NATIONAL

ICT AUSTRALIA
LIMITED

NICTA Advanced Course

Slide 1 Theorem Proving
Principles, Techniques, Applications

—

CONTENT

0

0 Foundations & Principles
L]
e Higher Order Logic, natural deduction

Slide 2 e Term rewriting

LAST TIME ON HOL

LAST TIME ON HOL

Defining HOL
Higher Order Abstract Syntax

Deriving proof rules

o o o o

Slide 3 More automation

THE THREE BASIC WAYS OF INTRODUCING THEOREMS

0 Axioms:
Expample: axioms refl: "t = ¢”

Do not use. Evil. Can make your logic inconsistent.

Slide 4 O Definitions:

Example: defsinjdef: "inj f=Vey. fe=fy—axz=vy"

0 Proofs:
Example: lemma”inj (Az. z + 1)"

The harder, but safe choice.

THE THREE BASIC WAYS OF INTRODUCING TYPES

Slide 5

Slide 6

THE THREE BASIC WAYS OF INTRODUCING TYPES

O typedecl: by name only

Example: typedecl names
Introduces new type names without any further assumptions

types: by abbreviation

Example: types a rel ="a = a = bool”
Introduces abbreviation rel for existing type a = « = bool
Type abbreviations are immediatly expanded internally

O typedef: by definiton as a set

Example: typdef new_type = "{some set}” <proof>
Introduces a new type as a subset of an existing type.
The proof shows that the set on the rhs in non-empty.

How TYPEDEF WORKS

existing type

new type

Rep

Abs

How TYPEDEF WORKS

How TYPEDEF WORKS

new type

Slide 7
EXAMPLE: PAIRS
(o, B) Prod
O Pick existing type: a = 3 = bool
O Identify subset:
(a, B) Prod = {f. Jab. f=ANz:a)(y:08).c=aAy =101}
Slide 8 O We get from Isabelle:

e functions Abs_Prod, Rep_Prod
e both injective
e Abs_Prod (Rep_Prod z) =z

0 We now can:

e define constants Pair, fst, snd in terms of Abs_Prod and Rep_Prod
e derive all characteristic theorems
e forget about Rep/Abs, use characteristic theorems instead

Slide 9

DEMO: INTRODUCTING NEW TYPES

Slide 10

TERM REWRITING

THE PROBLEM

THE PROBLEM

Given a set of equations

l1:T'1

l2:7‘2

Slide 11 [
does equation [= r hold?
Applications in:

0 Mathematics (algebra, group theory, etc)
O Functional Programming (model of execution)

0 Theorem Proving (dealing with equations, simplifying statements)

TERM REWRITING: THE IDEA

use equations as reduction rules

11 — 71

12—>T2

Slide 12

ln — T

decide | = r by deciding [< r

ARROW CHEAT SHEET

ARROW CHEAT SHEET

— = {(@ylz=y} identity
1 L.
- S n+1 fold composition
L= U — transitive closure
0 . ..
2 = HuY reflexive transitive closure
. = 0 .
Slide13 — = —U-— reflexive closure
1 .
— = {(y,z)lzr — y} inverse
—1 .
— = = inverse
— = «— U— symmetric closure
T = Upsg transitive symmetric closure
0 . L. X
& = Ay reflexive transitive symmetric closure

How TO DECIDE [«+— 1
Same idea as for 3: look for n such that | = n and r = n

Does this always work?
If] = nand r = nthen | < r. Ok.
If | < r, will there always be a suitable n? No!

Example:

Slide 14
Rules: fz—a, gaz—b, f(gz)—Db

fz—gx because fx-—ac—f(gx)—b—gx
But: fx —aandgx — banda,bin normal form
Works only for systems with Church-Rosser property:
< r=n.l-SnArr—n

Fact: — is Church-Rosser iff it is confluent.

CONFLUENCE

CONFLUENCE

is a given set of reduction rules confluent?

S
* * Problem:
7N,

1 . %k
undecidable

Slide 15 Local Confluence

s
RN
T Y

o %
N4
t

Fact: local confluence and termination = confluence

TERMINATION

— is terminating if there are no infinite reduction chains
— is normalizing if each element has a normal form
— is convergent if it is terminating and confluent

Slide 16 ~ Example:
—g in A is not terminating, but confluent

— g in A7 is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

WHEN IS — TERMINATING?

WHEN IS — TERMINATING?

Basic Idea: when the r; are in some way simpler then the [;

More formally: — is terminating when
there is a well founded order < in which r; < [; for all rules.
(well founded = no infinite decreasing chains a; > a2 > ...)
Slide 17 Example: f (g2) — gz, g(fz) — f=
This system always terminates. Reduction order:
s <, tiff size(s) < size(t) with

size(s) = numer of function symbols in s

Ogr<, f(gz)and fz <. g (fx)
0 <., is well founded, because < is well founded on IN

TERM REWRITING IN ISABELLE

Term rewriting engine in Isabelle is called Simplifier

apply simp
O uses simplification rules
Slide 18 O (almost) blindly from left to right

O until no rule is applicable.
termination: not guaranteed
(may loop)

confluence: not guaranteed
(result may depend on which rule is used first)

CONTROL

Slide 19

Slide 20

CONTROL

Equations turned into simplifaction rules with [simp] attribute

Adding/deleting equations locally:
apply (simp add: <rules>) and apply (simp del: <rules>)

Using only the specified set of equations:
apply (simp only: <rules>)

DEMO

10

A TYPICAL ISAR PROOF

proof
assume formulag

have formula; by simp

ISAR

Slide 21 Slide 23 have formula, by blast
show formula,.1 by ...
A LANGUAGE FOR STRUCTURED PROOFS g / A
ge
proves formulay = formula,+1
(analogous to assumes/shows in lemma statements)
ISAR ISAR CORE SYNTAX
proof = proof [method] statement* ged
apply scripts What about.. | by method
O dabl O El ?
unreadable egance method = (simp ...) | (blast ...) | (rule ...) | ...
0 hard to maintain [0 Explaining deeper insights?
Slide 22 0 donotscale O Large developments? Slide 24 statement = fix variables (A)
| assume proposition (=)
No structure. Isar! | [from name*] (have | show) proposition proof
| next (separates subgoals)
proposition = [name:] formula

A TYPICAL ISAR PROOF 11 PROOF AND QED

PROOF AND QED THE THREE MODES OF ISAR

proof [method] statement* ged O [prove]:

lemma "[A; B] = AA B goal has been stated, proof needs to follow.

proof (rule conjl) O [state]:
assume A: "A” proof block has openend or subgoal has been proved,
from A show ”A” by assumption new from statement, goal statement or assumptions can follow.
Slide 25 et Slide27 O [chain]:
assume B: "B from statement has been made, goal statement needs to follow.
from B show "B” by assumption
ged

lemma "[A; B] = A A B” [prove]

O proof (<method>) applies method to the stated goal proof (rule conjl) [state]
assume A: "A” [state]

0O proof applies a single rule that fits _ _
0 proof- does nothing to the goal from A [chain] show "A” [prove] by assumption [state]
next [state] ...
How DO | KNOW WHAT TO ASSUME AND SHOW? HAVE
Look at the proof state! Can be used to make intermediate steps.
lemma"[A;B] = AAB” Example:

proof (rule conjl)
lemma”(z ::nat) +1=1+2"

proof -
i O proof (rule conjl) changes proof state to i
Slide 26 E " 1(9]] - ,i) gesp Slide 28 have A: "z + 1 = Suc 2" by simp
2.[A;B]= B have B: "1 + z = Suc z” by simp

0 so we need 2 shows: show "A” and show "B” show "z +1 =1+ 2" by (simp only: A B)

ed
0 We are allowed to assume A, a

because A is in the assumptions of the proof state.

THE THREE MODES OF ISAR 13 14

Slide 29 DEMO: ISAR PROOFS

WE HAVE LEARNED TODAY ...

Introducing new Types

Equations and Term Rewriting

Term Rewriting in Isabelle

O

0

0 Confluence and Termination of reduction systems
Slide3o M
0

First structured proofs (Isar)

EXERCISES 15

EXERCISES

use typedef to define a new type v with exactly one element.
define a constant u of type v
show that every element of v is equal to u

design a set of rules that turns formulae with A, V, —, =
Slide 31 into disjunctive normal form
(= disjunction of conjunctions with negation only directly on variables)

O prove those rules in Isabelle

O use simp only with these ruleson (-B — C) — A — B

EXERCISES

16

