NATIONAL
ICT AUSTRALIA

LIMITED

NICTA Advanced Course

Theorem Proving
Principles, Techniques, Applications

HOL

[

[Foundations & Principles

Higher Order Logic, natural deduction

CONTENT

[J Proof rules for propositional and predicate logic

LAST TIME ON HOL

[J Proof rules for propositional and predicate logic

[1 Safe and unsafe rules

LAST TIME ON HOL

3-A

[J Proof rules for propositional and predicate logic
[1 Safe and unsafe rules

[1 Forward Proof

LAST TIME ON HOL

Proof rules for propositional and predicate logic

[
[1 Safe and unsafe rules
[1 Forward Proof

[

The Epsilon Operator

LAST TIME ON HOL

3-C

Proof rules for propositional and predicate logic
Safe and unsafe rules
Forward Proof

The Epsilon Operator

N O A A B B

Some automation

LAST TIME ON HOL

3-D

DEFINING HIGHER ORDER LOGIC

WHAT IS HIGHER ORDER LOGIC?

[J Propositional Logic:
e NO quantifiers

e all variables have type bool

WHAT IS HIGHER ORDER LOGIC?

[J Propositional Logic:
e NO quantifiers

e all variables have type bool

[J First Order Logic:
e (uantification over values, but not over functions and predicates,

e terms and formulas syntactically distinct

WHAT IS HIGHER ORDER LOGIC?

5-A

[J Propositional Logic:
e NO quantifiers

e all variables have type bool

[J First Order Logic:
e (uantification over values, but not over functions and predicates,

e terms and formulas syntactically distinct

[0 Higher Order Logic:
e (uantification over everything, including predicates
e consistency by types
e formula = term of type bool

e definition built on A™ with certain default types and constants

WHAT IS HIGHER ORDER LOGIC?

DEFINING HIGHER ORDER LOGIC

Default types:

bool

DEFINING HIGHER ORDER LOGIC

DEFINING HIGHER ORDER LOGIC

Default types:

bool o=

DEFINING HIGHER ORDER LOGIC

DEFINING HIGHER ORDER LOGIC

Default types:

bool = Ind

DEFINING HIGHER ORDER LOGIC

6-C

DEFINING HIGHER ORDER LOGIC

Default types:

bool

[1 bool sometimes called o

[1 = sometimes called fun

=

Ind

DEFINING HIGHER ORDER LOGIC

Default types:

bool

[1 bool sometimes called o

[1 = sometimes called fun

Default Constants:

=

Ind

DEFINING HIGHER ORDER LOGIC

Default types:

bool = Ind

[1 bool sometimes called o

[1 = sometimes called fun

Default Constants:

—— 2 bool = bool = bool

DEFINING HIGHER ORDER LOGIC 6-F

Default types:

bool = Ind

[1 bool sometimes called o

[1 = sometimes called fun

Default Constants:

—— 2 bool = bool = bool
a = o = bool

DEFINING HIGHER ORDER LOGIC 6-G

Default types:

bool = Ind

[1 bool sometimes called o

[1 = sometimes called fun

Default Constants:

—— 2 bool = bool = bool
— a = o = bool
€ : (a=bool) = «

DEFINING HIGHER ORDER LOGIC

HIGHER ORDER ABSTRACT SYNTAX

Problem: Define syntax for binders like V, 3,

HIGHER ORDER ABSTRACT SYNTAX

Problem: Define syntax for binders like V, 3,

One approach: V :: var = term = bool
Drawback: need to think about substitution, o conversion again.

HIGHER ORDER ABSTRACT SYNTAX

7-A

Problem: Define syntax for binders like V, 3,

One approach: V :: var = term = bool
Drawback: need to think about substitution, o conversion again.

But: Already have binder, substitution, o conversion in meta logic

A

HIGHER ORDER ABSTRACT SYNTAX

Problem: Define syntax for binders like V, 3,

One approach: V :: var = term = bool
Drawback: need to think about substitution, o conversion again.

But: Already have binder, substitution, o conversion in meta logic

A

So: Use)\ to encode all other binders.

HIGHER ORDER ABSTRACT SYNTAX

7-C

HIGHER ORDER ABSTRACT SYNTAX

Example:
ALL :: (a = bool) = bool

HOAS usual syntax

HIGHER ORDER ABSTRACT SYNTAX

HIGHER ORDER ABSTRACT SYNTAX

Example:
ALL :: (a = bool) = bool

HOAS usual syntax

ALL (A\x. x = 2)

HIGHER ORDER ABSTRACT SYNTAX

8-A

HIGHER ORDER ABSTRACT SYNTAX

Example:
ALL :: (a = bool) = bool

HOAS usual syntax

ALL (A\x. x = 2) Ve, x =2

HIGHER ORDER ABSTRACT SYNTAX

HIGHER ORDER ABSTRACT SYNTAX

Example:
ALL :: (a = bool) = bool

HOAS usual syntax
ALL (A\x. x = 2) Ve, x =2
ALL P

HIGHER ORDER ABSTRACT SYNTAX

8-C

HIGHER ORDER ABSTRACT SYNTAX

Example:
ALL :: (a = bool) = bool

HOAS usual syntax
ALL (A\x. x = 2) Ve, x =2
ALL P Vr. P x

HIGHER ORDER ABSTRACT SYNTAX

Example:
ALL :: (o« = bool) = bool

HOAS usual syntax
ALL (\z. x = 2) V. r =2
ALL P Vr. P x

Isabelle can translate usual binder syntax into HOAS.

HIGHER ORDER ABSTRACT SYNTAX

SIDE TRACK: SYNTAX DECLARATIONS IN ISABELLE

O mixfix:
consts drvbl :: ¢t = ¢t = fm = bool ("_,_ F)
Legal syntax now: I'1I+ F

SIDE TRACK: SYNTAX DECLARATIONS IN ISABELLE

SIDE TRACK: SYNTAX DECLARATIONS IN ISABELLE

O mixfix:
consts drvbl :: ¢t = ¢t = fm = bool ("_,_ F)
Legal syntax now: I'1I+ F

[1 priorities:
pattern can be annotated with priorities to indicate binding strength
Example: drvbl:: ct = ct = fm = bool (”_,_ F 2 [30,0,20] 60)

SIDE TRACK: SYNTAX DECLARATIONS IN ISABELLE

9-A

O mixfix:
consts drvbl :: ¢t = ¢t = fm = bool ("_,_ F)
Legal syntax now: I'1I+ F

[1 priorities:
pattern can be annotated with priorities to indicate binding strength
Example: drvbl:: ct = ct = fm = bool (”_,_ F 2 [30,0,20] 60)

[infixl/infixr: short form for left/right associative binary operators
Example: or :: bool = bool = bool (infixr” V7 30)

SIDE TRACK: SYNTAX DECLARATIONS IN ISABELLE

9-B

O mixfix:
consts drvbl :: ¢t = ¢t = fm = bool ("_,_ F)
Legal syntax now: I'1I+ F

[1 priorities:
pattern can be annotated with priorities to indicate binding strength
Example: drvbl:: ct = ct = fm = bool (”_,_ F 2 [30,0,20] 60)

[infixl/infixr: short form for left/right associative binary operators
Example: or :: bool = bool = bool (infixr” V7 30)

[1 binders: declaration must be of the form
c: (11 = 1) = 73 (binder”B” <p>)
B z. P x translated into ¢ P (and vice versa)
Example ALL :: (o = bool) = bool (binder”V” 10)

SIDE TRACK: SYNTAX DECLARATIONS IN ISABELLE

9-c

O mixfix:
consts drvbl :: ¢t = ¢t = fm = bool ("_,_ F)
Legal syntax now: I'1I+ F

[1 priorities:
pattern can be annotated with priorities to indicate binding strength
Example: drvbl:: ct = ct = fm = bool (”_,_ F 2 [30,0,20] 60)

[infixl/infixr: short form for left/right associative binary operators
Example: or :: bool = bool = bool (infixr” V7 30)

[1 binders: declaration must be of the form
c: (11 = 1) = 73 (binder”B” <p>)
B z. P x translated into ¢ P (and vice versa)
Example ALL :: (o = bool) = bool (binder”V” 10)

More (including pretty printing) in Isabelle Reference Manual (7.3)

SIDE TRACK: SYNTAX DECLARATIONS IN ISABELLE 9-D

Base: bool, =, 1nd

And therest Is

BAck TO HOL

10

Base: bool, =, ind =, —, €
And the rest is definitions:

True = Az ::bool.) = (A\zx. x)

Al P = P = (Az. True)

ExP =VQ.(Vz. Px — Q) — Q

False =VP. P

- P = P — False

PANQ =VR.(P—Q—R) —R

Pv@ =VR.(P—R)— (— R)— R

If Pxy=SOMEz. (P =True — z=2x) A\ (P = False — z = y)
inj f =Vey. fe=fy—zxz=y

surj f =VYy.dr.y=fzx

BAck TO HOL 10-A

T—1 refl

s=t Ps

Pt

subst

Nzx. fe=gx

(Ax. fx)=(Ax. gx)

ext

THE AXIOMS OF HOL

11

s=t Ps Ne. fe=gu

t=t refl Pt subst (Ax. fx)=(Ax. gx) ext
P=qQ . P—Q P
Impl m
P—0 P 0 P

THE AXIOMS OF HOL 11-A

s=t Ps Ne. fe=gu

t=t refl Pt subst (Ax. fx)=(Ax. gx) ext
P=qQ . P—Q P
Impl m
P—0 P 0 P

P —Q —@Q —p) —@=q "

THE AXIOMS OF HOL 11-B

P— refl Py subst O [2) = (\e. g o) ext
P=qQ . P—Q@ P
Impl m

P — True v P — False True_or_False

THE AXiIoMs oF HOL e

P— refl Py subst O [2) = (\e. g o) ext
P=qQ . P—Q@ P
Impl m

P — True v P — False True_or_False

P’z
P (SOME z. P x)

somel

THE AXiIoMs oF HOL

11-D

P— refl Py subst O [2) = (\e. g o) ext
P=qQ . P—Q@ P
Impl m

P — True v P — False True_or_False

P’z
P (SOME z. P x)

somel

3f ::ind = ind. inj f A —surj f Infty

THE AXiIoms oF HOL e

[1 3 basic constants
[1 3 basic types

1 9 axioms

THAT'S IT.

12

[1 3 basic constants
[1 3 basic types

1 9 axioms

With this you can define and derive all the rest.

THAT’'S IT. 12-A

[1 3 basic constants
[1 3 basic types

1 9 axioms

With this you can define and derive all the rest.

Isabelle knows 2 more axioms:

r =1y foct
r =y S4U-r€ ection (THExz. 2 =a) =a

the_eq_trivial

THAT'S IT.

12-B

DEMO: THE DEFINITIONS IN ISABELLE

13

DERIVING PROOF RULES

In the following, we will

DERIVING PROOF RULES

14

In the following, we will

[1 look at the definitions in more detall

DERIVING PROOF RULES 14-A

In the following, we will
[1 look at the definitions in more detall

[1 derive the traditional proof rules from the axioms in Isabelle

DERIVING PROOF RULES

14-B

In the following, we will
[1 look at the definitions in more detall

[1 derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

lemma [name :]
assumes [name; :] "< prop >1”
assumes [names :] "< prop >3”

shows” < prop >7 < proof >

DERIVING PROOF RULES

14-c

In the following, we will
[1 look at the definitions in more detalil
[1 derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

lemma [name :]
assumes [name; :] "< prop >1”
assumes [names :] "< prop >3”

shows” < prop >7 < proof >

proves: [< prop >1;< prop >o;...]| =< prop >

DERIVING PROOF RULES

14-D

TRUE

consts True :: bool
True = (Ax :: bool. x) = (A\z. x)

Intuition:
right hand side is always true

15

consts True :: bool
True = (Ax :: bool. x) = (A\z. x)

Intuition:
right hand side is always true

Proof Rules:

Truel
True

Proof:

refl

(Az :: bool. x) = (Ax. x)
unfold True_def

True

TRUE 15-A

16

UNIVERSIAL QUANTIFIER

consts ALL :: (a = bool) = bool
ALL P = P = (Ax. True)

UNIVERSIAL QUANTIFIER

17

consts ALL :: (a = bool) = bool
ALLP = P = (A\x. True)

Intuition:

[1 ALL P is Higher Order Abstract Syntax for Vx. P x.

UNIVERSIAL QUANTIFIER 17-A

consts ALL :: (a = bool) = bool
ALLP = P = (A\x. True)

Intuition:

[1 ALL P is Higher Order Abstract Syntax for Vx. P x.
[1 P is a function that takes an = and yields a truth values.

UNIVERSIAL QUANTIFIER

17-B

consts ALL :: (a = bool) = bool
ALLP = P = (A\x. True)

Intuition:

[1 ALL P is Higher Order Abstract Syntax for Vx. P x.
[1 P is a function that takes an = and yields a truth values.

[0 ALL P should be true iff P yields true for all x, i.e.
if it is equivalent to the function A\x. True.

UNIVERSIAL QUANTIFIER 17-c

consts ALL :: (a = bool) = bool
ALLP = P = (A\x. True)

Intuition:

[1 ALL P is Higher Order Abstract Syntax for Vx. P x.
[1 P is a function that takes an = and yields a truth values.

[0 ALL P should be true iff P yields true for all x, i.e.
if it is equivalent to the function A\x. True.

Proof Rules:
Nx. Px g Yz Pe Plu=R
Vo. P x R

Proof: Isabelle Demo

UNIVERSIAL QUANTIFIER

17-D

FALSE

consts False :: bool
False = VP.P

18

consts False :: bool
False = VP.P

Intuition:
Everything can be derived from False.

FALSE 18-A

FALSE

consts False :: bool
False = VP.P

Intuition:
Everything can be derived from False.

Proof Rules:
False FalseE

P True # False

Proof: Isabelle Demo

18-B

consts Not :: bool = bool (— _)
- P =P — False

NEGATION

19

consts Not :: bool = bool (— _)
- P =P — False

Intuition:
Try P = True and P = False and the traditional truth table for —.

NEGATION 19-A

consts Not :: bool = bool (— _)
- P =P — False

Intuition:
Try P = True and P = False and the traditional truth table for —.

Proof Rules:

A = False ol -A A
—-A P

notE

Proof: Isabelle Demo

NEGATION

19-B

EXISTENTIAL QUANTIFIER

consts EX :: (a = bool) = bool
EXP = VQ. (V. Pz — Q) — Q

EXISTENTIAL QUANTIFIER

20

consts EX :: (a = bool) = bool
EXP = VQ. V. Pz — Q) — @

Intuition:

[0 EX Pis HOAS for dx. P x. (like V)

EXISTENTIAL QUANTIFIER 20-A

consts EX :: (a = bool) = bool
EXP = VQ. V. Pz — Q) — @

Intuition:

[1 EX P is HOAS for dz. P x. (like V)
[1 Right hand side is characterization of 4 with V and —

EXISTENTIAL QUANTIFIER

20-B

consts EX :: (a = bool) = bool
EXP = VQ. V. Pz — Q) — @

Intuition:

[0 EX Pis HOAS for dx. P x. (like V)
[1 Right hand side is characterization of 4 with V and —
[0 Note that inner V binds wide: (Vx. Pz — Q)

EXISTENTIAL QUANTIFIER 20-C

consts EX :: (a = bool) = bool
EXP = VQ. V. Pz — Q) — @

Intuition:

[]

[]
[]
[]

EX P is HOAS for dx. P x. (like V)
Right hand side is characterization of 4 with V and —
Note that inner V binds wide: (Vx. P z — Q)

Remember lemma from last time:
V. Pr — Q)= ((Jz. Pz) — Q)

EXISTENTIAL QUANTIFIER

20-D

consts EX :: (a = bool) = bool
EXP = VQ. V. Pz — Q) — @

Intuition:

[0 EX Pis HOAS for dx. P x. (like V)

[1 Right hand side is characterization of 4 with V and —
[0 Note that inner V binds wide: (Vx. Pz — Q)
[]

Remember lemma from last time:
V. Pr — Q)= ((Jz. Pz) — Q)

Proof Rules:
P 7 dr.Px Nz. Px=— R
9 P ex| 2 exkE

Proof: Isabelle Demo

EXISTENTIAL QUANTIFIER

20-E

consts And :: bool = bool = bool (- N _)
PANQ=VR.(P—Q—R)— R

CONJUNCTION

21

consts And :: bool = bool = bool (- N _)
PANQ=VR.(P—Q—R)— R

Intuition:

[1 Mirrors proof rules for A

CONJUNCTION 21-A

consts And :: bool = bool = bool (- N _)
PANQ=VR.(P—Q—R)— R

Intuition:

[1 Mirrors proof rules for A
(1 Try truth table for P, @, and R

CONJUNCTION 21-B

consts And :: bool = bool = bool (- N _)
PANQ=VR.(P—Q—R)— R

Intuition:

[1 Mirrors proof rules for A
(1 Try truth table for P, @, and R

Proof Rules:
A B _ ANB [A;B]=C _
N conjl C conjE

Proof: Isabelle Demo

CONJUNCTION 21-C

consts Or :: bool = bool = bool (- V)
PvQ=VR.(P—R)— (Q — R) — R

DISJUNCTION

22

consts Or :: bool = bool = bool (- V)
PvQ=VR.(P—R)— (Q — R) — R

Intuition:

[1 Mirrors proof rules for Vv (case distinction)

DISJUNCTION 22-A

consts Or :: bool = bool = bool (- V)
PvQ=VR.(P—R)— (Q — R) — R

Intuition:

[1 Mirrors proof rules for Vv (case distinction)
(1 Try truth table for P, @, and R

DISJUNCTION

22-B

consts Or :: bool = bool = bool (- V)
PvQ=VR.(P—R)— (Q — R) — R

Intuition:

[1 Mirrors proof rules for Vv (case distinction)
(1 Try truth table for P, @, and R

Proof Rules:
A B . AVB A=—(C B=—CC ..
AVE AVE disjl1/2 C disjE

Proof: Isabelle Demo

DISJUNCTION 22-C

consts If :: bool = a = a = « (if_then _else _)
If Pxy = SOME z. (P = True — z =) A (P = False — z = y)

IF-THEN-ELSE

23

consts If :: bool = a = a = « (if_then _else _)
If Pxy = SOME z. (P = True — z =) A (P = False — z = y)

Intuition:

[1 for P = True, right hand side collapses to SOME z. z = x

IF-THEN-ELSE 23-A

consts If :: bool = a = a = « (if_then _else _)
If Pxy = SOME z. (P = True — z =) A (P = False — z = y)

Intuition:

[1 for P = True, right hand side collapses to SOME z. z = x
[for P = False, right hand side collapses to SOME z. z =y

IF-THEN-ELSE

23-B

consts If :: bool = a = a = « (if_then _else _)
If Pxy = SOME z. (P = True — z =) A (P = False — z = y)

Intuition:

[1 for P = True, right hand side collapses to SOME z. z = x
[for P = False, right hand side collapses to SOME z. z =y

Proof Rules:

if True then selset = s frue if False then selset =t ifFalse

Proof: Isabelle Demo

IF-THEN-ELSE

23-C

THAT WAS HOL

24

Last time: safe and unsafe rule, heuristics: use safe before unsafe

MORE ON AUTOMATION

25

Last time: safe and unsafe rule, heuristics: use safe before unsafe

This can be automated

MORE ON AUTOMATION 25-A

Last time: safe and unsafe rule, heuristics: use safe before unsafe

This can be automated

Syntax:
|<kind>!] for safe rules (<kind> one of intro, elim, dest)
[<kind>] for unsafe rules

MORE ON AUTOMATION 25-C

Last time: safe and unsafe rule, heuristics: use safe before unsafe

This can be automated

Syntax:
|<kind>!] for safe rules (<kind> one of intro, elim, dest)
[<kind>] for unsafe rules

Application (roughly):
do safe rules first, search/backtrack on unsafe rules only

MORE ON AUTOMATION

25-D

Last time: safe and unsafe rule, heuristics: use safe before unsafe

This can be automated

Syntax:
|<kind>!] for safe rules (<kind> one of intro, elim, dest)
[<kind>] for unsafe rules

Application (roughly):
do safe rules first, search/backtrack on unsafe rules only

Example:

declare attribute globally declare conjl [intro!] allE [elim]
remove attribute gloabllay declare allE [rule del]

use locally apply (blast intro: somel)
delete locally apply (blast del: conjl)

MORE ON AUTOMATION 25-E

DEMO: AUTOMATION

26

WE HAVE LEARNED TODAY ...

[1 Defining HOL

WE HAVE LEARNED TODAY ...

27

WE HAVE LEARNED TODAY ...

[1 Defining HOL

[1 Higher Order Abstract Syntax

WE HAVE LEARNED TODAY ... 27-A

[1 Defining HOL
[1 Higher Order Abstract Syntax

[1 Deriving proof rules

WE HAVE LEARNED TODAY ...

27-B

Defining HOL
Higher Order Abstract Syntax

Deriving proof rules

N I N R

More automation

WE HAVE LEARNED TODAY ... 27-C

I I N B

derive the classical contradiction rule (—P = False) = P in
Isabelle

define nor and nand in Isabelle
show norxx = nandzxz x
derive safe intro and elim rules for them

use these in an automated proof of norzz = nandz x

EXERCISES

28

