

NICTA Advanced Course

Theorem Proving Principles, Techniques, Applications

CONTENT

- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
 - Lambda Calculus
 - Higher Order Logic, natural deduction
 - Term rewriting
- → Proof & Specification Techniques
 - Datatypes, recursion, induction
 - Inductively defined sets, rule induction
 - Calculational reasoning, mathematics style proofs
 - Hoare logic, proofs about programs

→ Proof rules for propositional and predicate logic

- → Proof rules for propositional and predicate logic
- → Safe and unsafe rules

- → Proof rules for propositional and predicate logic
- → Safe and unsafe rules
- → Forward Proof

- → Proof rules for propositional and predicate logic
- → Safe and unsafe rules
- → Forward Proof
- → The Epsilon Operator

- → Proof rules for propositional and predicate logic
- → Safe and unsafe rules
- → Forward Proof
- → The Epsilon Operator
- → Some automation

WHAT IS HIGHER ORDER LOGIC?

→ Propositional Logic:

- no quantifiers
- all variables have type bool

WHAT IS HIGHER ORDER LOGIC?

→ Propositional Logic:

- no quantifiers
- all variables have type bool

→ First Order Logic:

- quantification over values, but not over functions and predicates,
- terms and formulas syntactically distinct

WHAT IS HIGHER ORDER LOGIC?

→ Propositional Logic:

- no quantifiers
- all variables have type bool

→ First Order Logic:

- quantification over values, but not over functions and predicates,
- terms and formulas syntactically distinct

→ Higher Order Logic:

- quantification over everything, including predicates
- consistency by types
- formula = term of type bool
- definition built on λ^{\rightarrow} with certain default types and constants

Default types:

bool

Default types:

bool $_{-} \Rightarrow _{-}$

Default types:

bool $_{-} \Rightarrow _{-}$ ind

Default types:

bool $_\Rightarrow_$ ind

- → bool sometimes called o
- \Rightarrow sometimes called fun

Default types:

bool $_{-} \Rightarrow _{-}$ ind

- → bool sometimes called o
- \rightarrow \Rightarrow sometimes called fun

Default Constants:

Default types:

bool $_\Rightarrow_$ ind

- → bool sometimes called o
- \rightarrow \Rightarrow sometimes called fun

Default Constants:

 \longrightarrow :: $bool \Rightarrow bool \Rightarrow bool$

Default types:

bool $_{-} \Rightarrow _{-}$ ind

- → bool sometimes called o
- \Rightarrow sometimes called fun

Default Constants:

 \longrightarrow :: $bool \Rightarrow bool \Rightarrow bool$

= :: $\alpha \Rightarrow \alpha \Rightarrow bool$

Default types:

bool $_{-} \Rightarrow _{-}$ ind

- → bool sometimes called o
- \Rightarrow sometimes called fun

Default Constants:

 \longrightarrow :: $bool \Rightarrow bool \Rightarrow bool$

= :: $\alpha \Rightarrow \alpha \Rightarrow bool$

 ϵ :: $(\alpha \Rightarrow bool) \Rightarrow \alpha$

Problem: Define syntax for binders like \forall , \exists , ε

Problem: Define syntax for binders like \forall , \exists , ε

One approach: $\forall :: var \Rightarrow term \Rightarrow bool$

Drawback: need to think about substitution, α conversion again.

Problem: Define syntax for binders like \forall , \exists , ε

One approach: $\forall :: var \Rightarrow term \Rightarrow bool$

Drawback: need to think about substitution, α conversion again.

But: Already have binder, substitution, α conversion in meta logic

 λ

Problem: Define syntax for binders like \forall , \exists , ε

One approach: $\forall :: var \Rightarrow term \Rightarrow bool$

Drawback: need to think about substitution, α conversion again.

But: Already have binder, substitution, α conversion in meta logic

 λ

So: Use λ to encode all other binders.

Example:

$$\mathsf{ALL} :: (\alpha \Rightarrow bool) \Rightarrow bool$$

HOAS

usual syntax

Example:

$$\mathsf{ALL} :: (\alpha \Rightarrow bool) \Rightarrow bool$$

HOAS

usual syntax

$$\mathsf{ALL}\;(\lambda x.\;x=2)$$

Example:

$$\mathsf{ALL} :: (\alpha \Rightarrow bool) \Rightarrow bool$$

HOAS

usual syntax

$$\mathsf{ALL}\;(\lambda x.\; x=2) \qquad \quad \forall x.\; x=2$$

$$\forall x. \ x=2$$

Example:

$$\mathsf{ALL} :: (\alpha \Rightarrow bool) \Rightarrow bool$$

HOAS

usual syntax

$$\mathsf{ALL}\;(\lambda x.\; x=2) \qquad \quad \forall x.\; x=2$$

$$\forall x. \ x = 2$$

 $\mathsf{ALL}\; P$

Example:

$$\mathsf{ALL} :: (\alpha \Rightarrow bool) \Rightarrow bool$$

HOAS usual syntax

 $\mathsf{ALL}\;(\lambda x.\; x=2) \qquad \quad \forall x.\; x=2$

 $\mathsf{ALL}\ P \qquad \qquad \forall x.\ P\ x$

Example:

$$\mathsf{ALL} :: (\alpha \Rightarrow bool) \Rightarrow bool$$

usual syntax

 $\forall x. P x$

$ALL\;(\lambda x.\;x=2)$	$\forall x. \ x=2$

HOAS

 $\mathsf{ALL}\ P$

Isabelle can translate usual binder syntax into HOAS.

→ mixfix:

consts drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("_-, _ \vdash _")

Legal syntax now: $\Gamma, \Pi \vdash F$

→ mixfix:

consts drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("_,_ _ _ ")

Legal syntax now: $\Gamma, \Pi \vdash F$

→ priorities:

pattern can be annotated with priorities to indicate binding strength

Example: drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("_-, _ \vdash _" [30, 0, 20] 60)

→ mixfix:

consts drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("_,_ \ _ ")

Legal syntax now: $\Gamma, \Pi \vdash F$

→ priorities:

pattern can be annotated with priorities to indicate binding strength

Example: drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("_, _ \vdash _" [30, 0, 20] 60)

→ infixl/infixr: short form for left/right associative binary operators

Example: or :: $bool \Rightarrow bool$ (infixr " \vee " 30)

→ mixfix:

consts drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("_-, _ \vdash _")

Legal syntax now: $\Gamma, \Pi \vdash F$

→ priorities:

pattern can be annotated with priorities to indicate binding strength

Example: drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("_, _ \vdash _" [30, 0, 20] 60)

→ infixl/infixr: short form for left/right associative binary operators

Example: or :: $bool \Rightarrow bool$ (infixr " \vee " 30)

→ binders: declaration must be of the form

 $c :: (\tau_1 \Rightarrow \tau_2) \Rightarrow \tau_3 \text{ (binder "}B")$

B x. P x translated into c P (and vice versa)

Example ALL :: $(\alpha \Rightarrow bool) \Rightarrow bool$ (binder " \forall " 10)

→ mixfix:

consts drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("_-, _ \vdash _")

Legal syntax now: $\Gamma, \Pi \vdash F$

→ priorities:

pattern can be annotated with priorities to indicate binding strength

Example: drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("_, _ \vdash _" [30, 0, 20] 60)

→ infixl/infixr: short form for left/right associative binary operators

Example: or :: $bool \Rightarrow bool \Rightarrow bool \text{ (infixr " <math>\vee$ " 30)}

→ binders: declaration must be of the form

 $c :: (\tau_1 \Rightarrow \tau_2) \Rightarrow \tau_3 \text{ (binder "}B")$

B x. P x translated into c P (and vice versa)

Example ALL :: $(\alpha \Rightarrow bool) \Rightarrow bool$ (binder " \forall " 10)

More (including pretty printing) in Isabelle Reference Manual (7.3)

BACK TO HOL

Base: $bool, \Rightarrow, ind =, \longrightarrow, \varepsilon$

And the rest is

BACK TO HOL

Base: $bool, \Rightarrow, ind =, \longrightarrow, \varepsilon$

And the rest is definitions:

$$\begin{array}{ll} \operatorname{True} & \equiv (\lambda x :: bool. \ x) = (\lambda x. \ x) \\ \operatorname{All} \ P & \equiv P = (\lambda x. \ \operatorname{True}) \\ \operatorname{Ex} \ P & \equiv \forall Q. \ (\forall x. \ P \ x \longrightarrow Q) \longrightarrow Q \\ \operatorname{False} & \equiv \forall P. \ P \\ \neg P & \equiv P \longrightarrow \operatorname{False} \\ P \wedge Q & \equiv \forall R. \ (P \longrightarrow Q \longrightarrow R) \longrightarrow R \\ P \vee Q & \equiv \forall R. \ (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R \\ \operatorname{If} \ P \ x \ y \equiv \operatorname{SOME} \ z. \ (P = \operatorname{True} \longrightarrow z = x) \wedge (P = \operatorname{False} \longrightarrow z = y) \\ \operatorname{inj} \ f & \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y \\ \operatorname{surj} \ f & \equiv \forall y. \ \exists x. \ y = f \ x \\ \end{array}$$

$$\frac{s=t \quad P \ s}{P \ t} \text{ subst } \qquad \frac{\bigwedge x. \ f \ x=g \ x}{(\lambda x. \ f \ x)=(\lambda x. \ g \ x)} \text{ ext}$$

$$\frac{s=t \quad P \ s}{P \ t} \text{ subst} \qquad \frac{\bigwedge x. \ f \ x=g \ x}{(\lambda x. \ f \ x)=(\lambda x. \ g \ x)} \text{ ext}$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \text{ impl} \qquad \frac{P \longrightarrow Q \quad P}{Q} \text{ mp}$$

$$\frac{s=t}{P}\frac{Ps}{t} \text{ subst} \qquad \frac{\bigwedge x. \ f \ x=g \ x}{(\lambda x. \ f \ x)=(\lambda x. \ g \ x)} \text{ ext}$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \text{ impl} \qquad \frac{P \longrightarrow Q}{Q} \text{ mp}$$

$$\frac{P \longrightarrow Q}{Q} \longrightarrow Q \longrightarrow (Q \longrightarrow P) \longrightarrow (P=Q) \text{ iff}$$

$$\frac{s=t \quad P \, s}{P \, t} \text{ subst} \qquad \frac{\bigwedge x. \ f \ x=g \ x}{(\lambda x. \ f \ x)=(\lambda x. \ g \ x)} \text{ ext}$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \text{ impl} \qquad \frac{P \longrightarrow Q \quad P}{Q} \text{ mp}$$

$$\overline{(P \longrightarrow Q) \longrightarrow (Q \longrightarrow P) \longrightarrow (P=Q)} \text{ iff}$$

$$\overline{P=\text{True} \lor P=\text{False}} \text{ True_or_False}$$

$$\frac{s=t}{P} \frac{Ps}{p} \text{ subst} \qquad \frac{\bigwedge x. \ f \ x=g \ x}{(\lambda x. \ f \ x)=(\lambda x. \ g \ x)} \text{ ext}$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \text{ impl} \qquad \frac{P \longrightarrow Q}{Q} \frac{P}{p} \text{ mp}$$

$$\overline{(P \longrightarrow Q) \longrightarrow (Q \longrightarrow P) \longrightarrow (P=Q)} \text{ iff}$$

$$\overline{P=\text{True} \lor P=\text{False}} \text{ True_or_False}$$

$$\frac{P ? x}{P \text{ (SOME} \ x. \ P \ x)} \text{ somel}$$

$$\frac{s=t \quad P \ s}{P \ t} \ \text{ subst } \qquad \frac{\bigwedge x. \ f \ x=g \ x}{(\lambda x. \ f \ x)=(\lambda x. \ g \ x)} \ \text{ ext }$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \ \text{impl} \qquad \frac{P \longrightarrow Q \quad P}{Q} \ \text{mp}$$

$$\overline{(P \longrightarrow Q) \longrightarrow (Q \longrightarrow P) \longrightarrow (P=Q)} \ \text{iff}$$

$$\overline{P = \text{True} \lor P = \text{False}} \ \text{True_or_False}$$

$$\frac{P \ ?x}{P \ (\text{SOME} \ x. \ P \ x)} \ \text{ somel}$$

$$\overline{\exists f :: ind \Rightarrow ind. \ \text{inj} \ f \land \neg \text{surj} \ f} \ \text{ infty}$$

THAT'S IT.

- → 3 basic constants
- → 3 basic types
- → 9 axioms

THAT'S IT.

- → 3 basic constants
- → 3 basic types
- → 9 axioms

With this you can define and derive all the rest.

THAT'S IT.

- → 3 basic constants
- → 3 basic types
- → 9 axioms

With this you can define and derive all the rest.

Isabelle knows 2 more axioms:

$$\frac{x=y}{x\equiv y}$$
 eq_reflection $\frac{x=y}{(\text{THE }x.\; x=a)=a}$ the_eq_trivial

In the following, we will

In the following, we will

→ look at the definitions in more detail

In the following, we will

- → look at the definitions in more detail
- → derive the traditional proof rules from the axioms in Isabelle

In the following, we will

- → look at the definitions in more detail
- → derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

```
lemma [name:] assumes [name_1:] "< prop >_1" assumes [name_2:] "< prop >_2" \vdots shows "< prop >" < proof >
```

In the following, we will

- → look at the definitions in more detail
- → derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

TRUE

consts True :: bool

True $\equiv (\lambda x :: bool. \ x) = (\lambda x. \ x)$

Intuition:

right hand side is always true

True 15

TRUE

consts True :: bool

True $\equiv (\lambda x :: bool. \ x) = (\lambda x. \ x)$

Intuition:

right hand side is always true

Proof Rules:

True Truel

Proof:

 $\frac{\overline{(\lambda x :: bool. \ x) = (\lambda x. \ x)}}{\mathsf{True}} \ \operatorname{refl}$ unfold True_def

DEMO

consts ALL :: $(\alpha \Rightarrow bool) \Rightarrow bool$ ALL $P \equiv P = (\lambda x. \text{ True})$

Intuition:

 \rightarrow ALL *P* is Higher Order Abstract Syntax for $\forall x. \ P \ x.$

consts ALL :: $(\alpha \Rightarrow bool) \Rightarrow bool$ ALL $P \equiv P = (\lambda x. \text{ True})$

- \rightarrow ALL *P* is Higher Order Abstract Syntax for $\forall x. \ P \ x.$
- \rightarrow P is a function that takes an x and yields a truth values.

consts ALL :: $(\alpha \Rightarrow bool) \Rightarrow bool$ ALL $P \equiv P = (\lambda x. \text{ True})$

- \rightarrow ALL *P* is Higher Order Abstract Syntax for $\forall x. \ P \ x.$
- \rightarrow P is a function that takes an x and yields a truth values.
- ightharpoonup ALL P should be true iff P yields true for all x, i.e. if it is equivalent to the function λx . True.

consts ALL :: $(\alpha \Rightarrow bool) \Rightarrow bool$ ALL $P \equiv P = (\lambda x. \text{ True})$

Intuition:

- \rightarrow ALL *P* is Higher Order Abstract Syntax for $\forall x. P x.$
- \rightarrow P is a function that takes an x and yields a truth values.
- \rightarrow ALL P should be true iff P yields true for all x, i.e. if it is equivalent to the function λx . True.

Proof Rules:

$$\frac{\bigwedge x. \ P \ x}{\forall x. \ P \ x}$$
 alll $\frac{\forall x. \ P \ x}{R}$ allE

Proof: Isabelle Demo

FALSE

 ${f consts}$ False :: bool

False $\equiv \forall P.P$

FALSE 18

FALSE

consts False :: bool

False $\equiv \forall P.P$

Intuition:

Everything can be derived from *False*.

FALSE 18-A

FALSE

consts False :: bool

False $\equiv \forall P.P$

Intuition:

Everything can be derived from False.

Proof Rules:

 $\frac{\mathsf{False}}{P} \; \mathsf{FalseE} \qquad \frac{}{\mathsf{True} \neq \mathsf{False}}$

Proof: Isabelle Demo

NEGATION

consts Not :: $bool \Rightarrow bool (\neg _)$ $\neg P \equiv P \longrightarrow \mathsf{False}$

NEGATION

consts Not :: $bool \Rightarrow bool (\neg \bot)$

$$\neg P \equiv P \longrightarrow \mathsf{False}$$

Intuition:

Try P = True and P = False and the traditional truth table for \longrightarrow .

NEGATION

consts Not :: $bool \Rightarrow bool (\neg _)$

$$\neg P \equiv P \longrightarrow \mathsf{False}$$

Intuition:

Try P = True and P = False and the traditional truth table for \longrightarrow .

Proof Rules:

$$\frac{A \Longrightarrow False}{\neg A}$$
 notl $\frac{\neg A \quad A}{P}$ notE

Proof: Isabelle Demo

$$\begin{array}{ll} \textbf{consts} \ \mathsf{EX} :: (\alpha \Rightarrow bool) \Rightarrow bool \\ \mathsf{EX} \ P \ \equiv \ \forall Q. \ (\forall x. \ P \ x \longrightarrow Q) \longrightarrow Q \end{array}$$

Intuition:

 \rightarrow EX P is HOAS for $\exists x. \ P \ x.$ (like \forall)

consts EX :: $(\alpha \Rightarrow bool) \Rightarrow bool$ EX $P \equiv \forall Q. (\forall x. P \ x \longrightarrow Q) \longrightarrow Q$

- \rightarrow EX P is HOAS for $\exists x. \ P \ x.$ (like \forall)
- → Right hand side is characterization of ∃ with ∀ and →

consts EX :: $(\alpha \Rightarrow bool) \Rightarrow bool$ EX $P \equiv \forall Q. (\forall x. P \ x \longrightarrow Q) \longrightarrow Q$

- \rightarrow EX P is HOAS for $\exists x. \ P \ x.$ (like \forall)
- → Right hand side is characterization of ∃ with ∀ and →
- \rightarrow Note that inner \forall binds wide: $(\forall x. P x \longrightarrow Q)$

consts EX :: $(\alpha \Rightarrow bool) \Rightarrow bool$ EX $P \equiv \forall Q. (\forall x. P \ x \longrightarrow Q) \longrightarrow Q$

- \rightarrow EX P is HOAS for $\exists x. \ P \ x.$ (like \forall)
- → Right hand side is characterization of ∃ with ∀ and →
- \rightarrow Note that inner \forall binds wide: $(\forall x. P x \longrightarrow Q)$
- → Remember lemma from last time:

$$(\forall x. \ P \ x \longrightarrow Q) = ((\exists x. \ P \ x) \longrightarrow Q)$$

consts EX :: $(\alpha \Rightarrow bool) \Rightarrow bool$

$$\mathsf{EX}\,P \ \equiv \ \forall Q.\ (\forall x.\ P\ x \longrightarrow Q) \longrightarrow Q$$

Intuition:

- \rightarrow EX P is HOAS for $\exists x. \ P \ x.$ (like \forall)
- → Right hand side is characterization of ∃ with ∀ and →
- \rightarrow Note that inner \forall binds wide: $(\forall x. \ P \ x \longrightarrow Q)$
- → Remember lemma from last time:

$$(\forall x. \ P \ x \longrightarrow Q) = ((\exists x. \ P \ x) \longrightarrow Q)$$

Proof Rules:

$$\frac{P?x}{\exists x. \ Px}$$
 exI $\frac{\exists x. \ Px \quad \bigwedge x. \ Px \Longrightarrow R}{R}$ exE

Proof: Isabelle Demo

CONJUNCTION

CONJUNCTION

consts And ::
$$bool \Rightarrow bool (_ \land _)$$

 $P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$

Intuition:

→ Mirrors proof rules for ∧

CONJUNCTION

consts And ::
$$bool \Rightarrow bool (_ \land _)$$

 $P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$

Intuition:

- → Mirrors proof rules for ∧
- \rightarrow Try truth table for P, Q, and R

CONJUNCTION

consts And ::
$$bool \Rightarrow bool (_ \land _)$$

 $P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$

Intuition:

- → Mirrors proof rules for ∧
- \rightarrow Try truth table for P, Q, and R

Proof Rules:

$$\frac{A \quad B}{A \wedge B} \text{ conjl} \qquad \frac{A \wedge B \quad \llbracket A;B \rrbracket \Longrightarrow C}{C} \text{ conjE}$$

Proof: Isabelle Demo

consts Or ::
$$bool \Rightarrow bool \mathrel{(_ \lor _)}$$

 $P \lor Q \equiv \forall R. \; (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$

consts Or ::
$$bool \Rightarrow bool (_ \lor _)$$

 $P \lor Q \equiv \forall R. (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$

Intuition:

→ Mirrors proof rules for ∨ (case distinction)

consts Or ::
$$bool \Rightarrow bool (_ \lor _)$$

 $P \lor Q \equiv \forall R. (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$

Intuition:

- → Mirrors proof rules for ∨ (case distinction)
- \rightarrow Try truth table for P, Q, and R

consts Or ::
$$bool \Rightarrow bool (_ \lor _)$$

 $P \lor Q \equiv \forall R. (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$

Intuition:

- → Mirrors proof rules for ∨ (case distinction)
- \rightarrow Try truth table for P, Q, and R

Proof Rules:

$$\frac{A}{A \vee B} \; \frac{B}{A \vee B} \; \text{disjl1/2} \qquad \frac{A \vee B}{C} \; \stackrel{A \longrightarrow C}{\longrightarrow} \; C \; \stackrel{B \longrightarrow C}{\longrightarrow} \; C \; \text{disjE}$$

Proof: Isabelle Demo

consts If :: $bool \Rightarrow \alpha \Rightarrow \alpha \Rightarrow \alpha$ (if_then_else_) If $P \ x \ y \equiv \mathsf{SOME} \ z. \ (P = \mathsf{True} \longrightarrow z = x) \land (P = \mathsf{False} \longrightarrow z = y)$

consts If ::
$$bool \Rightarrow \alpha \Rightarrow \alpha \Rightarrow \alpha$$
 (if_ then _ else _)
If $P \ x \ y \equiv \mathsf{SOME} \ z. \ (P = \mathsf{True} \longrightarrow z = x) \land (P = \mathsf{False} \longrightarrow z = y)$

Intuition:

 \rightarrow for P = True, right hand side collapses to SOME z. z = x

consts If ::
$$bool \Rightarrow \alpha \Rightarrow \alpha \text{ (if_then_else_)}$$

If $P \ x \ y \equiv \mathsf{SOME} \ z. \ (P = \mathsf{True} \longrightarrow z = x) \land (P = \mathsf{False} \longrightarrow z = y)$

Intuition:

- \rightarrow for P = True, right hand side collapses to SOME z. z = x
- \rightarrow for P = False, right hand side collapses to SOME z. z = y

consts If ::
$$bool \Rightarrow \alpha \Rightarrow \alpha \text{ (if_then_else_)}$$

If $P \ x \ y \equiv \mathsf{SOME} \ z. \ (P = \mathsf{True} \longrightarrow z = x) \land (P = \mathsf{False} \longrightarrow z = y)$

Intuition:

- \rightarrow for P = True, right hand side collapses to SOME z. z = x
- \rightarrow for P = False, right hand side collapses to SOME z. z = y

Proof Rules:

$$\frac{1}{\text{if True then } s \text{ else } t = s} \text{ if True} \qquad \frac{1}{\text{if False then } s \text{ else } t = t} \text{ if False}$$

Proof: Isabelle Demo

THAT WAS HOL

Last time: safe and unsafe rule, heuristics: use safe before unsafe

More on Automation 25

Last time: safe and unsafe rule, heuristics: use safe before unsafe

This can be automated

MORE ON AUTOMATION 25-A

Last time: safe and unsafe rule, heuristics: use safe before unsafe

This can be automated

Syntax:

[<kind>!] for safe rules (<kind> one of intro, elim, dest)

[<kind>] for unsafe rules

More on Automation 25-c

Last time: safe and unsafe rule, heuristics: use safe before unsafe

This can be automated

Syntax:

[<kind>!] for safe rules (<kind> one of intro, elim, dest)

[<kind>] for unsafe rules

Application (roughly):

do safe rules first, search/backtrack on unsafe rules only

MORE ON AUTOMATION 25-D

Last time: safe and unsafe rule, heuristics: use safe before unsafe

This can be automated

Syntax:

[<kind>!] for safe rules (<kind> one of intro, elim, dest)
[<kind>] for unsafe rules

Application (roughly):

do safe rules first, search/backtrack on unsafe rules only

Example:

declare attribute globally remove attribute gloabllay use locally delete locally

declare conjl [intro!] allE [elim] declare allE [rule del] apply (blast intro: somel) apply (blast del: conjl)

DEMO: AUTOMATION

→ Defining HOL

- → Defining HOL
- → Higher Order Abstract Syntax

- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules

- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules
- → More automation

EXERCISES

- ightharpoonup derive the classical contradiction rule $(\neg P \Longrightarrow False) \Longrightarrow P$ in Isabelle
- → define **nor** and **nand** in Isabelle
- \rightarrow show nor x x = nand x x
- → derive safe intro and elim rules for them
- \rightarrow use these in an automated proof of | nor x| x = | nand x| x