

NICTA Advanced Course

Theorem Proving Principles, Techniques, Applications

CONTENT

→ Intro & motivation, getting started with Isabelle

→ Foundations & Principles

- Lambda Calculus
- Higher Order Logic, natural deduction
- Term rewriting
- → Proof & Specification Techniques
 - Inductively defined sets, rule induction
 - Datatypes, recursion, induction
 - Calculational reasoning, mathematics style proofs
 - Hoare logic, proofs about programs

→ Introducing new Types

- → Introducing new Types
- → Equations and Term Rewriting

- → Introducing new Types
- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems

- → Introducing new Types
- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

- → Introducing new Types
- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle
- → First structured proofs (Isar)

 $\rightarrow l \longrightarrow r$ applicable to term t[s]

 $ightharpoonup l \longrightarrow r$ applicable to term t[s] if there is substitution σ such that $\sigma \ l = s$

- $ightharpoonup l \longrightarrow r$ applicable to term t[s] if there is substitution σ such that $\sigma \ l = s$
- ightharpoonup Result: $t[\sigma \ r]$

- $ightharpoonup l \longrightarrow r$ applicable to term t[s] if there is substitution σ such that $\sigma \ l = s$
- \rightarrow Result: $t[\sigma \ r]$
- \rightarrow Equationally: $t[s] = t[\sigma \ r]$

Example:

- $ightharpoonup l \longrightarrow r$ applicable to term t[s] if there is substitution σ such that $\sigma l = s$
- \rightarrow Result: $t[\sigma \ r]$
- \rightarrow Equationally: $t[s] = t[\sigma \ r]$

Example:

Rule: $0 + n \longrightarrow n$

Term: a + (0 + (b + c))

- $ightharpoonup l \longrightarrow r$ applicable to term t[s] if there is substitution σ such that $\sigma l = s$
- \rightarrow Result: $t[\sigma \ r]$
- \rightarrow Equationally: $t[s] = t[\sigma \ r]$

Example:

Rule: $0 + n \longrightarrow n$

Term: a + (0 + (b + c))

Substitution: $\sigma = \{n \mapsto b + c\}$

- $ightharpoonup l \longrightarrow r$ applicable to term t[s] if there is substitution σ such that $\sigma \ l = s$
- \rightarrow Result: $t[\sigma \ r]$
- \rightarrow Equationally: $t[s] = t[\sigma \ r]$

Example:

Rule: $0 + n \longrightarrow n$

Term: a + (0 + (b + c))

Substitution: $\sigma = \{n \mapsto b + c\}$

Result: a + (b + c)

CONDITIONAL TERM REWRITING

Rewrite rules can be conditional:

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

CONDITIONAL TERM REWRITING

Rewrite rules can be conditional:

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

is **applicable** to term t[s] with σ if

- $\rightarrow \sigma l = s$ and
- $\rightarrow \sigma P_1, \ldots, \sigma P_n$ are provable by rewriting.

REWRITING WITH ASSUMPTIONS

Last time: Isabelle uses assumptions in rewriting.

REWRITING WITH ASSUMPTIONS

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma " $f x = g x \land g x = f x \Longrightarrow f x = 2$ "

REWRITING WITH ASSUMPTIONS

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma "
$$f x = g x \land g x = f x \Longrightarrow f x = 2$$
"

simp use and simplify assumptions

(simp (no_asm)) ignore assumptions

(simp (no_asm_use)) **simplify**, but do **not use** assumptions

(simp (no_asm_simp)) use, but do not simplify assumptions

PREPROCESSING

Preprocessing (recursive) for maximal simplification power:

$$\neg A \mapsto A = False$$

$$A \longrightarrow B \mapsto A \Longrightarrow B$$

$$A \land B \mapsto A, B$$

$$\forall x. A x \mapsto A ? x$$

$$A \mapsto A = True$$

PREPROCESSING

Preprocessing (recursive) for maximal simplification power:

$$\neg A \mapsto A = False$$

$$A \longrightarrow B \mapsto A \Longrightarrow B$$

$$A \land B \mapsto A, B$$

$$\forall x. A x \mapsto A ? x$$

$$A \mapsto A = True$$

Example:

$$(p \longrightarrow q \land \neg r) \land s$$

 \mapsto

PREPROCESSING

Preprocessing (recursive) for maximal simplification power:

$$\neg A \mapsto A = False$$

$$A \longrightarrow B \mapsto A \Longrightarrow B$$

$$A \land B \mapsto A, B$$

$$\forall x. A x \mapsto A ? x$$

$$A \mapsto A = True$$

Example:

$$(p \longrightarrow q \land \neg r) \land s$$

 \mapsto

$$p \Longrightarrow q = True$$
 $r = False$ $s = True$

DEMO

Automatic

Automatic

$$P (case e of 0 \Rightarrow a | Suc n \Rightarrow b)$$

$$=$$

$$(e = 0 \longrightarrow P a) \land (\forall n. e = Suc n \longrightarrow P b)$$

$$P ext{ (if } A ext{ then } s ext{ else } t)$$

$$= (A \longrightarrow P s) \land (\neg A \longrightarrow P t)$$

Automatic

$$P (case e of 0 \Rightarrow a | Suc n \Rightarrow b)$$

$$=$$

$$(e = 0 \longrightarrow P a) \land (\forall n. e = Suc n \longrightarrow P b)$$

Manually: apply (simp split: nat.split)

$$P ext{ (if } A ext{ then } s ext{ else } t)$$

$$= (A \longrightarrow P s) \land (\neg A \longrightarrow P t)$$

Automatic

$$P (case e of 0 \Rightarrow a | Suc n \Rightarrow b)$$

$$=$$

$$(e = 0 \longrightarrow P a) \land (\forall n. e = Suc n \longrightarrow P b)$$

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

CONGRUENCE RULES

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \Longrightarrow hardwired (assumptions used in rewriting)

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \Longrightarrow hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example:
$$\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$$

Read: to simplify $P \longrightarrow Q$

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \Longrightarrow hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example:
$$\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$$

Read: to simplify $P \longrightarrow Q$

 \rightarrow first simplify P to P'

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \Longrightarrow hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example:
$$\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$$

Read: to simplify $P \longrightarrow Q$

- \rightarrow first simplify P to P'
- \rightarrow then simplify Q to Q' using P' as assumption

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \Longrightarrow hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example:
$$\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$$

Read: to simplify $P \longrightarrow Q$

- \rightarrow first simplify P to P'
- \rightarrow then simplify Q to Q' using P' as assumption
- \rightarrow the result is $P' \longrightarrow Q'$

MORE CONGRUENCE

Sometimes useful, but not used automatically (slowdown):

$$\mathbf{conj_cong:} \ \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$$

MORE CONGRUENCE

Sometimes useful, but not used automatically (slowdown):

$$\mathbf{conj_cong:} \ \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$$

Context for if-then-else:

if_cong:
$$[b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v]$$

(if b then x else y) = (if c then u else v)

MORE CONGRUENCE

Sometimes useful, but not used automatically (slowdown):

$$\mathbf{conj_cong:} \ \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$$

Context for if-then-else:

if_cong:
$$[b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v] \Longrightarrow$$
 (if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):

if_weak_cong: $b = c \Longrightarrow (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } x \text{ else } y)$

MORE CONGRUENCE

Sometimes useful, but not used automatically (slowdown):

$$\mathbf{conj_cong:} \ \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$$

Context for if-then-else:

if_cong:
$$[b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v] \Longrightarrow$$
 (if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):

if_weak_cong: $b = c \Longrightarrow (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } x \text{ else } y)$

→ declare own congruence rules with [cong] attribute

MORE CONGRUENCE

Sometimes useful, but not used automatically (slowdown):

$$\mathbf{conj_cong:} \ \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$$

Context for if-then-else:

if_cong:
$$[b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v] \Longrightarrow$$
 (if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):

if_weak_cong: $b = c \Longrightarrow (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } x \text{ else } y)$

- → declare own congruence rules with [cong] attribute
- → delete with [cong del]

Problem: $x + y \longrightarrow y + x$ does not terminate

Ordered rewriting 12

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example:

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example: $b + a \rightsquigarrow a + b$ but not $a + b \rightsquigarrow b + a$.

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example: $b+a \rightsquigarrow a+b$ but not $a+b \rightsquigarrow b+a$.

For types nat, int etc:

- lemmas add_ac sort any sum (+)
- lemmas times_ac sort any product (*)

Example: apply (simp add: add_ac) yields

$$(b+c)+a \leadsto \cdots \leadsto a+(b+c)$$

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$

We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$

We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$

We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$

We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$

We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$

We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$

We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

If these 3 rules are present for an AC operator Isabelle will order terms correctly

DEMO

Last time: confluence in general is undecidable.

Last time: confluence in general is undecidable.

But: confluence for terminating systems is decidable!

Last time: confluence in general is undecidable.

But: confluence for terminating systems is decidable!

Problem: overlapping lhs of rules.

Last time: confluence in general is undecidable.

But: confluence for terminating systems is decidable!

Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables.

They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Last time: confluence in general is undecidable.

But: confluence for terminating systems is decidable!

Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables.

They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1) $f x \longrightarrow a$ (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$

Critical pairs:

Last time: confluence in general is undecidable.

But: confluence for terminating systems is decidable!

Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables.

They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1) $f x \longrightarrow a$ (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$

Critical pairs:

(1)+(3)
$$\{x \mapsto g \ z\}$$
 $a \stackrel{(1)}{\longleftarrow} f \ g \ t \stackrel{(3)}{\longrightarrow} b$
(3)+(2) $\{z \mapsto y\}$ $b \stackrel{(3)}{\longleftarrow} f \ g \ t \stackrel{(2)}{\longrightarrow} b$

(3)+(2)
$$\{z\mapsto y\}$$
 $b\stackrel{(3)}{\longleftarrow} fgt\stackrel{(2)}{\longrightarrow} b$

(1)
$$f x \longrightarrow a$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ is not confluent

,

(1)
$$f x \longrightarrow a$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules!

,

(1)
$$f x \longrightarrow a$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

,

(1)
$$f x \longrightarrow a$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3)
$$\{x\mapsto g\ z\}$$
 $a\stackrel{(1)}{\longleftarrow} f\ g\ t\stackrel{(3)}{\longrightarrow} b$ shows that $a=b$ (because $a\stackrel{*}{\longleftrightarrow} b$),

(1)
$$f x \longrightarrow a$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3)
$$\{x \mapsto g \ z\}$$
 $a \stackrel{(1)}{\longleftarrow} f \ g \ t \stackrel{(3)}{\longrightarrow} b$

shows that a = b (because $a \stackrel{*}{\longleftrightarrow} b$), so we add $a \longrightarrow b$ as a rule

(1)
$$f x \longrightarrow a$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3)
$$\{x \mapsto g \ z\}$$
 $a \stackrel{(1)}{\longleftarrow} f \ g \ t \stackrel{(3)}{\longrightarrow} b$

shows that a = b (because $a \stackrel{*}{\longleftrightarrow} b$), so we add $a \longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

DEMO: WALDMEISTER

Definitions:

Definitions:

A rule $l \longrightarrow r$ is left-linear if no variable occurs twice in l.

Definitions:

A rule $l \longrightarrow r$ is left-linear if no variable occurs twice in l.

A rewrite system is left-linear if all rules are.

Definitions:

A rule $l \longrightarrow r$ is left-linear if no variable occurs twice in l.

A **rewrite system** is **left-linear** if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Definitions:

A rule $l \longrightarrow r$ is left-linear if no variable occurs twice in l.

A **rewrite system** is **left-linear** if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Definitions:

A rule $l \longrightarrow r$ is left-linear if no variable occurs twice in l.

A **rewrite system** is **left-linear** if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

LAST TIME ON ISAR

- → basic syntax
- → proof and qed
- → assume and show
- → from and have
- → the three modes of Isar

BACKWARD AND FORWARD

Backward reasoning: ... have " $A \wedge B$ " proof

BACKWARD AND FORWARD

Backward reasoning: ... have " $A \wedge B$ " proof

→ proof picks an intro rule automatically

Backward reasoning: ... have " $A \wedge B$ " proof

- → proof picks an intro rule automatically
- $\ \ \, \ \ \, \rightarrow \,$ conclusion of rule must unify with $A\wedge B$

Backward reasoning: ... have " $A \wedge B$ " proof

- → proof picks an intro rule automatically
- \rightarrow conclusion of rule must unify with $A \wedge B$

Forward reasoning: ...

assume AB: " $A \wedge B$ "

from AB have "..." proof

Backward reasoning: ... have " $A \wedge B$ " proof

- → proof picks an intro rule automatically
- \rightarrow conclusion of rule must unify with $A \wedge B$

Forward reasoning: ...

assume AB: " $A \wedge B$ "

from AB have "..." proof

→ now **proof** picks an **elim** rule automatically

Backward reasoning: ... have " $A \wedge B$ " proof

- → proof picks an intro rule automatically
- \rightarrow conclusion of rule must unify with $A \wedge B$

Forward reasoning: ...

assume AB: " $A \wedge B$ "

from AB have "..." proof

- → now **proof** picks an **elim** rule automatically
- → triggered by from

Backward reasoning: ... have " $A \wedge B$ " proof

- → proof picks an intro rule automatically
- \rightarrow conclusion of rule must unify with $A \wedge B$

Forward reasoning: ...

assume AB: " $A \wedge B$ "

from AB have "..." proof

- → now **proof** picks an **elim** rule automatically
- → triggered by from
- → first assumption of rule must unify with AB

Backward reasoning: ... have " $A \wedge B$ " proof

- → proof picks an intro rule automatically
- \rightarrow conclusion of rule must unify with $A \wedge B$

Forward reasoning: ...

assume AB: " $A \wedge B$ "

from AB have "..." proof

- → now **proof** picks an **elim** rule automatically
- → triggered by **from**
- → first assumption of rule must unify with AB

General case: from $A_1 \dots A_n$ have R proof

- \rightarrow first n assumptions of rule must unify with $A_1 \ldots A_n$
- \rightarrow conclusion of rule must unify with R

fix $v_1 \dots v_n$

fix $v_1 \dots v_n$

Introduces new arbitrary but fixed variables $(\sim \text{parameters}, \land)$

fix
$$v_1 \dots v_n$$

Introduces new arbitrary but fixed variables $(\sim \text{parameters}, \land)$

obtain $v_1 \dots v_n$ where <prop> <proof>

fix
$$v_1 \dots v_n$$

Introduces new arbitrary but fixed variables $(\sim \text{parameters}, \land)$

obtain
$$v_1 \dots v_n$$
 where $<$ prop $>$ $<$ proof $>$

Introduces new variables together with property

DEMO

this = the previous fact proved or assumed

FANCY ABBREVIATIONS 23

this = the previous fact proved or assumed

then = from this

FANCY ABBREVIATIONS 23-A

this = the previous fact proved or assumed

then = from this

thus = then show

FANCY ABBREVIATIONS 23-B

this = the previous fact proved or assumed

then = from this

thus = then show

hence = then have

FANCY ABBREVIATIONS 23-C

this = the previous fact proved or assumed

then = from this

thus = then show

hence = then have

with $A_1 \dots A_n$ = from $A_1 \dots A_n$ this

FANCY ABBREVIATIONS 23-D

this = the previous fact proved or assumed

then = from this

thus = then show

hence = then have

with $A_1 \dots A_n$ = from $A_1 \dots A_n$ this

?thesis = the last enclosing goal statement

FANCY ABBREVIATIONS 23-E

MOREOVER AND ULTIMATELY

```
have X_1: P_1 ...
have X_2: P_2 ...

have X_n: P_n ...
from X_1 ... X_n show ...
```

MOREOVER AND ULTIMATELY

```
have X_1: P_1 ...
have X_2: P_2 ...
:
have X_n: P_n ...
from X_1 ... X_n show ...
```

wastes lots of brain power on names $X_1 \dots X_n$

MOREOVER AND ULTIMATELY

wastes lots of brain power on names $X_1 \dots X_n$

 $\mathbf{show}\ formula$

proof -

 $\mathbf{show}\ formula$

proof -

have $P_1 \vee P_2 \vee P_3$ proof>

```
show formula proof - have P_1 \lor P_2 \lor P_3 < \text{proof}> moreover \{ \text{ assume } P_1 \ \dots \ \text{have ?thesis } < \text{proof}> \}
```

```
\begin{array}{l} \textbf{show } formula \\ \textbf{proof -} \\ \textbf{have } P_1 \vee P_2 \vee P_3 & <\textbf{proof}> \\ \textbf{moreover} & \left\{ \begin{array}{l} \textbf{assume } P_1 \ \dots \ \textbf{have } ? \textbf{thesis } <\textbf{proof}> \right\} \\ \textbf{moreover} & \left\{ \begin{array}{l} \textbf{assume } P_2 \ \dots \ \textbf{have } ? \textbf{thesis } <\textbf{proof}> \right\} \\ \textbf{moreover} & \left\{ \begin{array}{l} \textbf{assume } P_3 \ \dots \ \textbf{have } ? \textbf{thesis } <\textbf{proof}> \right\} \\ \textbf{ultimately show } ? \textbf{thesis by blast} \\ \textbf{qed} \\ \end{array} \right.
```

```
show formula
proof -
  have P_1 \vee P_2 \vee P_3 proof>
  moreover { assume P_1 ... have ?thesis <proof> }
  moreover { assume P_2 ... have ?thesis <proof> }
  moreover { assume P_3 ... have ?thesis <proof> }
  ultimately show ?thesis by blast
qed
      { ...} is a proof block similar to proof ... qed
```

```
show formula
proof -
  have P_1 \vee P_2 \vee P_3 proof>
  moreover { assume P_1 ... have ?thesis <proof> }
  moreover { assume P_2 ... have ?thesis <proof> }
  moreover { assume P_3 ... have ?thesis <proof> }
  ultimately show ?thesis by blast
qed
      { . . . } is a proof block similar to proof . . . qed
           \{ assume P_1 \dots have P < proof > \} \}
                   stands for P_1 \Longrightarrow P
```

MIXING PROOF STYLES

```
have ...

apply - make incoming facts assumptions

apply (...)

:

apply (...)

done
```

MIXING PROOF STYLES 26

DEMO

→ Conditional term rewriting

- → Conditional term rewriting
- → Congruence and AC rules

- → Conditional term rewriting
- → Congruence and AC rules
- → More on confluence

28-в

- → Conditional term rewriting
- → Congruence and AC rules
- → More on confluence
- → Completion

- → Conditional term rewriting
- → Congruence and AC rules
- → More on confluence
- → Completion
- → Isar: fix, obtain, abbreviations, moreover, ultimately

EXERCISES

- → Find critical pairs for your DNF solution from last time
- → Complete rules to a terminating, confluent system
- → Add AC rules for ∧ and ∨
- igoplus Decide $((C \lor B) \land A) = (\neg(A \land B) \longrightarrow C \land A)$ with these simp-rules
- → Give an Isar proof of the rich grandmother theorem (automated methods allowed, but proof must be explaining)