NATIONAL
ICT AUSTRALIA

LIMITED

NICTA Advanced Course

Slide 1 Theorem Proving
Principles, Techniques, Applications

HOL

CONTENT

0

0 Foundations & Principles
L]

e Higher Order Logic, natural deduction

Slide 2 ¢

LAST TIME ON HOL

LAST TIME ON HOL

Proof rules for propositional and predicate logic

Safe and unsafe rules

The Epsilon Operator

O

O

0O Forward Proof
Slide3 U
O

Some automation

Slide 4 DEFINING HIGHER ORDER LOGIC

WHAT IS HIGHER ORDER LOGIC?

WHAT IS HIGHER ORDER LOGIC?

O Propositional Logic:
e no quantifiers

e all variables have type bool

O First Order Logic:
Slide 5 e quantification over values, but not over functions and predicates,
e terms and formulas syntactically distinct

O Higher Order Logic:
e quantification over everything, including predicates
e consistency by types
e formula = term of type bool

e definition built on A~ with certain default types and constants

DEFINING HIGHER ORDER LOGIC

Default types:

bool o= ind

O bool sometimes called o

Slide 6 0 = sometimes called fun

Default Constants:

— = bool = bool = bool
= 1 a = o= bool
€ 2 (a=bool) = «

HIGHER ORDER ABSTRACT SYNTAX

HIGHER ORDER ABSTRACT SYNTAX

Problem: Define syntax for binders like V, 3, ¢

One approach: V :: var = term = bool
Drawback: need to think about substitution, « conversion again.

Slide 7 But: Already have binder, substitution, o conversion in meta logic

A

So: Use)\ to encode all other binders.

HIGHER ORDER ABSTRACT SYNTAX

Example:
ALL :: (o = bool) = bool

HOAS usual syntax
Slide 8

ALL (Az. z =2) Ve, x =2

ALL P Vz. Px

Isabelle can translate usual binder syntax into HOAS.

SIDE TRACK: SYNTAX DECLARATIONS IN ISABELLE

SIDE TRACK: SYNTAX DECLARATIONS IN ISABELLE

O mixfix:
consts drvbl:: ¢t = ct = fm = bool (",)
Legal syntax now: I'II+ F

O priorities:
pattern can be annotated with priorities to indicate binding strength
Example: drvbl:: ¢t = ¢t = fm = bool ("_,- + 7 [30,0,20] 60)

Slide 9
O infixl/infixr: short form for left/right associative binary operators

Example: or :: bool = bool = bool (infixr” V7 30)

O binders: declaration must be of the form
c:: (11 = 12) = 73 (binder "B” <p>)
B z. P z translated into ¢ P (and vice versa)
Example ALL :: (a = bool) = bool (binder ”V” 10)

More (including pretty printing) in Isabelle Reference Manual (7.3)

BAck To HOL

Base: bool, =, ind =, —, ¢
And the rest is definitions:

True = (Az : bool.) = (A\z.)

AlP =P = (\z. True)

ExP =VQ.(Vz.Pz— Q) — Q

False =VP. P

-P = P — False

PAQ =VR.(P—Q—R)— R

PvQ =VR.(P—R)— (@ — R)— R

If Pxy=SOME 2. (P=True — z=ux)A (P = False — z = y)
injf =Vazy fz=fy—az=y

surj f =Yy.dz.y=fzx

Slide 10

THE AXIOMS OF HOL

THE AXIoMS OoF HOL

s=t Ps ANe. fz=g=
F= ref Pt subst Az. fz)=(Az. gx) ext

= Q P—Q P

Slide 11 P —Q —@ P (=g

True_or_False

P = True vV P = False

Pz

P (SOME «. P «) S°M®!

3f :vind = ind. inj f A —surj f infty

THAT'S IT.

0 3 basic constants
O 3 basic types

0 9 axioms

. With this you can define and derive all the rest.
Slide 12

Isabelle knows 2 more axioms:

T=y

; ——— the_eq_trivial
s = ed-reflection (THEz.2—=a)—a g-trivi

Slide 13 DEMO: THE DEFINITIONS IN ISABELLE
DERIVING PROOF RULES
In the following, we will
O look at the definitions in more detail
O derive the traditional proof rules from the axioms in Isabelle
Convenient for deriving rules: named assumptions in lemmas
Slide 14 lemma [name]
assumes [name; :] "< prop >1”
assumes [names :] "< prop >2"
shows ” < prop >7 < proof >
proves: [< prop >1;< prop >a;...] =< prop >
TRUE

TRUE

consts True :: bool
True = (Az :: bool. z) = (Az.)

Intuition:

right hand side is always true
Slide 15

Proof Rules:

True Truel
Proof:
(Az :: bool. z) = (A\z. x) refl
True unfold True_def

Slide 16 DEMO

UNIVERSIAL QUANTIFIER

UNIVERSIAL QUANTIFIER

consts ALL :: (o = bool) = bool
ALLP = P = (\x. True)

Intuition:

O ALL P is Higher Order Abstract Syntax for Vz. P x.
O Pis afunction that takes an = and yields a truth values.

Slide 17 O ALL P should be true iff P yields true for all z, i.e.

if it is equivalent to the function Az. True.
Proof Rules:

Malll Ve.Px Plx — R
V. Px R

alle

Proof: Isabelle Demo

FALSE

consts False :: bool
False = VP.P

Slide 18

Intuition:
Everything can be derived from False.
Proof Rules:
False
P FalseE True # False
Proof: Isabelle Demo
NEGATION

Slide 19

Slide 20

NEGATION

consts Not :: bool = bool (- _)
-P =P — False

Intuition:

Try P = True and P = False and the traditional truth table for —.

Proof Rules:

A = False -A A
Y E— notl

notE

Proof: Isabelle Demo

EXISTENTIAL QUANTIFIER

consts EX :: (& = bool) = bool
EXP = VQ.(Vz. Pz — Q) — Q

Intuition:

0 EX Pis HOAS for 3z. P z. (like V)
0 Right hand side is characterization of 3 with V and —
O Note that inner V binds wide: (Vz. P x — Q)
0O Remember lemma from last time:
(Vz. Pz — Q) = ((3z. P2) — Q)

Proof Rules:
P 7 dz. Pz Az.Prx= R
3 Px exl| R exE

Proof: Isabelle Demo

CONJUNCTION

10

CONJUNCTION IF-THEN-ELSE

consts And :: bool = bool = bool (- A _) consts If :: bool = a = a = « (if_then _else)
PAQ=VR.(P—Q—R)—R If Pry = SOME z. (P =True — z =) A (P = False — z =y)
Intuition: Intuition:
) O Mirrors proof rules for A) O for P = True, right hand side collapses to SOME z. z = =
Slide 21 O Try truth table for P, @, and R Slide 23 O for P = False, right hand side collapses to SOME z. z = y
Proof Rules: Proof Rules:
A B conjl ANB [ABl=C conjE if Truethen selset = s ifTrue if False then selset =t ifFalse

ANB c

Proof: Isabelle Demo
Proof: Isabelle Demo

DISJUNCTION

consts Or :: bool = bool = bool (- V _)
PVvQ=VYR.(P—R)— (@ — R) — R

Intuition:

O Mirrors proof rules for v (case distinction)

Slide 22 0 Try truth table for P, @, and R Slide 24 THAT was HOL
Proof Rules:
A B disjl1/2 AVB A= C B=C disiE

AVB AVB c

Proof: Isabelle Demo

IF-THEN-ELSE 11 MORE ON AUTOMATION

MORE ON AUTOMATION
Last time: safe and unsafe rule, heuristics: use safe before unsafe

This can be automated

Syntax:
[<kind>!] for safe rules (<kind> one of intro, elim, dest)
[<kind>] for unsafe rules
Slide 25 o
Application (roughly):
do safe rules first, search/backtrack on unsafe rules only
Example:
declare attribute globally declare conjl [intro!] allE [elim]
remove attribute gloabllay declare allE [rule del]
use locally apply (blast intro: somel)
delete locally apply (blast del: conjl)
Slide 26 DEMO: AUTOMATION
WE HAVE LEARNED TODAY ... 13

WE HAVE LEARNED TODAY ...

Defining HOL
Higher Order Abstract Syntax
Deriving proof rules

Slide 27 More automation

EXERCISES

0O derive the classical contradiction rule (—P = False) => P in
Isabelle

define nor and nand in Isabelle

derive safe intro and elim rules for them

O

0O show norzz = nandzx
Slide 28 o
0

use these in an automated proof of norxz z = nand x =

EXERCISES

14

