

NICTA Advanced Course

Slide 1

Theorem Proving Principles, Techniques, Applications

HOL

CONTENT

- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
 - Lambda Calculus
 - Higher Order Logic, natural deduction

Slide 2

- Term rewriting
- → Proof & Specification Techniques
 - Datatypes, recursion, induction
 - Inductively defined sets, rule induction
 - Calculational reasoning, mathematics style proofs
 - Hoare logic, proofs about programs

LAST TIME ON HOL

- → Proof rules for propositional and predicate logic
- → Safe and unsafe rules
- → Forward Proof
- Slide 3
- → The Epsilon Operator
- → Some automation

Slide 4 DEFINING HIGHER ORDER LOGIC

LAST TIME ON HOL 1 WHAT IS HIGHER ORDER LOGIC? 2

WHAT IS HIGHER ORDER LOGIC?

→ Propositional Logic:

- no quantifiers
- all variables have type bool

→ First Order Logic:

Slide 5

- quantification over values, but not over functions and predicates,
- · terms and formulas syntactically distinct

→ Higher Order Logic:

- quantification over everything, including predicates
- · consistency by types
- formula = term of type bool
- definition built on λ^{\rightarrow} with certain default types and constants

DEFINING HIGHER ORDER LOGIC

Default types:

bool
$$_\Rightarrow_$$
 ind

→ bool sometimes called o

Slide 6

 \Rightarrow sometimes called fun

Default Constants:

HIGHER ORDER ABSTRACT SYNTAX

Problem: Define syntax for binders like \forall , \exists , ε

One approach: $\forall :: var \Rightarrow term \Rightarrow bool$

Drawback: need to think about substitution, α conversion again.

Slide 7 But: Already have binder, substitution, α conversion in meta logic

So: Use λ to encode all other binders.

HIGHER ORDER ABSTRACT SYNTAX

Example:

Slide 8

3

$$\mathsf{ALL} :: (\alpha \Rightarrow bool) \Rightarrow bool$$

HOAS usual syntax

$$\begin{array}{ll} \mathsf{ALL}\; (\lambda x.\; x=2) & \forall x.\; x=2 \\ \mathsf{ALL}\; P & \forall x.\; P\; x \end{array}$$

Isabelle can translate usual binder syntax into HOAS.

SIDE TRACK: SYNTAX DECLARATIONS IN ISABELLE

→ mixfix:

consts drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool \ (" \rightarrow _ \vdash _")$ Legal syntax now: $\Gamma, \Pi \vdash F$

→ priorities:

pattern can be annotated with priorities to indicate binding strength **Example:** drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("., \bot \bot " [30,0,20] 60)

Slide 9

Slide 10

- → infixl/infixr: short form for left/right associative binary operators Example: or :: bool ⇒ bool ⇒ bool (infixr " ∨ " 30)
- → binders: declaration must be of the form $c::(\tau_1\Rightarrow\tau_2)\Rightarrow\tau_3$ (binder "B" < p>) B x. P x translated into c P (and vice versa) Example ALL:: $(\alpha\Rightarrow bool)\Rightarrow bool$ (binder "∀" 10)

More (including pretty printing) in Isabelle Reference Manual (7.3)

BACK TO HOL

Base: $bool, \Rightarrow, ind =, \longrightarrow, \varepsilon$

And the rest is definitions:

True
$$\equiv (\lambda x :: bool. \ x) = (\lambda x .: x)$$
All $P \equiv P = (\lambda x. \ \text{True})$
Ex $P \equiv \forall Q. \ (\forall x. \ P \ x \longrightarrow Q) \longrightarrow Q$
False $\equiv \forall P. \ P$
 $\neg P \equiv P \longrightarrow \text{False}$
 $P \land Q \equiv \forall R. \ (P \longrightarrow Q \longrightarrow R) \longrightarrow R$
 $P \lor Q \equiv \forall R. \ (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$
If $P x y \equiv \text{SOME } z. \ (P = \text{True} \longrightarrow z = x) \land (P = \text{False} \longrightarrow z = y)$
inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$
surj $f \equiv \forall y. \ \exists x. \ y = f \ x$

5

THE AXIOMS OF HOL

$$\frac{s=t}{P}\frac{P}{s} \text{ subst} \qquad \frac{\bigwedge x. \ f \ x=g \ x}{(\lambda x. \ f \ x)=(\lambda x. \ g \ x)} \text{ ext}$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \text{ impl} \qquad \frac{P \longrightarrow Q}{Q} \text{ mp}$$

$$\overline{(P \longrightarrow Q) \longrightarrow (Q \longrightarrow P) \longrightarrow (P=Q)} \text{ iff}$$

$$\overline{P=\text{True} \lor P=\text{False}} \text{ True_or_False}$$

$$\frac{P \ ?x}{P \ (\text{SOME} \ x. \ P \ x)} \text{ somel}$$

THAT'S IT.

 $\exists f :: ind \Rightarrow ind. \text{ inj } f \land \neg \text{surj } f$ infty

- → 3 basic constants
- → 3 basic types
- → 9 axioms

Slide 11

With this you can define and derive all the rest.

Isabelle knows 2 more axioms:

$$\frac{x=y}{x\equiv y} \text{ eq_reflection } \qquad \overline{(\text{THE } x.\ x=a)=a} \text{ the_eq_trivial}$$

Slide 13

DEMO: THE DEFINITIONS IN ISABELLE

DERIVING PROOF RULES

In the following, we will

- → look at the definitions in more detail
- → derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

Slide 14

```
\label{eq:lemma} \begin{array}{l} \textbf{lemma} \; [name :] \\ \textbf{assumes} \; [name_1 :] \; "< prop >_1 " \\ \textbf{assumes} \; [name_2 :] \; "< prop >_2 " \\ \vdots \\ \textbf{shows} \; " < prop > " \; < proof > \\ \\ \textbf{proves:} \; \llbracket \; < prop >_1 ; < prop >_2 ; \dots \rrbracket \Longrightarrow < prop > \\ \end{array}
```

TRUE

consts True :: bool

True $\equiv (\lambda x :: bool. \ x) = (\lambda x. \ x)$

Intuition:

right hand side is always true

Slide 15

Proof Rules:

True Truel

Proof:

 $\frac{\overline{(\lambda x :: bool. \, x) = (\lambda x. \, x)}}{\mathsf{True}} \ \mathsf{unfold} \ \mathsf{True_def}$

Slide 16

DEMO

8

True 7 Universial Quantifier

UNIVERSIAL QUANTIFIER

Intuition:

- \rightarrow ALL P is Higher Order Abstract Syntax for $\forall x. \ P \ x.$
- \rightarrow P is a function that takes an x and yields a truth values.

Slide 17

→ ALL P should be true iff P yields true for all x, i.e. if it is equivalent to the function λx . True.

Proof Rules:

$$\frac{\bigwedge x.\ P\ x}{\forall x.\ P\ x} \text{ alll } \qquad \frac{\forall x.\ P\ x}{R} \xrightarrow{R} \text{allE}$$

Proof: Isabelle Demo

FALSE

consts False :: bool False $\equiv \forall P.P$

Intuition:

Everything can be derived from False.

Slide 18

Proof Rules:

$$\frac{\mathsf{False}}{P} \; \mathsf{FalseE} \qquad \frac{}{\mathsf{True} \neq \mathsf{False}}$$

Proof: Isabelle Demo

NEGATION

consts Not :: $bool \Rightarrow bool \ (\neg \ _)$ $\neg P \equiv P \longrightarrow \mathsf{False}$

Intuition:

Try P = True and P = False and the traditional truth table for \longrightarrow .

Slide 19

Proof Rules:

$$A \Longrightarrow False \over \neg A$$
 not $A \Longrightarrow P$ not $A \Longrightarrow P$

Proof: Isabelle Demo

EXISTENTIAL QUANTIFIER

Intuition:

- \rightarrow EX P is HOAS for $\exists x. P x$. (like \forall)
- \rightarrow Right hand side is characterization of \exists with \forall and \longrightarrow

Slide 20 → No

- \rightarrow Note that inner \forall binds wide: $(\forall x. P x \longrightarrow Q)$
- → Remember lemma from last time: $(\forall x. \ P \ x \longrightarrow Q) = ((\exists x. \ P \ x) \longrightarrow Q)$

Proof Rules:

$$\frac{P?x}{\exists x. Px}$$
 exl $\frac{\exists x. Px \quad \bigwedge x. Px \Longrightarrow R}{R}$ exE

Proof: Isabelle Demo

9

CONJUNCTION

consts And :: $bool \Rightarrow bool \Rightarrow bool (_ \land _)$ $P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$

Intuition:

Slide 21

→ Mirrors proof rules for ∧

 \rightarrow Try truth table for P, Q, and R

Proof Rules:

$$\frac{A \quad B}{A \land B}$$
 conjl $\frac{A \land B \quad [\![A;B]\!] \Longrightarrow C}{C}$ conjE

Proof: Isabelle Demo

DISJUNCTION

Intuition:

Slide 22

→ Mirrors proof rules for ∨ (case distinction)

 \rightarrow Try truth table for P, Q, and R

Proof Rules:

$$\frac{A}{A \vee B} \, \frac{B}{A \vee B} \, \operatorname{disjl1/2} \qquad \frac{A \vee B}{C} \, \stackrel{A \longrightarrow C}{A} \, \stackrel{B \Longrightarrow C}{\longrightarrow} \, \operatorname{disjE}$$

Proof: Isabelle Demo

IF-THEN-ELSE

Intuition:

Slide 23

→ for P = True, right hand side collapses to SOME z. z = x → for P = False, right hand side collapses to SOME z. z = y

Proof Rules:

if True then s else t=s if True $\frac{1}{100}$ if False then s else t=t if False

Proof: Isabelle Demo

Slide 24

THAT WAS HOL

11

MORE ON AUTOMATION

Last time: safe and unsafe rule, heuristics: use safe before unsafe

This can be automated

Syntax:

[<kind>] for unsafe rules

Slide 25

Application (roughly):

do safe rules first, search/backtrack on unsafe rules only

Example:

delete locally

declare attribute globally remove attribute gloabllay use locally

declare conjl [intro!] allE [elim] declare allE [rule del] apply (blast intro: somel) apply (blast del: conjl)

Slide 26

DEMO: AUTOMATION

WE HAVE LEARNED TODAY ...

- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules

Slide 27

→ More automation

EXERCISES

- \Rightarrow derive the classical contradiction rule $(\neg P\Longrightarrow False)\Longrightarrow P$ in Isabelle
- → define **nor** and **nand** in Isabelle
- \rightarrow show nor x x = nand x x

Slide 28

- → derive safe intro and elim rules for them
- \rightarrow use these in an automated proof of $\operatorname{nor} x x = \operatorname{nand} x x$