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Introducing new Types

Equations and Term Rewriting

Confluence and Termination of reduction systems
Term Rewriting in Isabelle

First structured proofs (Isar)
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[0 I — r applicable to term ¢[s]
if there is substitution o suchthato [ = s

[0 Result: t|o r]

[0 Equationally: t[s] = t[o 7]

Example:
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[0 I — r applicable to term ¢[s]
if there is substitution o suchthato [ = s

[0 Result: t|o r]

[0 Equationally: t[s] = t[o 7]

Example:
Rule: 0+n —n

Term: a+ (04 (b+¢))
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[0 I — r applicable to term ¢[s]
if there is substitution o suchthato [ = s

[0 Result: t|o r]

[0 Equationally: t[s] = t[o 7]

Example:
Rule: 0+n —n
Term: a+ (04 (b+¢))

Substitution: ¢ = {n — b+ ¢}
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[0 I — r applicable to term ¢[s]
if there is substitution o suchthato [ = s

[0 Result: t|o r]

[0 Equationally: t[s] = t[o 7]

Example:
Rule: 0+n —n
Term: a+ (04 (b+¢))
Substitution: ¢ = {n — b+ ¢}

Result: a + (b + ¢)

APPLYING A REWRITE RULE
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Rewrite rules can be conditional:

[[Pan]]:l:r
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CONDITIONAL TERM REWRITING

Rewrite rules can be conditional:

[[Pan]]:l:r

Is applicable to term ¢|s| with o if
0 ol=sand

0 o P, ..., o P, are provable by rewriting.

CONDITIONAL TERM REWRITING
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REWRITING WITH ASSUMPTIONS

Last time: Isabelle uses assumptions in rewriting.
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Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma’fr=grxANgr=frxr— fxr=2"
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Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma’fr=grxANgr=frxr— fxr=2"
simp use and simplify assumptions
(simp (no_asm)) Ignore assumptions

(simp (no_asm_use))  simplify, but do not use assumptions

(simp (no_asm_simp)) use, but do not simplify assumptions

REWRITING WITH ASSUMPTIONS



Preprocessing (recursive) for maximal simplification power:

-A +— A= False
A—B — A—B
ANB — A, B
Ve, Az — A7lx
A — A=True
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Preprocessing (recursive) for maximal simplification power:

-A +— A= False
A—B — A—B
ANB — A, B
Ve, Az — A7lx
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Example: (p— qA-T)As
—
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Preprocessing (recursive) for maximal simplification power:

-A +— A= False
A—B — A—B
ANB — A, B
Ve, Az — A7lx
A — A=True
Example: (p— qA-T)As
—

p=— q = True r = False s = True

PREPROCESSING






CASE SPLITTING WITH SIMP
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(A—— Ps)A(=A — Pt)
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CASE SPLITTING WITH SIMP

P (if A then s else t)

(A—— Ps)A(=A — Pt)

Automatic
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P (if A then s else t)

(A— Ps)AN (A — Pt)

Automatic

P (caseeof 0 = a|Sucn = b)

(e=0— Pa)AN(Vn.e=Sucn — Pb)
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P (if A then s else t)

(A— Ps)AN (A — Pt)

Automatic

P (caseeof 0 = a|Sucn = b)

(e=0— Pa)AN(Vn.e=Sucn — Pb)

Manually: apply (simp split: nat.split)

CASE SPLITTING WITH SIMP
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P (if A then s else t)

(A— Ps)AN (A — Pt)

Automatic

P (caseeof 0 = a|Sucn = b)

(e=0— Pa)AN(Vn.e=Sucn — Pb)

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

CASE SPLITTING WITH SIMP



congruence rules are about using context

Example: in P — () we could use P to simplify terms in )
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congruence rules are about using context

Example: in P — () we could use P to simplify terms in )

For — hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: [P=P ;P =Q=Q]| = (P —Q)=(P — Q)

Read: to simplify P — (@
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congruence rules are about using context

Example: in P — () we could use P to simplify terms in )

For — hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: [P=P ;P =Q=Q]| = (P —Q)=(P — Q)

Read: to simplify P — (@

O first simplify P to P’
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congruence rules are about using context

Example: in P — () we could use P to simplify terms in )

For — hardwired (assumptions used in rewriting)
For other operators expressed with conditional rewriting.
Example: [P=P;P = Q=0 = (P — Q)= (P — Q')

Read: to simplify P — (@

O first simplify P to P’
0 then simplify Q to Q' using P’ as assumption
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congruence rules are about using context

Example: in P — () we could use P to simplify terms in )

For — hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: [P=P ;P =Q=Q]| = (P —Q)=(P — Q)

Read: to simplify P — (@

O first simplify P to P’
0 then simplify Q to Q' using P’ as assumption
O theresultis P — Q'

CONGRUENCE RULES 10-E



Sometimes useful, but not used automatically (slowdown):
conjcong: [P=P ;P =Q=Q| = (PANQ)=(P'NQ")

MORE CONGRUENCE
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Sometimes useful, but not used automatically (slowdown):
conjcong: [P=P ;P =Q=Q| = (PANQ)=(P'NQ")

Context for if-then-else:
ifcong: [b=cc=zxrx=u—c=y=v] =

(if b then z else y) = (if ¢ then u else v)
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Sometimes useful, but not used automatically (slowdown):
conjcong: [P=P ;P =Q=Q| = (PANQ)=(P'NQ")

Context for if-then-else:
ifcong: [b=cc=zxrx=u—c=y=v] =

(if b then z else y) = (if ¢ then u else v)

Prevent rewriting inside then-else (default):
If_weak_cong: b = ¢ = (if b then x else y) = (if ¢ then z else y)
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Sometimes useful, but not used automatically (slowdown):
conjcong: [P=P ;P =Q=Q| = (PANQ)=(P'NQ")

Context for if-then-else:
ifcong: [b=cc=zxrx=u—c=y=v] =

(if b then z else y) = (if ¢ then u else v)

Prevent rewriting inside then-else (default):
If_weak_cong: b = ¢ = (if b then x else y) = (if ¢ then z else y)

[1 declare own congruence rules with [cong] attribute
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Sometimes useful, but not used automatically (slowdown):
conjcong: [P=P ;P =Q=Q| = (PANQ)=(P'NQ")

Context for if-then-else:
ifcong: [b=cc=zxrx=u—c=y=v] =

(if b then z else y) = (if ¢ then u else v)

Prevent rewriting inside then-else (default):
If_weak_cong: b = ¢ = (if b then x else y) = (if ¢ then z else y)

[1 declare own congruence rules with [cong] attribute

[] delete with [cong del]

MORE CONGRUENCE
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Problem: x 4+ y — y + x does not terminate

ORDERED REWRITING
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Problem: x 4+ y — y + x does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example:
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Problem: x 4+ y — y + x does not terminate

Solution:

Example:

use permutative rules only if term becomes

lexicographically smaller.

b+a~a-+bbutnota+ b~ b+ a.

ORDERED REWRITING
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Problem: x 4+ y — y + x does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.
Example: b+a~a+bbutnota+ b~ b+ a.

For types nat, int etc:
e lemmas add_ac sort any sum (+)

e lemmas times_ac sort any product (x)

Example: apply (simp add: add_ac) vyields
(b+c)+a~---~a+ (b+c)

ORDERED REWRITING 12-C



Example for associative-commutative rules:
Associative: (rOY)©z=20(y© 2)

Commutative: xG0Qy=y0oOux

AC RULES
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Example for associative-commutative rules:
Associative: (rOY)©z=20(y© 2)

Commutative: xG0Qy=y0oOux

These 2 rules alone get stuck too early (not confluent).

Example: (z0x)® (y©®o)
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Example for associative-commutative rules:
Associative: (rOY)©z=20(y© 2)

Commutative: xG0Qy=y0oOux

These 2 rules alone get stuck too early (not confluent).

Example: (z0x)® (y©®o)
Wewant: (zOo0z)o0(yov)=v0 (06 (ye 2))
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Example for associative-commutative rules:
Associative: (rOY)©z=20(y© 2)

Commutative: xG0Qy=y0oOux

These 2 rules alone get stuck too early (not confluent).

Example: (z0x)® (y©®o)
Wewant: (zOo0z)o0(yov)=v0 (06 (ye 2))
We get: zO2)OYoOv)=v0 (YO (O 2))

AC RULES 13-c



Example for associative-commutative rules:

Associative: (rOY)©z=20(y© 2)

Commutative: xG0Qy=y0oOux

These 2 rules alone get stuck too early (not confluent).

Example:
We want:

We get:

We need:

z20x)O (yOv)
(207)0(YOV)=v0 (O (y© 2))
(20T)O(YOV)=v0 (YO (r O 2))

/N

ACrule z0yo2) =y0 (x© 2)

AC RULES
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Example for associative-commutative rules:

Associative: (rOY)©z=20(y© 2)

Commutative: xG0Qy=y0oOux

These 2 rules alone get stuck too early (not confluent).

Example:
We want:

We get:

We need:

z20x)O (yOv)
(207)0(YOV)=v0 (O (y© 2))
(20T)O(YOV)=v0 (YO (r O 2))

/N

ACrule z0yo2) =y0 (x© 2)

If these 3 rules are present for an AC operator

Isabelle will order terms correctly

AC RULES

13-E
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Last time: confluence in general is undecidable.

BACK TO CONFLUENCE
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Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping Ihs of rules.

Definition:
Letl; — r; and lo — r5 be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of [; unifies with [.
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Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping Ihs of rules.

Definition:
Letl; — r; and lo — r5 be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of [; unifies with [.

Example:
Rules: (1) fx—a @)gy—b @) f(gz) —b
Critical pairs:
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Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping Ihs of rules.

Definition:
Letl; — r; and lo — r5 be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of [; unifies with [.

Example:
Rules: (1) fx—a @)gy—b @) f(gz) —b
Critical pairs:
W+@)  {r—gz)  a<t fgt Do
B)+(2) {2y} p B rgr By

BACK TO CONFLUENCE 15-E



D fz—a

2gy—>b @B)f(g9z)—0

IS not confluent

COMPLETION
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D fz—a @gy—>b (@B)f(g9z)—10

IS not confluent

But it can be made confluent by adding rules!
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D fz—a @gy—>b (@B)f(g9z)—10

IS not confluent

But it can be made confluent by adding rules!

How: join all critical pairs
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D fz—a @gy—>b (@B)f(g9z)—10

IS not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

+@B) {zr—gz} a+c— fgt
shows that a = b (because a «—— b),
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D fz—a @gy—>b (@B)f(g9z)—10

IS not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

+@B) {zr—gz} a+c— fgt
shows that a = b (because a —— b), so we add « — b as a rule

COMPLETION
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D fz—a @gy—>b (@B)f(g9z)—10

IS not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

+@B) {zr—gz} a+c— fgt
shows that a = b (because a —— b), so we add « — b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

COMPLETION 16-E



DEMO: WALDMEISTER
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ORTHOGONAL REWRITING SYSTEMS

Definitions:

ORTHOGONAL REWRITING SYSTEMS
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ORTHOGONAL REWRITING SYSTEMS

Definitions:
A rule ! — r Is left-linear if no variable occurs twice in /.
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Definitions:
A rule [ — r is left-linear if no variable occurs twice in .
A rewrite system is left-linear if all rules are.
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Definitions:
A rule | — r Is left-linear if no variable occurs twice In |.

A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.
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Definitions:
A rule | — r Is left-linear if no variable occurs twice In |.

A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

ORTHOGONAL REWRITING SYSTEMS
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Definitions:
A rule | — r Is left-linear if no variable occurs twice In |.

A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

ORTHOGONAL REWRITING SYSTEMS

18-E



basic syntax
proof and ged
assume and show

from and have

o O 0O o 0O

the three modes of Isar

LAST TIME ON ISAR
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BACKWARD AND FORWARD

Backward reasoning: ... have "A A B” proof

BACKWARD AND FORWARD

20



Backward reasoning: ... have "A A B” proof

[1 proof picks an intro rule automatically
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Backward reasoning: ... have "A A B” proof

[1 proof picks an intro rule automatically
[1 conclusion of rule must unify with A A B

BACKWARD AND FORWARD

20-B



Backward reasoning: ... have "A A B” proof

[1 proof picks an intro rule automatically
[1 conclusion of rule must unify with A A B

Forward reasoning: ...
assume AB: "A N B”
from AB have ”...” proof
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Backward reasoning: ... have "A A B” proof

[1 proof picks an intro rule automatically
[1 conclusion of rule must unify with A A B

Forward reasoning: ...
assume AB: "A N B”
from AB have ”...” proof

[1 now proof picks an elim rule automatically

BACKWARD AND FORWARD
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Backward reasoning: ... have "A A B” proof

[1 proof picks an intro rule automatically
[1 conclusion of rule must unify with A A B

Forward reasoning: ...
assume AB: "A N B”
from AB have ”...” proof

[1 now proof picks an elim rule automatically
[] triggered by from

BACKWARD AND FORWARD
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Backward reasoning: ... have "A A B” proof

[1 proof picks an intro rule automatically
[1 conclusion of rule must unify with A A B

Forward reasoning: ...
assume AB: "A N B”
from AB have ”...” proof

[1 now proof picks an elim rule automatically
[] triggered by from
[ first assumption of rule must unify with AB

BACKWARD AND FORWARD

20-F



Backward reasoning: ... have "A A B” proof

[1 proof picks an intro rule automatically
[1 conclusion of rule must unify with A A B

Forward reasoning: ...
assume AB: "A AN B”
from AB have ”...” proof
[1 now proof picks an elim rule automatically
[] triggered by from
[ first assumption of rule must unify with AB

General case: from A, ... A,, have R proof

[ first n assumptions of rule must unify with A; ... A,
[1 conclusion of rule must unify with R

BACKWARD AND FORWARD 20-G



ﬁXUl...’Un

Fix AND OBTAIN

21



ﬁX?Jl...’Un

Introduces new arbitrary but fixed variables
(~ parameters, \)

Fix AND OBTAIN 21-A



ﬁX?Jl...’Un

Introduces new arbitrary but fixed variables
(~ parameters, \)

obtain v, ...v, where <prop> <proof>

Fix AND OBTAIN 21-B



ﬁX?Jl...’Un

Introduces new arbitrary but fixed variables
(~ parameters, \)

obtain v, ...v, where <prop> <proof>

Introduces new variables together with property

Fix AND OBTAIN 21-c
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this = the previous fact proved or assumed
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this = the previous fact proved or assumed

then = from this
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this

then
thus

the previous fact proved or assumed

from this

then show

FANCY ABBREVIATIONS
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this = the previous fact proved or assumed

then = from this
thus = then show
hence = then have

FANCY ABBREVIATIONS 23-C



this = the previous fact proved or assumed

then = from this
thus = then show
hence = then have
with 4;... 4, = from A;...A, this

FANCY ABBREVIATIONS 23-D



this

then
thus

hence

?thesis

the previous fact proved or assumed

from this

then show

then have

from A, ... A, this

the last enclosing goal statement

FANCY ABBREVIATIONS

23-E



MOREOVER AND ULTIMATELY

have X: P; ...
have Xo: Py ...

have X,,: P, ...

from X;...X,, show...

MOREOVER AND ULTIMATELY
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have Xi: P; ...
have Xo: Py ...

have X,,: P, ...
from X;...X,, show...

wastes lots of brain power

on names X;...X,

MOREOVER AND ULTIMATELY 24-A



MOREOVER AND ULTIMATELY

have X: P; ...
have Xo: Py ...

have X,,: P, ...

from X;...X,, show...

wastes lots of brain power

on names X;...X,

have P; ...

moreover have Ps ...

moreover have P,, ...

ultimately show ...

MOREOVER AND ULTIMATELY

24-B



GENERAL CASE DISTINCTIONS

show formula

proof -

GENERAL CASE DISTINCTIONS

25



GENERAL CASE DISTINCTIONS

show formula
proof -

have P, vV P, vV P3 <proof>

GENERAL CASE DISTINCTIONS 25-A



show formula
proof -
have P, vV P, vV P3 <proof>

moreover { assume P;

... have ?thesis <proof> }

GENERAL CASE DISTINCTIONS
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show formula
proof -
have P, vV P, vV P3 <proof>
moreover {assume P; ... have ?thesis <proof> }

moreover {assume P, ... have ?thesis <proof> }

GENERAL CASE DISTINCTIONS 25-C



show formula
proof -
have P, vV P, vV P3 <proof>
moreover { assume P;
moreover { assume P,

moreover { assume P;

... have ?thesis <proof> }
... have ?thesis <proof> }

... have ?thesis <proof> }

GENERAL CASE DISTINCTIONS
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show formula
proof -

have P, vV P, vV P3 <proof>

moreover {assume P; ... have ?thesis <proof> }
moreover {assume P, ... have ?thesis <proof> }
moreover {assume P; ... have ?thesis <proof> }

ultimately show ?thesis by blast

ged

GENERAL CASE DISTINCTIONS
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show formula
proof -

have P, vV P, vV P3 <proof>

moreover {assume P; ... have ?thesis <proof> }
moreover {assume P, ... have ?thesis <proof> }
moreover {assume P; ... have ?thesis <proof> }

ultimately show ?thesis by blast

ged

{ ...} is a proof block similar to proof ... ged

GENERAL CASE DISTINCTIONS 25-F



show formula
proof -

have P, vV P, vV P3 <proof>

moreover {assume P; ... have ?thesis <proof> }
moreover {assume P, ... have ?thesis <proof> }
moreover {assume P; ... have ?thesis <proof> }

ultimately show ?thesis by blast

ged

{ ...} is a proof block similar to proof ... ged

{assume P, ... have P <proof> }
stands for P, — P

GENERAL CASE DISTINCTIONS 25-G



from ...

have ...

apply -

apply (...

apply (...

done

make incoming facts assumptions

MIXING PROOF STYLES
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WE HAVE LEARNED TODAY ...

[1 Conditional term rewriting

WE HAVE LEARNED TODAY ...
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[1 Conditional term rewriting

[1 Congruence and AC rules
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[1 Conditional term rewriting
[1 Congruence and AC rules

[J More on confluence

WE HAVE LEARNED TODAY ...
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Conditional term rewriting
Congruence and AC rules

More on confluence

I I N R

Completion

WE HAVE LEARNED TODAY ... 28-C



Conditional term rewriting
Congruence and AC rules
More on confluence

Completion

[] ] ] [] []

Isar: fix, obtain, abbreviations, moreover, ultimately

WE HAVE LEARNED TODAY ...

28-D



o O 0O o 0O

Find critical pairs for your DNF solution from last time

Complete rules to a terminating, confluent system

Add AC rules for A and Vv

Decide (CV B)ANA) = (-(AA B) — C A A) with these simp-rules

Give an Isar proof of the rich grandmother theorem
(automated methods allowed, but proof must be explaining)

EXERCISES
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