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CONTENT

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction

• Datatypes, recursion, induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs
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LAST TIME

➜ Introducing new Types

➜ Equations and Term Rewriting

➜ Confluence and Termination of reduction systems

➜ Term Rewriting in Isabelle

➜ First structured proofs (Isar)
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APPLYING A REWRITE RULE

➜ l −→ r applicable to term t[s]

if there is substitution σ such that σ l = s

➜ Result: t[σ r]

➜ Equationally: t[s] = t[σ r]

Example:

Rule: 0 + n −→ n

Term: a + (0 + (b + c))

Substitution: σ = {n 7→ b + c}

Result: a + (b + c)
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CONDITIONAL TERM REWRITING

Rewrite rules can be conditional:

[[P1 . . . Pn]] =⇒ l = r

is applicable to term t[s] with σ if

➜ σ l = s and

➜ σ P1, . . . , σ Pn are provable by rewriting.
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REWRITING WITH ASSUMPTIONS

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma ”f x = g x ∧ g x = f x =⇒ f x = 2¨

simp use and simplify assumptions

(simp (no asm)) ignore assumptions

(simp (no asm use)) simplify, but do not use assumptions

(simp (no asm simp)) use, but do not simplify assumptions
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PREPROCESSING

Preprocessing (recursive) for maximal simplification power:

¬A 7→ A = False

A −→ B 7→ A =⇒ B

A ∧B 7→ A, B

∀x. A x 7→ A ?x

A 7→ A = True

Example: (p −→ q ∧ ¬r) ∧ s

7→

p =⇒ q = True r = False s = True
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CASE SPLITTING WITH SIMP

P (if A then s else t)
=

(A −→ P s) ∧ (¬A −→ P t)

Automatic

P (case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P a) ∧ (∀n. e = Suc n −→ P b)

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split
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CASE SPLITTING WITH SIMP
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CONGRUENCE RULES

congruence rules are about using context

Example: in P −→ Q we could use P to simplify terms in Q

For =⇒ hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: [[P = P ′; P ′ =⇒ Q = Q′]] =⇒ (P −→ Q) = (P ′ −→ Q′)

Read: to simplify P −→ Q

➜ first simplify P to P ′

➜ then simplify Q to Q′ using P ′ as assumption

➜ the result is P ′
−→ Q′
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MORE CONGRUENCE

Sometimes useful, but not used automatically (slowdown):
conj cong: [[P = P ′; P ′ =⇒ Q = Q′]] =⇒ (P ∧Q) = (P ′ ∧Q′)

Context for if-then-else:
if cong: [[b = c; c =⇒ x = u;¬c =⇒ y = v]] =⇒

(if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):
if weak cong: b = c =⇒ (if b then x else y) = (if c then x else y)

➜ declare own congruence rules with [cong] attribute

➜ delete with [cong del]
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ORDERED REWRITING

Problem: x + y −→ y + x does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example: b + a ; a + b but not a + b ; b + a.

For types nat, int etc:

• lemmas add ac sort any sum (+)

• lemmas times ac sort any product (∗)

Example: apply (simp add: add ac) yields

(b + c) + a ; · · ·; a + (b + c)

ORDERED REWRITING 12



ORDERED REWRITING

Problem: x + y −→ y + x does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example:

b + a ; a + b but not a + b ; b + a.

For types nat, int etc:

• lemmas add ac sort any sum (+)

• lemmas times ac sort any product (∗)

Example: apply (simp add: add ac) yields

(b + c) + a ; · · ·; a + (b + c)

ORDERED REWRITING 12-A



ORDERED REWRITING

Problem: x + y −→ y + x does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example: b + a ; a + b but not a + b ; b + a.

For types nat, int etc:

• lemmas add ac sort any sum (+)

• lemmas times ac sort any product (∗)

Example: apply (simp add: add ac) yields

(b + c) + a ; · · ·; a + (b + c)

ORDERED REWRITING 12-B



ORDERED REWRITING

Problem: x + y −→ y + x does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example: b + a ; a + b but not a + b ; b + a.

For types nat, int etc:

• lemmas add ac sort any sum (+)

• lemmas times ac sort any product (∗)

Example: apply (simp add: add ac) yields

(b + c) + a ; · · ·; a + (b + c)

ORDERED REWRITING 12-C



AC RULES

Example for associative-commutative rules:

Associative: (x� y)� z = x� (y � z)

Commutative: x� y = y � x

These 2 rules alone get stuck too early (not confluent).

Example: (z � x)� (y � v)

We want: (z � x)� (y � v) = v � (x� (y � z))

We get: (z � x)� (y � v) = v � (y � (x� z))

We need: AC rule x� (y � z) = y � (x� z)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly
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BACK TO CONFLUENCE

Last time: confluence in general is undecidable.

But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

Critical pairs:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

(3)+(2) {z 7→ y} b
(3)
←− f g t

(2)
−→ b

BACK TO CONFLUENCE 15



BACK TO CONFLUENCE

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!

Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

Critical pairs:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

(3)+(2) {z 7→ y} b
(3)
←− f g t

(2)
−→ b

BACK TO CONFLUENCE 15-A



BACK TO CONFLUENCE

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

Critical pairs:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

(3)+(2) {z 7→ y} b
(3)
←− f g t

(2)
−→ b

BACK TO CONFLUENCE 15-B



BACK TO CONFLUENCE

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

Critical pairs:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

(3)+(2) {z 7→ y} b
(3)
←− f g t

(2)
−→ b

BACK TO CONFLUENCE 15-C



BACK TO CONFLUENCE

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

Critical pairs:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

(3)+(2) {z 7→ y} b
(3)
←− f g t

(2)
−→ b

BACK TO CONFLUENCE 15-D



BACK TO CONFLUENCE

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

Critical pairs:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

(3)+(2) {z 7→ y} b
(3)
←− f g t

(2)
−→ b
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COMPLETION

(1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

shows that a = b (because a
∗

←→ b)

,

so we add a −→ b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.
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COMPLETION

(1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

shows that a = b (because a
∗

←→ b), so we add a −→ b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.
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ORTHOGONAL REWRITING SYSTEMS

Definitions:

A rule l −→ r is left-linear if no variable occurs twice in l.
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages
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LAST TIME ON ISAR

➜ basic syntax

➜ proof and qed

➜ assume and show

➜ from and have

➜ the three modes of Isar

LAST TIME ON ISAR 19



BACKWARD AND FORWARD

Backward reasoning: . . . have ”A ∧B” proof

➜ proof picks an intro rule automatically

➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .

assume AB: ”A ∧B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically

➜ triggered by from

➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof

➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R
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BACKWARD AND FORWARD

Backward reasoning: . . . have ”A ∧B” proof

➜ proof picks an intro rule automatically

➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .

assume AB: ”A ∧B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically

➜ triggered by from

➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof

➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R
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FIX AND OBTAIN

fix v1 . . . vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

obtain v1 . . . vn where <prop> <proof>

Introduces new variables together with property
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fix v1 . . . vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

obtain v1 . . . vn where <prop> <proof>

Introduces new variables together with property
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FANCY ABBREVIATIONS

this = the previous fact proved or assumed

then = from this

thus = then show

hence = then have

with A1 . . . An = from A1 . . . An this

?thesis = the last enclosing goal statement
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FANCY ABBREVIATIONS

this = the previous fact proved or assumed

then = from this

thus = then show

hence = then have

with A1 . . . An = from A1 . . . An this

?thesis = the last enclosing goal statement
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MOREOVER AND ULTIMATELY

have X1: P1 . . .

have P1 . . .

have X2: P2 . . .

moreover have P2 . . .

...

...

have Xn: Pn . . .

moreover have Pn . . .

from X1 . . .Xn show . . .

ultimately show . . .

wastes lots of brain power

on names X1 . . .Xn
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MOREOVER AND ULTIMATELY

have X1: P1 . . . have P1 . . .

have X2: P2 . . . moreover have P2 . . .
...

...

have Xn: Pn . . . moreover have Pn . . .

from X1 . . .Xn show . . . ultimately show . . .

wastes lots of brain power

on names X1 . . .Xn
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GENERAL CASE DISTINCTIONS

show formula

proof -

have P1 ∨ P2 ∨ P3 <proof>

moreover { assume P1 . . . have ?thesis <proof> }

moreover { assume P2 . . . have ?thesis <proof> }

moreover { assume P3 . . . have ?thesis <proof> }

ultimately show ?thesis by blast

qed

{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P
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GENERAL CASE DISTINCTIONS

show formula

proof -

have P1 ∨ P2 ∨ P3 <proof>

moreover { assume P1 . . . have ?thesis <proof> }

moreover { assume P2 . . . have ?thesis <proof> }

moreover { assume P3 . . . have ?thesis <proof> }

ultimately show ?thesis by blast

qed

{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P
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MIXING PROOF STYLES

from . . .

have . . .

apply - make incoming facts assumptions

apply (. . . )
...

apply (. . . )

done
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WE HAVE LEARNED TODAY ...

➜ Conditional term rewriting

➜ Congruence and AC rules

➜ More on confluence

➜ Completion

➜ Isar: fix, obtain, abbreviations, moreover, ultimately
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EXERCISES

➜ Find critical pairs for your DNF solution from last time

➜ Complete rules to a terminating, confluent system

➜ Add AC rules for ∧ and ∨

➜ Decide ((C ∨ B) ∧ A) = (¬(A ∧ B) −→ C ∧ A) with these simp-rules

➜ Give an Isar proof of the rich grandmother theorem
(automated methods allowed, but proof must be explaining)
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