NATIONAL
ICT AUSTRALIA

LIMITED

NICTA Advanced Course

Theorem Proving
Principles, Techniques, Applications

HOL

< :a= a= bool

IS a quasi order iff it satisfies

x < x (reflexivity) and

r<yANy S z= z < z (transitivity)

QuAsiI ORDERS

< :a= a= bool

IS a quasi order iff it satisfies

x < x (reflexivity) and

r<yANy S z= z < z (transitivity)

(a partial order is also antisymmetric: x < y Ay <z — = = y)

QuAsiI ORDERS

2-A

[

[Foundations & Principles

Higher Order Logic, natural deduction

CONTENT

[1 natural deduction rules for A, V and —

LAST TIME ON HOL

[1 natural deduction rules for A, V and —

[] proof by assumption

LAST TIME ON HOL

4-A

[1 natural deduction rules for A, V and —

[] proof by assumption

[1 proof by intro rule

LAST TIME ON HOL

[1 natural deduction rules for A, V and —

[] proof by assumption

[1 proof by intro rule

[J proof by elim rule

LAST TIME ON HOL

4-c

MORE PROOF RULES

Iffi IffE

IFF, NEGATION, TRUE AND FALSE

A=—B B=—A ™
A1—h Iffi

IffD1

) notl|

IffE

IFF, NEGATION, TRUE AND FALSE

6-A

A—B B—A . A=B [A—BB—A]l=C
1= 5 Iffi

IffE

IffD1 IffD2

) notl|

IFF, NEGATION, TRUE AND FALSE 6-B

A=—B B=—A ...

1= 5 1ffi
A=L p1
) notl

A=EHB

[A— B;B— Al = C

C

A=DB .
— IffD2

notkE

IffE

IFF, NEGATION, TRUE AND FALSE

6-C

A—B B—A . A=B [A—BB—A]l=C

1= 5 Iffi C IffE
A=L p1 A=L D2
A ::jalse notl ﬁAP notE

IFF, NEGATION, TRUE AND FALSE 6-D

A—B B—A . A=B [A—BB—A]l=C

1= 5 Iffi C IffE
A=L p1 A=L D2
A ::jalse notl ﬁAP A hote

IFF, NEGATION, TRUE AND FALSE 6-E

A—B B—A . A=B [A—BB—A]l=C

1= 5 Iffi C IffE
A=L D1 A=L D2
4 ::jalse notl ﬁAP 4 hote
Trie Truel Fa}ljse FalseE

IFF, NEGATION, TRUE AND FALSE 6-F

S=lgum =8 5=1 yans

—t:trefl o

|
~

EQUALITY

E refl

s =1

sym
t=s y

s=t Ps

Pt

r=3s

s =1
frans

subst

EQUALITY

7-A

=1 trans

sym

i=¢ =

|
~ |

s=t Ps
Pt

subst

Rarely needed explicitly — used implicitly by term rewriting

EQUALITY

P =TrueV P = False True-False

CLASSICAL

P =TrueV P = False True-False

Py op excluded-middle

- A = False A= A

ccontr classical
A A

CLASSICAL

9-A

[]

P =TrueV P = False

Dy p excluded-middle

- A = False A= A

ccontr

A A

excluded-middle, ccontr and classical
not derivable from the other rules.

True-False

classical

CLASSICAL

P =TrueV P = False True-False

Dy p excluded-middle

- A :1>4Fal56 ccontr A A:> A classical

[1 excluded-middle, ccontr and classical
not derivable from the other rules.

I if we include True-False, they are derivable

They make the logic “classical”, “non-constructive”

CLASSICAL

9-c

CASES

Dy op excluded-middle

IS a case distinction on type bool

10

Dy op excluded-middle

IS a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case_tac term)

CASES 10-A

Safe rules preserve provability

SAFE AND NOT SO SAFE

11

Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

A B
ANB

conjl

SAFE AND NOT SO SAFE 11-A

Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

A B
ANB

conjl

Unsafe rules can turn a provable goal into an unprovable one

SAFE AND NOT SO SAFE 11-B

Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

A B
ANB

conjl

Unsafe rules can turn a provable goal into an unprovable one

disjl1, disjl2, impE, iffD1, iffD2, notE
A ..
14\/—B dlSJll

SAFE AND NOT SO SAFE 11-c

Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

A B
ANB

conjl

Unsafe rules can turn a provable goal into an unprovable one

disjl1, disjl2, impE, iffD1, iffD2, notE
A ..
14\/—B dlSJll

Apply safe rules before unsafe ones

SAFE AND NOT SO SAFE

11-D

12

QUANTIFIERS

13

SCOPE

e Scope of parameters: whole subgoal

e Scopeof V,d,...: ends with ; or —

Example:

14

e Scope of parameters: whole subgoal

e Scopeof V,d,...: ends with ; or —

Example:
Nry [Vy.Py—Qzy; Qry] = 3z.Quy

means

SCOPE 14-A

SCOPE

e Scope of parameters: whole subgoal

e Scopeof V,d,...: ends with ; or —

Example:
Nry [Vy.Py—Qzy; Qry] = 3z.Quy

means

Azy. [(Vyi. Pyr — Qzy1); Qrey] = (Fr1. Q 21 y)

14-B

NATURAL DEDUCTION FOR QUANTIFIERS

Vr. P x
o P 7 alll) alle

dx. P x

I P ex| 2 exkE

NATURAL DEDUCTION FOR QUANTIFIERS

15

NATURAL DEDUCTION FOR QUANTIFIERS

Nz. Px
Vao. P x

alll

3. P &

Vr. P x

dx. P x

alle

exkE

NATURAL DEDUCTION FOR QUANTIFIERS

15-A

NATURAL DEDUCTION FOR QUANTIFIERS

Az. Pz i Ve. Px P7¢t — R I

Ve. P x a R alle
dx. P x

3. Po & R e

NATURAL DEDUCTION FOR QUANTIFIERS

NATURAL DEDUCTION FOR QUANTIFIERS

Nz. Px
Vao. P x

alll

P ?x

3. P X

Ve. Px P7¢t — R

dx. P x

R

alle

exkE

NATURAL DEDUCTION FOR QUANTIFIERS

15-C

NATURAL DEDUCTION FOR QUANTIFIERS

Nz. Px
Vao. P x

alll

P 7
dz. P

ex|
X

Vr. P x

P72t — R

dx. P x

I3 alle

Nz. Pxr— R

R

exkE

NATURAL DEDUCTION FOR QUANTIFIERS

15-pD

ANz. Px Ve. Px P7¢t — R

o P 7 alll I3 alle
P 7 dr. Px Nz. Px=— R
9 P ex| 2 exE

e alll and exE introduce new parameters (A x).

e allE and exl introduce new unknowns (7z).

NATURAL DEDUCTION FOR QUANTIFIERS

15-E

apply (rule_tac x = "term” in rule)

Like rule, but 7z in rule Is instantiated by term before application.

Similar: erule_tac

I 2isin rule, notin goal

@ -l

INSTANTIATING RULES

16

TWO SUCCESSFUL PROOFS

1. Ve. dy.z =1y

TwO SUCCESSFUL PROOFS

17

TWO SUCCESSFUL PROOFS

1. Ve. dy.z =1y

apply (rule alll)
1. Az. Jy.z =y

TwO SUCCESSFUL PROOFS 17-A

TWO SUCCESSFUL PROOFS

1. Ve. dy.z =1y

apply (rule alll)
1. Az. Jy.z =y
best practice

apply (rule_tac x = "x" in exl)
1. Ne.x=x

TwO SUCCESSFUL PROOFS

17-B

TWO SUCCESSFUL PROOFS

1. Ve. dy.z =1y

apply (rule alll)
1. Az. Jy.z =y
best practice
apply (rule_tac x = "x" in exl)

1. Ne.x=x

apply (rule refl)

TwO SUCCESSFUL PROOFS 17-Cc

TWO SUCCESSFUL PROOFS

1. Ve. dy.z =1y

apply (rule alll)
1. Az. Jy.z =y

best practice exploration
apply (rule_tac x ="x” in exl) apply (rule exl)
1. Ne.x =z 1. Nz.x =7y x

apply (rule refl)

TwO SUCCESSFUL PROOFS

17-D

TWO SUCCESSFUL PROOFS

1. Ve. dy.z =1y
apply (rule alll)

1. Az. Jy.z =y

best practice
apply (rule_tac x = "x" in exl)
1. Ne.x =z

apply (rule refl)

exploration
apply (rule exl)
1. Nz.x =7y x

apply (rule refl)

Ty — Au.u

TwO SUCCESSFUL PROOFS

17-E

TWO SUCCESSFUL PROOFS

1. Ve. dy.z =1y
apply (rule alll)

1. Az. Jy.z =y

best practice
apply (rule_tac x = "x" in exl)
1. Ne.x =z

apply (rule refl)

simpler & clearer

exploration

apply (rule exl)
1. Nz.x =7y x

apply (rule refl)

Ty — Au.u

shorter & trickier

TwO SUCCESSFUL PROOFS

17-F

TwWO UNSUCCESSFUL PROOFS

1. dJy.Ve.z =y

Two UNSUCCESSFUL PROOFS

18

TwWO UNSUCCESSFUL PROOFS

1. dJy.Ve.z =y

apply (rule_tac x = ??7? in exl)

Two UNSUCCESSFUL PROOFS 18-A

TwWO UNSUCCESSFUL PROOFS

1. dJy.Ve.z =y

apply (rule_tac x = ??7? in exl)

apply (rule exl)
1. V. x ="y

Two UNSUCCESSFUL PROOFS

18-B

TWwO UNSUCCESSFUL PROOFS

1. dJy.Ve.z =y

apply (rule_tac x = ??7? in exl)

apply (rule exl)
1. V. x ="y

apply (rule alll)
1. ANx.x =7y

Two UNSUCCESSFUL PROOFS

18-C

TWwO UNSUCCESSFUL PROOFS

1. dJy.Ve.z =y

apply (rule_tac x = ??7? in exl)

apply (rule exl)
1. V. x ="y

apply (rule alll)
1. ANx.x =7y
apply (rule refl)

7y — xyields Ax'.2' ==

Two UNSUCCESSFUL PROOFS

18-D

TWwO UNSUCCESSFUL PROOFS

1. dJy.Ve.z =y
apply (rule_tac x = ??7? in exl) apply (rule exl)
1. V. x ="y
apply (rule alll)
1. Ne.x ="y
apply (rule refl)

7y — xyields Ax'.2' ==

Principle:

?f x1...x, can only be replaced by term ¢

If params(t) C xq1,..., 2,

Two UNSUCCESSFUL PROOFS

18-E

Safe alll, exE

Unsafe allE, exl

SAFE AND UNSAFE RULES

SAFE AND UNSAFE RULES

19

Safe alll, exE

Unsafe allE, exl

Create parameters first, unknowns later

SAFE AND UNSAFE RULES 19-A

DEMO: QUANTIFIER PROOFS

20

Parameter names are chosen by Isabelle

1. V. dy.z =1y

PARAMETER NAMES

21

Parameter names are chosen by Isabelle

1. V. dy.z =1y

apply (rule alll)
1. Ax. Jy.z =y

PARAMETER NAMES 21-A

Parameter names are chosen by Isabelle

1. V. dy.z =y

apply (rule alll)
1. Ax. Jy.z =y

apply (rule_tac x = "x" in exl)

Brittle!

PARAMETER NAMES 21-B

RENAMING PARAMETERS

1. V. dy.x =y

apply (rule alll)
1. Ax. Jy.x =y

RENAMING PARAMETERS

22

RENAMING PARAMETERS

1. V. dy.x =y

apply (rule alll)
1. Ax. Jy.x =y

apply (rename_tac N)
1. AN.Jy. N =y

RENAMING PARAMETERS 22-A

1. V. dy.x =y

apply (rule alll)
1. Ax. Jy.z =y

apply (rename_tac N)
1. AN.Jy. N =y

apply (rule_tac x = "N” in exl)

In general:
(rename_tac z; ...x,) renames the rightmost (inner) n

parameters to z; ...z,

RENAMING PARAMETERS

22-B

FORWARD PROOF: FRULE AND DRULE

apply (frule < rule >)

Rule: [A;.. ;AL = A
Subgoal: 1. [By;...: B, | = C

FORWARD PROOF: FRULE AND DRULE

23

FORWARD PROOF: FRULE AND DRULE

apply (frule < rule >)

Rule: [A;.. ;AL = A
Subgoal: 1. [By;...: B, | = C

Substitution: o(B;) =0o(A)

FORWARD PROOF: FRULE AND DRULE 23-A

FORWARD PROOF: FRULE AND DRULE

apply (frule < rule >)
Rule: [A1;.. Ay = A
Subgoal: 1. [By;...: B, | = C
Substitution: o(B;) =0d(A1)
New subgoals: 1. o([Bi;...;B,] = As)

m-1. o([B1;...; B,] = An)
m. o([B1;...; B,; A] = C)

FORWARD PROOF: FRULE AND DRULE

23-B

FORWARD PROOF: FRULE AND DRULE

apply (frule < rule >)

Rule: [A1;.. AR] = A
Subgoal: 1. [By;...: B, | = C
Substitution: o(B;) =0o(A)

New subgoals: 1. o([Bi;...;B,] = As)

m-1. o([B1;...; B,] = An)
m. o([B1;...; B,; A] = C)

Like frule but also deletes B;: apply (drule < rule >)

FORWARD PROOF: FRULE AND DRULE 23-C

EXAMPLES FOR FORWARD RULES

PAQ : A Q :
iz conjunctl 0 conjunct2
P—Q P mp
Q
V. Px spec
P ?x

EXAMPLES FOR FORWARD RULES

24

r [OF r1...7p]

Prove assumption 1 of theorem r with theorem r¢, and
assumption 2 with theorem r5, and . ..

FORWARD PROOF: OF

25

r [OF r1...7p]

Prove assumption 1 of theorem r with theorem r¢, and
assumption 2 with theorem r5, and . ..

Rule r [A1;.. . AR] = A
Rule r; [[Bl,,Bn]]:B

FORWARD PROOF: OF

25-A

r [OF r1...7p]

Prove assumption 1 of theorem r with theorem r¢, and
assumption 2 with theorem r5, and . ..

Rule r [A1;.. . AR] = A
Rule r; [[Bl,,Bn]]:B

Substitution o(B) = o(A1)

FORWARD PROOF: OF

25-B

r [OF r1...7p]

Prove assumption 1 of theorem r with theorem r¢, and
assumption 2 with theorem r5, and . ..

Rule r [A1;.. . AR] = A
Rule r; [[Bl,,Bn]]:B

Substitution o(B) = o(A1)

r [OF 7] o([Bi1;...;Bn;Ag; ... Ap] = A)

FORWARD PROOF: OF 25-C

FORWARD PROOFS: THEN

r1 [THEN r3] means ry [OF rq]

FORWARD PROOFS: THEN

26

DEMO: FORWARD PROOFS

27

HILBERT'S EPSILON OPERATOR

(David Hilbert, 1862-1943)

e x. Px Is a value that satisfies P (if such a value exists)

HILBERT'S EPSILON OPERATOR

28

HILBERT'S EPSILON OPERATOR

(David Hilbert, 1862-1943)
e x. Px Is a value that satisfies P (if such a value exists)

e also known as description operator.
In Isabelle the s-operator is written SOME z. P x

HILBERT'S EPSILON OPERATOR 28-A

HILBERT'S EPSILON OPERATOR

(David Hilbert, 1862-1943)
e x. Px Is a value that satisfies P (if such a value exists)

e also known as description operator.
In Isabelle the s-operator is written SOME z. P x

P 7x
P (SOME z. P x)

somel

HILBERT'S EPSILON OPERATOR 28-B

€ implies Axiom of Choice:

Ve, Jy. Q xy = 3f. Vo. Q x (f)

Existential and universial quantification can be defined with .

MORE EPSILON

29

€ implies Axiom of Choice:

Ve, Jy. Q xy = 3f. Vo. Q x (f)
Existential and universial quantification can be defined with .

Isabelle also know the definite description operator THE (also .):

the_eq_trivial
(THEx. 2 =a) =a f

MORE EPSILON 29-A

More Proof Methods:

apply (intro <intro-rules>)
apply (elim <elim-rules>)

repeatedly applies intro rules

repeatedly applies elim rules

SOME AUTOMATION

30

More Proof Methods:

apply (intro <intro-rules>) repeatedly applies intro rules

apply (elim <elim-rules>) repeatedly applies elim rules

apply clarify applies all safe rules
that do not split the goal

SOME AUTOMATION 30-A

More Proof Methods:

apply (intro <intro-rules>)
apply (elim <elim-rules>)

apply clarify

apply safe

repeatedly applies intro rules

repeatedly applies elim rules

applies all safe rules
that do not split the goal

applies all safe rules

SOME AUTOMATION

30-B

More Proof Methods:

apply (intro <intro-rules>)
apply (elim <elim-rules>)

apply clarify

apply safe

apply blast

repeatedly applies intro rules

repeatedly applies elim rules

applies all safe rules
that do not split the goal

applies all safe rules

an automatic tableaux prover
(works well on predicate logic)

SOME AUTOMATION

30-c

More Proof Methods:

apply (intro <intro-rules>)
apply (elim <elim-rules>)

apply clarify

apply safe

apply blast

apply fast

repeatedly applies intro rules

repeatedly applies elim rules

applies all safe rules
that do not split the goal

applies all safe rules

an automatic tableaux prover
(works well on predicate logic)

another automatic search tactic

SOME AUTOMATION

30-D

EPSILON AND AUTOMATION DEMO

31

WE HAVE LEARNED SO FAR...

[1 Proof rules for negation and contradiction

WE HAVE LEARNED SO FAR...

32

[1 Proof rules for negation and contradiction

[1 Proof rules for predicate calculus

WE HAVE LEARNED SO FAR... 32-A

[1 Proof rules for negation and contradiction
[1 Proof rules for predicate calculus

[1 Safe and unsafe rules

WE HAVE LEARNED SO FAR...

32-B

Proof rules for negation and contradiction
Proof rules for predicate calculus

Safe and unsafe rules

I I N R

Forward Proof

WE HAVE LEARNED SO FAR... 32-C

Proof rules for negation and contradiction
Proof rules for predicate calculus
Safe and unsafe rules

Forward Proof

[]]] [] []

The Epsilon Operator

WE HAVE LEARNED SO FAR...

32-D

Proof rules for negation and contradiction
Proof rules for predicate calculus

Safe and unsafe rules

Forward Proof

The Epsilon Operator

[] []]] [] []

Some automation

WE HAVE LEARNED SO FAR...

32-E

Download the exercise file and prove all theorems in there.

Prove or disprove:

If every poor person has a rich mother, then there is a rich person with
a rich grandmother.

EXERCISES

33

