
Slide 1

NICTA Advanced Course

Theorem Proving

Principles, Techniques, Applications

HOL

Slide 2

QUASI ORDERS

. :: α ⇒ α ⇒ bool

is a quasi order iff it satisfies

x . x (reflexivity) and

x . y ∧ y . z =⇒ x . z (transitivity)

(a partial order is also antisymmetric: x ≤ y ∧ y ≤ x =⇒ x = y)

CONTENT 1

Slide 3

CONTENT

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Datatypes, recursion, induction

• Inductively defined sets, rule induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs

Slide 4

LAST TIME ON HOL

➜ natural deduction rules for ∧, ∨ and −→

➜ proof by assumption

➜ proof by intro rule

➜ proof by elim rule

2

Slide 5 MORE PROOF RULES

Slide 6

IFF, NEGATION, TRUE AND FALSE

A =⇒ B B =⇒ A
A = B

iffi
A = B [[A −→ B; B −→ A]] =⇒ C

C
iffE

A = B
A =⇒ B

iffD1
A = B

B =⇒ A
iffD2

A =⇒ False
¬A

notI
¬A A

P
notE

True TrueI
False

P
FalseE

EQUALITY 3

Slide 7

EQUALITY

t = t
refl

s = t
t = s

sym r = s s = t
r = t

trans

s = t P s
P t

subst

Rarely needed explicitly — used implicitly by term rewriting

Slide 8 DEMO

CLASSICAL 4

Slide 9

CLASSICAL

P = True ∨ P = False
True-False

P ∨ ¬P
excluded-middle

¬A =⇒ False
A

ccontr ¬A =⇒ A
A

classical

➜ excluded-middle, ccontr and classical
not derivable from the other rules.

➜ if we include True-False, they are derivable

They make the logic “classical”, “non-constructive”

Slide 10

CASES

P ∨ ¬P
excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case tac term)

SAFE AND NOT SO SAFE 5

Slide 11

SAFE AND NOT SO SAFE

Safe rules preserve provability

conjI, impI, notI, iffi, refl, ccontr, classical, conjE, disjE

A B
A ∧ B

conjI

Unsafe rules can turn a provable goal into an unprovable one

disjI1, disjI2, impE, iffD1, iffD2, notE

A
A ∨ B

disjI1

Apply safe rules before unsafe ones

Slide 12 DEMO

6

Slide 13 QUANTIFIERS

Slide 14

SCOPE

• Scope of parameters: whole subgoal

• Scope of ∀, ∃, . . .: ends with ; or =⇒

Example:
∧

x y. [[∀y. P y −→ Q z y; Q x y]] =⇒ ∃x. Q x y

means

∧
x y. [[(∀y1. P y1 −→ Q z y1); Q x y]] =⇒ (∃x1. Q x1 y)

NATURAL DEDUCTION FOR QUANTIFIERS 7

Slide 15

NATURAL DEDUCTION FOR QUANTIFIERS

∧
x. P x

∀x. P x
allI

∀x. P x P ?x =⇒ R
R

allE

P ?x
∃x. P x

exI
∃x. P x

∧
x. P x =⇒ R

R
exE

• allI and exE introduce new parameters (
∧

x).

• allE and exI introduce new unknowns (?x).

Slide 16

INSTANTIATING RULES

apply (rule tac x = ”term” in rule)

Like rule, but ?x in rule is instantiated by term before application.

Similar: erule tac

! x is in rule, not in goal !

TWO SUCCESSFUL PROOFS 8

Slide 17

TWO SUCCESSFUL PROOFS

1. ∀x. ∃y. x = y

apply (rule allI)

1.
∧

x. ∃y. x = y

best practice exploration

apply (rule tac x = ”x” in exI) apply (rule exI)

1.
∧

x. x = x 1.
∧

x. x = ?y x

apply (rule refl) apply (rule refl)

?y 7→ λu.u

simpler & clearer shorter & trickier

Slide 18

TWO UNSUCCESSFUL PROOFS

1. ∃y. ∀x. x = y

apply (rule tac x = ??? in exI) apply (rule exI)

1. ∀x. x = ?y

apply (rule allI)

1.
∧

x. x = ?y

apply (rule refl)

?y 7→ x yields
∧

x′.x′ = x

Principle:

?f x1 . . . xn can only be replaced by term t

if params(t) ⊆ x1, . . . , xn

SAFE AND UNSAFE RULES 9

Slide 19

SAFE AND UNSAFE RULES

Safe allI, exE

Unsafe allE, exI

Create parameters first, unknowns later

Slide 20 DEMO: QUANTIFIER PROOFS

PARAMETER NAMES 10

Slide 21

PARAMETER NAMES

Parameter names are chosen by Isabelle

1. ∀ x. ∃y. x = y

apply (rule allI)
1.

∧
x. ∃y. x = y

apply (rule tac x = ”x” in exI)

Brittle!

Slide 22

RENAMING PARAMETERS

1. ∀x. ∃y. x = y

apply (rule allI)

1.
∧

x. ∃y. x = y

apply (rename tac N)
1.

∧
N. ∃y. N = y

apply (rule tac x = ”N” in exI)

In general:
(rename tac x1 . . . xn) renames the rightmost (inner) n

parameters to x1 . . . xn

FORWARD PROOF: FRULE AND DRULE 11

Slide 23

FORWARD PROOF: FRULE AND DRULE

apply (frule < rule >)

Rule: [[A1; . . . ; Am]] =⇒ A

Subgoal: 1. [[B1; . . . ; Bn]] =⇒ C

Substitution: σ(Bi) ≡ σ(A1)

New subgoals: 1. σ([[B1; . . . ; Bn]] =⇒ A2)
...
m-1. σ([[B1; . . . ; Bn]] =⇒ Am)

m. σ([[B1; . . . ; Bn; A]] =⇒ C)

Like frule but also deletes Bi: apply (drule < rule >)

Slide 24

EXAMPLES FOR FORWARD RULES

P ∧ Q

P
conjunct1

P ∧ Q

Q
conjunct2

P −→ Q P

Q
mp

∀x. P x
P ?x

spec

FORWARD PROOF: OF 12

Slide 25

FORWARD PROOF: OF

r [OF r1 . . . rn]

Prove assumption 1 of theorem r with theorem r1, and
assumption 2 with theorem r2, and . . .

Rule r [[A1; . . . ; Am]] =⇒ A

Rule r1 [[B1; . . . ; Bn]] =⇒ B

Substitution σ(B) ≡ σ(A1)

r [OF r1] σ([[B1; . . . ; Bn; A2; . . . ; Am]] =⇒ A)

Slide 26

FORWARD PROOFS: THEN

r1 [THEN r2] means r2 [OF r1]

13

Slide 27 DEMO: FORWARD PROOFS

Slide 28

HILBERT’S EPSILON OPERATOR

(David Hilbert, 1862-1943)

ε x. Px is a value that satisfies P (if such a value exists)

ε also known as description operator.
In Isabelle the ε-operator is written SOME x. P x

P ?x
P (SOME x. P x)

someI

MORE EPSILON 14

Slide 29

MORE EPSILON

ε implies Axiom of Choice:

∀x. ∃y. Q x y =⇒ ∃f. ∀x. Q x (f x)

Existential and universial quantification can be defined with ε.

Isabelle also know the definite description operator THE (also ι):

(THE x. x = a) = a
the eq trivial

Slide 30

SOME AUTOMATION

More Proof Methods:

apply (intro <intro-rules>) repeatedly applies intro rules

apply (elim <elim-rules>) repeatedly applies elim rules

apply clarify applies all safe rules
that do not split the goal

apply safe applies all safe rules

apply blast an automatic tableaux prover
(works well on predicate logic)

apply fast another automatic search tactic

15

Slide 31 EPSILON AND AUTOMATION DEMO

Slide 32

WE HAVE LEARNED SO FAR...

➜ Proof rules for negation and contradiction

➜ Proof rules for predicate calculus

➜ Safe and unsafe rules

➜ Forward Proof

➜ The Epsilon Operator

➜ Some automation

EXERCISES 16

Slide 33

EXERCISES

➜ Download the exercise file and prove all theorems in there.

➜ Prove or disprove:

If every poor person has a rich mother, then there is a rich person with

a rich grandmother.

EXERCISES 17

