insert :: α ⇒ α set ⇒ α set

➜ f ‘A ≡ {y. ∃x ∈ A. y = f x}

➜ . . .

SETS IN ISABELLE 4-A



SETS IN ISABELLE

Type ’a set: sets over type ’a

➜ {}, {e1, . . . , en}, {x. P x}

➜ e ∈ A, A ⊆ B

➜ A ∪ B, A ∩ B, A − B, −A

➜
S

x ∈ A. B x,
T

x ∈ A. B x,
T

A,
S

A

➜ {i..j}

➜ insert :: α ⇒ α set ⇒ α set

➜ f ‘A ≡ {y. ∃x ∈ A. y = f x}

➜ . . .

SETS IN ISABELLE 4-B



SETS IN ISABELLE

Type ’a set: sets over type ’a

➜ {}, {e1, . . . , en}, {x. P x}

➜ e ∈ A, A ⊆ B

➜ A ∪ B, A ∩ B, A − B, −A

➜
S

x ∈ A. B x,
T

x ∈ A. B x,
T

A,
S

A

➜ {i..j}

➜ insert :: α ⇒ α set ⇒ α set

➜ f ‘A ≡ {y. ∃x ∈ A. y = f x}

➜ . . .

SETS IN ISABELLE 4-C



SETS IN ISABELLE

Type ’a set: sets over type ’a

➜ {}, {e1, . . . , en}, {x. P x}

➜ e ∈ A, A ⊆ B

➜ A ∪ B, A ∩ B, A − B, −A

➜
S

x ∈ A. B x,
T

x ∈ A. B x,
T

A,
S

A

➜ {i..j}

➜ insert :: α ⇒ α set ⇒ α set

➜ f ‘A ≡ {y. ∃x ∈ A. y = f x}

➜ . . .

SETS IN ISABELLE 4-D



SETS IN ISABELLE

Type ’a set: sets over type ’a

➜ {}, {e1, . . . , en}, {x. P x}

➜ e ∈ A, A ⊆ B

➜ A ∪ B, A ∩ B, A − B, −A

➜
S

x ∈ A. B x,
T

x ∈ A. B x,
T

A,
S

A

➜ {i..j}

➜ insert :: α ⇒ α set ⇒ α set

➜ f ‘A ≡ {y. ∃x ∈ A. y = f x}

➜ . . .

SETS IN ISABELLE 4-E



SETS IN ISABELLE

Type ’a set: sets over type ’a

➜ {}, {e1, . . . , en}, {x. P x}

➜ e ∈ A, A ⊆ B

➜ A ∪ B, A ∩ B, A − B, −A

➜
S

x ∈ A. B x,
T

x ∈ A. B x,
T

A,
S

A

➜ {i..j}

➜ insert :: α ⇒ α set ⇒ α set

➜ f ‘A ≡ {y. ∃x ∈ A. y = f x}

➜ . . .

SETS IN ISABELLE 4-F



SETS IN ISABELLE

Type ’a set: sets over type ’a

➜ {}, {e1, . . . , en}, {x. P x}

➜ e ∈ A, A ⊆ B

➜ A ∪ B, A ∩ B, A − B, −A

➜
S

x ∈ A. B x,
T

x ∈ A. B x,
T

A,
S

A

➜ {i..j}

➜ insert :: α ⇒ α set ⇒ α set

➜ f ‘A ≡ {y. ∃x ∈ A. y = f x}

➜ . . .

SETS IN ISABELLE 4-G



PROOFS ABOUT SETS

Natural deduction proofs:

➜ equalityI: [[A ⊆ B; B ⊆ A]] =⇒ A = B

➜ subsetI: (
V

x. x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

➜ . . . (see Tutorial)

PROOFS ABOUT SETS 5



PROOFS ABOUT SETS

Natural deduction proofs:

➜ equalityI: [[A ⊆ B; B ⊆ A]] =⇒ A = B

➜ subsetI: (
V

x. x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

➜ . . . (see Tutorial)

PROOFS ABOUT SETS 5-A



PROOFS ABOUT SETS

Natural deduction proofs:

➜ equalityI: [[A ⊆ B; B ⊆ A]] =⇒ A = B

➜ subsetI: (
V

x. x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

➜ . . . (see Tutorial)

PROOFS ABOUT SETS 5-B



BOUNDED QUANTIFIERS

➜ ∀x ∈ A. P x

≡ ∀x. x ∈ A −→ P x

➜ ∃x ∈ A. P x ≡ ∃x. x ∈ A ∧ P x

➜ ballI: (
V

x. x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

➜ bspec: [[∀x ∈ A. P x; x ∈ A]] =⇒ P x

➜ bexI: [[P x; x ∈ A]] =⇒ ∃x ∈ A. P x

➜ bexE: [[∃x ∈ A. P x;
V

x. [[x ∈ A; P x]] =⇒ Q]] =⇒ Q

BOUNDED QUANTIFIERS 6



BOUNDED QUANTIFIERS

➜ ∀x ∈ A. P x ≡ ∀x. x ∈ A −→ P x

➜ ∃x ∈ A. P x ≡ ∃x. x ∈ A ∧ P x

➜ ballI: (
V

x. x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

➜ bspec: [[∀x ∈ A. P x; x ∈ A]] =⇒ P x

➜ bexI: [[P x; x ∈ A]] =⇒ ∃x ∈ A. P x

➜ bexE: [[∃x ∈ A. P x;
V

x. [[x ∈ A; P x]] =⇒ Q]] =⇒ Q

BOUNDED QUANTIFIERS 6-A



BOUNDED QUANTIFIERS

➜ ∀x ∈ A. P x ≡ ∀x. x ∈ A −→ P x

➜ ∃x ∈ A. P x

≡ ∃x. x ∈ A ∧ P x

➜ ballI: (
V

x. x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

➜ bspec: [[∀x ∈ A. P x; x ∈ A]] =⇒ P x

➜ bexI: [[P x; x ∈ A]] =⇒ ∃x ∈ A. P x

➜ bexE: [[∃x ∈ A. P x;
V

x. [[x ∈ A; P x]] =⇒ Q]] =⇒ Q

BOUNDED QUANTIFIERS 6-B



BOUNDED QUANTIFIERS

➜ ∀x ∈ A. P x ≡ ∀x. x ∈ A −→ P x

➜ ∃x ∈ A. P x ≡ ∃x. x ∈ A ∧ P x

➜ ballI: (
V

x. x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

➜ bspec: [[∀x ∈ A. P x; x ∈ A]] =⇒ P x

➜ bexI: [[P x; x ∈ A]] =⇒ ∃x ∈ A. P x

➜ bexE: [[∃x ∈ A. P x;
V

x. [[x ∈ A; P x]] =⇒ Q]] =⇒ Q

BOUNDED QUANTIFIERS 6-C



BOUNDED QUANTIFIERS

➜ ∀x ∈ A. P x ≡ ∀x. x ∈ A −→ P x

➜ ∃x ∈ A. P x ≡ ∃x. x ∈ A ∧ P x

➜ ballI: (
V

x. x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

➜ bspec: [[∀x ∈ A. P x; x ∈ A]] =⇒ P x

➜ bexI: [[P x; x ∈ A]] =⇒ ∃x ∈ A. P x

➜ bexE: [[∃x ∈ A. P x;
V

x. [[x ∈ A; P x]] =⇒ Q]] =⇒ Q

BOUNDED QUANTIFIERS 6-D



BOUNDED QUANTIFIERS

➜ ∀x ∈ A. P x ≡ ∀x. x ∈ A −→ P x

➜ ∃x ∈ A. P x ≡ ∃x. x ∈ A ∧ P x

➜ ballI: (
V

x. x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

➜ bspec: [[∀x ∈ A. P x; x ∈ A]] =⇒ P x

➜ bexI: [[P x; x ∈ A]] =⇒ ∃x ∈ A. P x

➜ bexE: [[∃x ∈ A. P x;
V

x. [[x ∈ A; P x]] =⇒ Q]] =⇒ Q

BOUNDED QUANTIFIERS 6-E



DEMO: SETS

7



INDUCTIVE DEFINITIONS

8



EXAMPLE

〈skip, σ〉 −→ σ

[[e]]σ = v

〈x := e, σ〉 −→ σ[x 7→ v]

〈c1, σ〉 −→ σ′ 〈c2, σ
′〉 −→ σ′′

〈c1; c2, σ〉 −→ σ′′

[[b]]σ = False

〈while b do c, σ〉 −→ σ

[[b]]σ = True 〈c, σ〉 −→ σ′ 〈while b do c, σ′〉 −→ σ′′

〈while b do c, σ〉 −→ σ′′

EXAMPLE 9



WHAT DOES THIS MEAN?

➜ 〈c, σ〉 −→ σ′ fancy syntax for a relation (c, σ, σ′) ∈ E

➜ relations are sets: E :: (com × state × state) set

➜ the rules define a set inductively

But which set?

WHAT DOES THIS MEAN? 10



WHAT DOES THIS MEAN?

➜ 〈c, σ〉 −→ σ′ fancy syntax for a relation (c, σ, σ′) ∈ E

➜ relations are sets: E :: (com × state × state) set

➜ the rules define a set inductively

But which set?

WHAT DOES THIS MEAN? 10-A



WHAT DOES THIS MEAN?

➜ 〈c, σ〉 −→ σ′ fancy syntax for a relation (c, σ, σ′) ∈ E

➜ relations are sets: E :: (com × state × state) set

➜ the rules define a set inductively

But which set?

WHAT DOES THIS MEAN? 10-B



WHAT DOES THIS MEAN?

➜ 〈c, σ〉 −→ σ′ fancy syntax for a relation (c, σ, σ′) ∈ E

➜ relations are sets: E :: (com × state × state) set

➜ the rules define a set inductively

But which set?

WHAT DOES THIS MEAN? 10-C



WHAT DOES THIS MEAN?

➜ 〈c, σ〉 −→ σ′ fancy syntax for a relation (c, σ, σ′) ∈ E

➜ relations are sets: E :: (com × state × state) set

➜ the rules define a set inductively

But which set?

WHAT DOES THIS MEAN? 10-D



SIMPLER EXAMPLE

0 ∈ N

n ∈ N

n + 1 ∈ N

➜ N is the set of natural numbers IN

➜ But why not the set of real numbers? 0 ∈ IR, n ∈ IR =⇒ n + 1 ∈ IR

➜ IN is the smallest set that is consistent with the rules.

Why the smallest set?

➜ Objective: no junk. Only what must be in X shall be in X.

➜ Gives rise to a nice proof principle (rule induction)

➜ Alternative (greatest set) occasionally also useful: coinduction

SIMPLER EXAMPLE 11



SIMPLER EXAMPLE

0 ∈ N

n ∈ N

n + 1 ∈ N

➜ N is the set of natural numbers IN

➜ But why not the set of real numbers? 0 ∈ IR, n ∈ IR =⇒ n + 1 ∈ IR

➜ IN is the smallest set that is consistent with the rules.

Why the smallest set?

➜ Objective: no junk. Only what must be in X shall be in X.

➜ Gives rise to a nice proof principle (rule induction)

➜ Alternative (greatest set) occasionally also useful: coinduction

SIMPLER EXAMPLE 11-A



SIMPLER EXAMPLE

0 ∈ N

n ∈ N

n + 1 ∈ N

➜ N is the set of natural numbers IN

➜ But why not the set of real numbers? 0 ∈ IR, n ∈ IR =⇒ n + 1 ∈ IR

➜ IN is the smallest set that is consistent with the rules.

Why the smallest set?

➜ Objective: no junk. Only what must be in X shall be in X.

➜ Gives rise to a nice proof principle (rule induction)

➜ Alternative (greatest set) occasionally also useful: coinduction

SIMPLER EXAMPLE 11-B



SIMPLER EXAMPLE

0 ∈ N

n ∈ N

n + 1 ∈ N

➜ N is the set of natural numbers IN

➜ But why not the set of real numbers? 0 ∈ IR, n ∈ IR =⇒ n + 1 ∈ IR

➜ IN is the smallest set that is consistent with the rules.

Why the smallest set?

➜ Objective: no junk. Only what must be in X shall be in X.

➜ Gives rise to a nice proof principle (rule induction)

➜ Alternative (greatest set) occasionally also useful: coinduction

SIMPLER EXAMPLE 11-C



SIMPLER EXAMPLE

0 ∈ N

n ∈ N

n + 1 ∈ N

➜ N is the set of natural numbers IN

➜ But why not the set of real numbers? 0 ∈ IR, n ∈ IR =⇒ n + 1 ∈ IR

➜ IN is the smallest set that is consistent with the rules.

Why the smallest set?

➜ Objective: no junk. Only what must be in X shall be in X.

➜ Gives rise to a nice proof principle (rule induction)

➜ Alternative (greatest set) occasionally also useful: coinduction

SIMPLER EXAMPLE 11-D



SIMPLER EXAMPLE

0 ∈ N

n ∈ N

n + 1 ∈ N

➜ N is the set of natural numbers IN

➜ But why not the set of real numbers? 0 ∈ IR, n ∈ IR =⇒ n + 1 ∈ IR

➜ IN is the smallest set that is consistent with the rules.

Why the smallest set?

➜ Objective: no junk. Only what must be in X shall be in X.

➜ Gives rise to a nice proof principle (rule induction)

➜ Alternative (greatest set) occasionally also useful: coinduction

SIMPLER EXAMPLE 11-E



SIMPLER EXAMPLE

0 ∈ N

n ∈ N

n + 1 ∈ N

➜ N is the set of natural numbers IN

➜ But why not the set of real numbers? 0 ∈ IR, n ∈ IR =⇒ n + 1 ∈ IR

➜ IN is the smallest set that is consistent with the rules.

Why the smallest set?

➜ Objective: no junk. Only what must be in X shall be in X.

➜ Gives rise to a nice proof principle (rule induction)

➜ Alternative (greatest set) occasionally also useful: coinduction

SIMPLER EXAMPLE 11-F



SIMPLER EXAMPLE

0 ∈ N

n ∈ N

n + 1 ∈ N

➜ N is the set of natural numbers IN

➜ But why not the set of real numbers? 0 ∈ IR, n ∈ IR =⇒ n + 1 ∈ IR

➜ IN is the smallest set that is consistent with the rules.

Why the smallest set?

➜ Objective: no junk. Only what must be in X shall be in X.

➜ Gives rise to a nice proof principle (rule induction)

➜ Alternative (greatest set) occasionally also useful: coinduction

SIMPLER EXAMPLE 11-G



FORMALLY

Rules a1 ∈ X . . . an ∈ X

a ∈ X
with a1, . . . , an, a ∈ A

define set X ⊆ A

Formally:

set of rules R ⊆ A set × A (R, X possibly infinite)

Applying rules R to a set B: R̂ B ≡ {x. ∃H. (H, x) ∈ R∧H ⊆ B}

Example:

R ≡ {({}, 0)} ∪ {({n}, n + 1). n ∈ IR}

R̂ {3, 6, 10} = {0, 4, 7, 11}

FORMALLY 12



FORMALLY

Rules a1 ∈ X . . . an ∈ X

a ∈ X
with a1, . . . , an, a ∈ A

define set X ⊆ A

Formally: set of rules R ⊆ A set × A (R, X possibly infinite)

Applying rules R to a set B:

R̂ B ≡ {x. ∃H. (H, x) ∈ R∧H ⊆ B}

Example:

R ≡ {({}, 0)} ∪ {({n}, n + 1). n ∈ IR}

R̂ {3, 6, 10} = {0, 4, 7, 11}

FORMALLY 12-A



FORMALLY

Rules a1 ∈ X . . . an ∈ X

a ∈ X
with a1, . . . , an, a ∈ A

define set X ⊆ A

Formally: set of rules R ⊆ A set × A (R, X possibly infinite)

Applying rules R to a set B: R̂ B ≡ {x. ∃H. (H, x) ∈ R∧H ⊆ B}

Example:

R ≡ {({}, 0)} ∪ {({n}, n + 1). n ∈ IR}

R̂ {3, 6, 10} = {0, 4, 7, 11}

FORMALLY 12-B



FORMALLY

Rules a1 ∈ X . . . an ∈ X

a ∈ X
with a1, . . . , an, a ∈ A

define set X ⊆ A

Formally: set of rules R ⊆ A set × A (R, X possibly infinite)

Applying rules R to a set B: R̂ B ≡ {x. ∃H. (H, x) ∈ R∧H ⊆ B}

Example:

R ≡ {({}, 0)} ∪ {({n}, n + 1). n ∈ IR}

R̂ {3, 6, 10} =

{0, 4, 7, 11}

FORMALLY 12-C



FORMALLY

Rules a1 ∈ X . . . an ∈ X

a ∈ X
with a1, . . . , an, a ∈ A

define set X ⊆ A

Formally: set of rules R ⊆ A set × A (R, X possibly infinite)

Applying rules R to a set B: R̂ B ≡ {x. ∃H. (H, x) ∈ R∧H ⊆ B}

Example:

R ≡ {({}, 0)} ∪ {({n}, n + 1). n ∈ IR}

R̂ {3, 6, 10} = {0, 4, 7, 11}

FORMALLY 12-D



THE SET

Definition: B is R-closed iff R̂ B ⊆ B

Definition: X is the least R-closed subset of A

This does always exist:

Fact: B1 R-closed ∧ B2 R-closed =⇒ B1 ∩ B2 R-closed

Hence: X =
⋂
{B ⊆ A. B R−closed}

THE SET 13



THE SET

Definition: B is R-closed iff R̂ B ⊆ B

Definition: X is the least R-closed subset of A

This does always exist:

Fact: B1 R-closed ∧ B2 R-closed =⇒ B1 ∩ B2 R-closed

Hence: X =
⋂
{B ⊆ A. B R−closed}

THE SET 13-A



THE SET

Definition: B is R-closed iff R̂ B ⊆ B

Definition: X is the least R-closed subset of A

This does always exist:

Fact: B1 R-closed ∧ B2 R-closed =⇒ B1 ∩ B2 R-closed

Hence: X =
⋂
{B ⊆ A. B R−closed}

THE SET 13-B



THE SET

Definition: B is R-closed iff R̂ B ⊆ B

Definition: X is the least R-closed subset of A

This does always exist:

Fact: B1 R-closed ∧ B2 R-closed =⇒ B1 ∩ B2 R-closed

Hence: X =
⋂
{B ⊆ A. B R−closed}

THE SET 13-C



GENERATION FROM ABOVE

A

X

R-closed

R-closed

R-closed

GENERATION FROM ABOVE 14



GENERATION FROM ABOVE

A

X

R-closed

R-closed

R-closed

GENERATION FROM ABOVE 14-A



GENERATION FROM ABOVE

A

X

R-closed

R-closed

R-closed

GENERATION FROM ABOVE 14-B



GENERATION FROM ABOVE

A

X

R-closed

R-closed

R-closed

GENERATION FROM ABOVE 14-C



GENERATION FROM ABOVE

A

X

R-closed

R-closed

R-closed

GENERATION FROM ABOVE 14-D



RULE INDUCTION

0 ∈ N

n ∈ N

n + 1 ∈ N

induces induction principle

[[P 0;
∧

n. P n =⇒ P (n + 1)]] =⇒ ∀x ∈ X. P x

In general:

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

∀x ∈ X. P x

RULE INDUCTION 15



RULE INDUCTION

0 ∈ N

n ∈ N

n + 1 ∈ N

induces induction principle

[[P 0;
∧

n. P n =⇒ P (n + 1)]] =⇒ ∀x ∈ X. P x

In general:

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

∀x ∈ X. P x

RULE INDUCTION 15-A



WHY DOES THIS WORK?

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

∀x ∈ X. P x

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

says

{x. Px} is R-closed

but: X is the least R-closed set

hence: X ⊆ {x. P x}

which means: ∀x ∈ X. P x

qed

WHY DOES THIS WORK? 16



WHY DOES THIS WORK?

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

∀x ∈ X. P x

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

says
{x. Px} is R-closed

but:

X is the least R-closed set

hence: X ⊆ {x. P x}

which means: ∀x ∈ X. P x

qed

WHY DOES THIS WORK? 16-A



WHY DOES THIS WORK?

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

∀x ∈ X. P x

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

says
{x. Px} is R-closed

but: X is the least R-closed set

hence:

X ⊆ {x. P x}

which means: ∀x ∈ X. P x

qed

WHY DOES THIS WORK? 16-B



WHY DOES THIS WORK?

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

∀x ∈ X. P x

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

says
{x. Px} is R-closed

but: X is the least R-closed set

hence: X ⊆ {x. P x}

which means:

∀x ∈ X. P x

qed

WHY DOES THIS WORK? 16-C



WHY DOES THIS WORK?

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

∀x ∈ X. P x

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

says
{x. Px} is R-closed

but: X is the least R-closed set

hence: X ⊆ {x. P x}

which means: ∀x ∈ X. P x

qed

WHY DOES THIS WORK? 16-D



WHY DOES THIS WORK?

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

∀x ∈ X. P x

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

says
{x. Px} is R-closed

but: X is the least R-closed set

hence: X ⊆ {x. P x}

which means: ∀x ∈ X. P x

qed

WHY DOES THIS WORK? 16-E



RULES WITH SIDE CONDITIONS

a1 ∈ X . . . an ∈ X C1 . . . Cm

a ∈ X

induction scheme:

(∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an ∧

C1 ∧ . . . ∧ Cm ∧

{a1, . . . , an} ⊆ X =⇒ P a)

=⇒

∀x ∈ X. P x

RULES WITH SIDE CONDITIONS 17



RULES WITH SIDE CONDITIONS

a1 ∈ X . . . an ∈ X C1 . . . Cm

a ∈ X

induction scheme:

(∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an ∧

C1 ∧ . . . ∧ Cm ∧

{a1, . . . , an} ⊆ X =⇒ P a)

=⇒

∀x ∈ X. P x

RULES WITH SIDE CONDITIONS 17-A



X AS FIXPOINT

How to compute X?

X =
⋂
{B ⊆ A. B R − closed} hard to work with.

Instead: view X as least fixpoint, X least set withR̂ X = X.

Fixpoints can be approximated by iteration:

X0 = R̂0 {} = {}

X1 = R̂1 {} = rules without hypotheses
...

Xn = R̂n {}

Xω =
⋃

n∈IN
(Rn {}) = X

X AS FIXPOINT 18



X AS FIXPOINT

How to compute X?
X =

⋂
{B ⊆ A. B R − closed} hard to work with.

Instead:

view X as least fixpoint, X least set withR̂ X = X.

Fixpoints can be approximated by iteration:

X0 = R̂0 {} = {}

X1 = R̂1 {} = rules without hypotheses
...

Xn = R̂n {}

Xω =
⋃

n∈IN
(Rn {}) = X

X AS FIXPOINT 18-A



X AS FIXPOINT

How to compute X?
X =

⋂
{B ⊆ A. B R − closed} hard to work with.

Instead: view X as least fixpoint, X least set withR̂ X = X.

Fixpoints can be approximated by iteration:

X0 = R̂0 {} = {}

X1 = R̂1 {} = rules without hypotheses
...

Xn = R̂n {}

Xω =
⋃

n∈IN
(Rn {}) = X

X AS FIXPOINT 18-B



X AS FIXPOINT

How to compute X?
X =

⋂
{B ⊆ A. B R − closed} hard to work with.

Instead: view X as least fixpoint, X least set withR̂ X = X.

Fixpoints can be approximated by iteration:

X0 = R̂0 {} = {}

X1 = R̂1 {} = rules without hypotheses
...

Xn = R̂n {}

Xω =
⋃

n∈IN
(Rn {}) = X

X AS FIXPOINT 18-C



X AS FIXPOINT

How to compute X?
X =

⋂
{B ⊆ A. B R − closed} hard to work with.

Instead: view X as least fixpoint, X least set withR̂ X = X.

Fixpoints can be approximated by iteration:

X0 = R̂0 {} = {}

X1 = R̂1 {} = rules without hypotheses
...

Xn = R̂n {}

Xω =
⋃

n∈IN
(Rn {}) = X

X AS FIXPOINT 18-D



X AS FIXPOINT

How to compute X?
X =

⋂
{B ⊆ A. B R − closed} hard to work with.

Instead: view X as least fixpoint, X least set withR̂ X = X.

Fixpoints can be approximated by iteration:

X0 = R̂0 {} = {}

X1 = R̂1 {} = rules without hypotheses
...

Xn = R̂n {}

Xω =
⋃

n∈IN
(Rn {}) = X

X AS FIXPOINT 18-E



X AS FIXPOINT

How to compute X?
X =

⋂
{B ⊆ A. B R − closed} hard to work with.

Instead: view X as least fixpoint, X least set withR̂ X = X.

Fixpoints can be approximated by iteration:

X0 = R̂0 {} = {}

X1 = R̂1 {} = rules without hypotheses
...

Xn = R̂n {}

Xω =
⋃

n∈IN
(Rn {}) = X

X AS FIXPOINT 18-F



GENERATION FROM BELOW

A

R̂0 {}

R̂0 {} ∪ R̂1 {}R̂0 {} ∪ R̂1 {} ∪ R̂2 {}R̂0 {} ∪ R̂1 {} ∪ R̂2 {} ∪ . . .

GENERATION FROM BELOW 19



GENERATION FROM BELOW

A

R̂0 {}R̂0 {} ∪ R̂1 {}

R̂0 {} ∪ R̂1 {} ∪ R̂2 {}R̂0 {} ∪ R̂1 {} ∪ R̂2 {} ∪ . . .

GENERATION FROM BELOW 19-A



GENERATION FROM BELOW

A

R̂0 {}R̂0 {} ∪ R̂1 {}R̂0 {} ∪ R̂1 {} ∪ R̂2 {}

R̂0 {} ∪ R̂1 {} ∪ R̂2 {} ∪ . . .

GENERATION FROM BELOW 19-B



GENERATION FROM BELOW

A

R̂0 {}R̂0 {} ∪ R̂1 {}R̂0 {} ∪ R̂1 {} ∪ R̂2 {}R̂0 {} ∪ R̂1 {} ∪ R̂2 {} ∪ . . .

GENERATION FROM BELOW 19-C



DEMO: INDUCTIVE DEFINITONS

20



ISAR

21



INDUCTIVE DEFINITION IN ISABELLE

inductive S

intros

rule1: ”[[s ∈ S; A]] =⇒ s′ ∈ S”
...

rulen: . . .

INDUCTIVE DEFINITION IN ISABELLE 22



RULE INDUCTION

show ”x ∈ S =⇒ P x”
proof (induct rule: S.induct)

fix s and s′ assume ”s ∈ S” and ”A” and ”P s”
. . .
show ”P s′”

next
...
qed

RULE INDUCTION 23



ABBREVIATIONS

show ”x ∈ S =⇒ P x”
proof (induct rule: S.induct)

case rule1

. . .
show ?case

next
...
next

case rulen

. . .
show ?case

qed

ABBREVIATIONS 24



IMPLICIT SELECTION OF INDUCTION RULE

assume A: ”x ∈ S”
...

show ”P x”

using A proof induct
...

qed

lemma assumes A: ”x ∈ S” shows ”P x”

using A proof induct
...

qed

IMPLICIT SELECTION OF INDUCTION RULE 25



IMPLICIT SELECTION OF INDUCTION RULE

assume A: ”x ∈ S”
...

show ”P x”

using A proof induct
...

qed

lemma assumes A: ”x ∈ S” shows ”P x”

using A proof induct
...

qed

IMPLICIT SELECTION OF INDUCTION RULE 25-A



RENAMING FREE VARIABLES IN RULE

case (rulei x1 . . . xk)

Renames first k (alphabetically!) variables in rulei to x1 . . . xk.

RENAMING FREE VARIABLES IN RULE 26



A REMARK ON STYLE

➜ case (rulei x y) . . . show ?case
is easy to write and maintain

➜ fix x y assume formula . . . show formula′

is easier to read:

• all information is shown locally

• no contextual references (e.g. ?case)

A REMARK ON STYLE 27



A REMARK ON STYLE

➜ case (rulei x y) . . . show ?case
is easy to write and maintain

➜ fix x y assume formula . . . show formula′

is easier to read:

• all information is shown locally

• no contextual references (e.g. ?case)

A REMARK ON STYLE 27-A



DEMO

28



WE HAVE SEEN TODAY ...

➜ Sets in Isabelle

➜ Inductive Definitions

➜ Rule induction

➜ Fixpoints

➜ Isar: induct and cases

WE HAVE SEEN TODAY ... 29



WE HAVE SEEN TODAY ...

➜ Sets in Isabelle

➜ Inductive Definitions

➜ Rule induction

➜ Fixpoints

➜ Isar: induct and cases

WE HAVE SEEN TODAY ... 29-A



WE HAVE SEEN TODAY ...

➜ Sets in Isabelle

➜ Inductive Definitions

➜ Rule induction

➜ Fixpoints

➜ Isar: induct and cases

WE HAVE SEEN TODAY ... 29-B



WE HAVE SEEN TODAY ...

➜ Sets in Isabelle

➜ Inductive Definitions

➜ Rule induction

➜ Fixpoints

➜ Isar: induct and cases

WE HAVE SEEN TODAY ... 29-C



WE HAVE SEEN TODAY ...

➜ Sets in Isabelle

➜ Inductive Definitions

➜ Rule induction

➜ Fixpoints

➜ Isar: induct and cases

WE HAVE SEEN TODAY ... 29-D



EXERCISES

Formalize this lecture in Isabelle:

➜ Define closed f A :: (α set ⇒ α set) ⇒ α set ⇒ bool

➜ Show closed f A ∧ closed f B =⇒ closed f (A ∩ B) if f is monotone
(mono is predefined)

➜ Define lfpt f as the intersection of all f -closed sets

➜ Show that lfpt f is a fixpoint of f if f is monotone

➜ Show that lfpt f is the least fixpoint of f

➜ Declare a constant R :: (α set × α) set

➜ Define R̂ :: α set ⇒ α set in terms of R

➜ Show soundness of rule induction using R and lfpt R̂

EXERCISES 30


