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< :a= a= bool

IS a quasi order iff it satisfies

x < x (reflexivity) and

r<yANy S z= z < z (transitivity)

(a partial order is also antisymmetric: x < y Ay <z — = = y)
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[1 natural deduction rules for A, V and —
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[1 natural deduction rules for A, V and —

[] proof by assumption

[1 proof by intro rule

[J proof by elim rule

LAST TIME ON HOL
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Iffi IffE

IFF, NEGATION, TRUE AND FALSE



A=—B B=—A ™
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) notl|

IffE

IFF, NEGATION, TRUE AND FALSE
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A—B B—A . A=B [A—BB—A]l=C
1= 5 Iffi

IffE
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) notl|
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A=—B B=—A ...

1= 5 1ffi
A=L p1
) notl
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— IffD2

notkE

IffE
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1= 5 Iffi C IffE
A=L p1 A=L D2
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1= 5 Iffi C IffE
A=L p1 A=L D2
A ::jalse notl ﬁAP A hote

IFF, NEGATION, TRUE AND FALSE 6-E



A—B B—A . A=B [A—BB—A]l=C

1= 5 Iffi C IffE
A=L D1 A=L D2
4 ::jalse notl ﬁAP 4 hote
Trie Truel Fa}ljse FalseE
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E refl

s =1

sym
t=s y
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=1 trans

sym

i=¢ =

|
~ |

s=t Ps
Pt

subst

Rarely needed explicitly — used implicitly by term rewriting

EQUALITY
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P =TrueV P = False True-False

Py op excluded-middle

- A = False A= A

ccontr classical
A A

CLASSICAL
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[]

P =TrueV P = False

Dy p excluded-middle

- A = False A= A

ccontr

A A

excluded-middle, ccontr and classical
not derivable from the other rules.

True-False

classical

CLASSICAL



P =TrueV P = False True-False

Dy p excluded-middle

- A :1>4Fal56 ccontr A A:> A classical

[1 excluded-middle, ccontr and classical
not derivable from the other rules.

I if we include True-False, they are derivable

They make the logic “classical”, “non-constructive”

CLASSICAL

9-c



CASES

Dy op excluded-middle

IS a case distinction on type bool
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Dy op excluded-middle

IS a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case_tac term)

CASES 10-A



Safe rules preserve provability

SAFE AND NOT SO SAFE
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conjl
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Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

A B
ANB

conjl

Unsafe rules can turn a provable goal into an unprovable one

disjl1, disjl2, impE, iffD1, iffD2, notE
A ..
14\/—B dlSJll
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Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

A B
ANB

conjl

Unsafe rules can turn a provable goal into an unprovable one

disjl1, disjl2, impE, iffD1, iffD2, notE
A ..
14\/—B dlSJll

Apply safe rules before unsafe ones

SAFE AND NOT SO SAFE
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QUANTIFIERS
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SCOPE

e Scope of parameters: whole subgoal

e Scopeof V,d,...: ends with ; or —

Example:
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e Scope of parameters: whole subgoal

e Scopeof V,d,...: ends with ; or —

Example:
Nry [Vy.Py—Qzy; Qry] = 3z.Quy

means
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SCOPE

e Scope of parameters: whole subgoal

e Scopeof V,d,...: ends with ; or —

Example:
Nry [Vy.Py—Qzy; Qry] = 3z.Quy

means

Azy. [(Vyi. Pyr — Qzy1); Qrey] = (Fr1. Q 21 y)

14-B



NATURAL DEDUCTION FOR QUANTIFIERS

Vr. P x
o P 7 alll ) alle

dx. P x

I P ex| 2 exkE

NATURAL DEDUCTION FOR QUANTIFIERS
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NATURAL DEDUCTION FOR QUANTIFIERS

Nz. Px
Vao. P x

alll

3. P &

Vr. P x

dx. P x

alle

exkE
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NATURAL DEDUCTION FOR QUANTIFIERS

Az. Pz i Ve. Px P7¢t — R I

Ve. P x a R alle
dx. P x

3. Po & R e

NATURAL DEDUCTION FOR QUANTIFIERS



NATURAL DEDUCTION FOR QUANTIFIERS

Nz. Px
Vao. P x

alll

P ?x

3. P X

Ve. Px P7¢t — R

dx. P x

R

alle

exkE
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NATURAL DEDUCTION FOR QUANTIFIERS

Nz. Px
Vao. P x

alll

P 7
dz. P

ex|
X

Vr. P x

P72t — R

dx. P x

I3 alle

Nz. Pxr— R

R

exkE

NATURAL DEDUCTION FOR QUANTIFIERS
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ANz. Px Ve. Px P7¢t — R

o P 7 alll I3 alle
P 7 dr. Px Nz. Px=— R
9 P ex| 2 exE

e alll and exE introduce new parameters (A x).

e allE and exl introduce new unknowns (7z).

NATURAL DEDUCTION FOR QUANTIFIERS

15-E



apply (rule_tac x = "term” in rule)

Like rule, but 7z in rule Is instantiated by term before application.

Similar: erule_tac

I 2isin rule, notin goal

@ -l

INSTANTIATING RULES
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TWO SUCCESSFUL PROOFS

1. Ve. dy.z =1y

TwO SUCCESSFUL PROOFS
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TWO SUCCESSFUL PROOFS
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apply (rule alll)
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TWO SUCCESSFUL PROOFS

1. Ve. dy.z =1y

apply (rule alll)
1. Az. Jy.z =y
best practice

apply (rule_tac x = "x" in exl)
1. Ne.x=x

TwO SUCCESSFUL PROOFS
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TWO SUCCESSFUL PROOFS

1. Ve. dy.z =1y

apply (rule alll)
1. Az. Jy.z =y
best practice
apply (rule_tac x = "x" in exl)

1. Ne.x=x

apply (rule refl)
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TWO SUCCESSFUL PROOFS

1. Ve. dy.z =1y

apply (rule alll)
1. Az. Jy.z =y

best practice exploration
apply (rule_tac x ="x” in exl) apply (rule exl)
1. Ne.x =z 1. Nz.x =7y x

apply (rule refl)

TwO SUCCESSFUL PROOFS
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TWO SUCCESSFUL PROOFS

1. Ve. dy.z =1y
apply (rule alll)

1. Az. Jy.z =y

best practice
apply (rule_tac x = "x" in exl)
1. Ne.x =z

apply (rule refl)

exploration
apply (rule exl)
1. Nz.x =7y x

apply (rule refl)

Ty — Au.u

TwO SUCCESSFUL PROOFS
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TWO SUCCESSFUL PROOFS

1. Ve. dy.z =1y
apply (rule alll)

1. Az. Jy.z =y

best practice
apply (rule_tac x = "x" in exl)
1. Ne.x =z

apply (rule refl)

simpler & clearer

exploration

apply (rule exl)
1. Nz.x =7y x

apply (rule refl)

Ty — Au.u

shorter & trickier

TwO SUCCESSFUL PROOFS
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TwWO UNSUCCESSFUL PROOFS

1. dJy.Ve.z =y

Two UNSUCCESSFUL PROOFS
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TwWO UNSUCCESSFUL PROOFS

1. dJy.Ve.z =y

apply (rule_tac x = ??7? in exl)

apply (rule exl)
1. V. x ="y

Two UNSUCCESSFUL PROOFS
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TWwO UNSUCCESSFUL PROOFS

1. dJy.Ve.z =y

apply (rule_tac x = ??7? in exl)

apply (rule exl)
1. V. x ="y

apply (rule alll)
1. ANx.x =7y

Two UNSUCCESSFUL PROOFS
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TWwO UNSUCCESSFUL PROOFS

1. dJy.Ve.z =y

apply (rule_tac x = ??7? in exl)

apply (rule exl)
1. V. x ="y

apply (rule alll)
1. ANx.x =7y
apply (rule refl)

7y — xyields Ax'.2' ==

Two UNSUCCESSFUL PROOFS
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TWwO UNSUCCESSFUL PROOFS

1. dJy.Ve.z =y
apply (rule_tac x = ??7? in exl) apply (rule exl)
1. V. x ="y
apply (rule alll)
1. Ne.x ="y
apply (rule refl)

7y — xyields Ax'.2' ==

Principle:

?f x1...x, can only be replaced by term ¢

If params(t) C xq1,..., 2,

Two UNSUCCESSFUL PROOFS

18-E



Safe alll, exE

Unsafe allE, exl

SAFE AND UNSAFE RULES

SAFE AND UNSAFE RULES
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Safe alll, exE

Unsafe allE, exl

Create parameters first, unknowns later

SAFE AND UNSAFE RULES 19-A



DEMO: QUANTIFIER PROOFS
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Parameter names are chosen by Isabelle

1. V. dy.z =1y

PARAMETER NAMES
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Parameter names are chosen by Isabelle

1. V. dy.z =1y

apply (rule alll)
1. Ax. Jy.z =y
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Parameter names are chosen by Isabelle

1. V. dy.z =y

apply (rule alll)
1. Ax. Jy.z =y

apply (rule_tac x = "x" in exl)

Brittle!
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RENAMING PARAMETERS

1. V. dy.x =y

apply (rule alll)
1. Ax. Jy.x =y

RENAMING PARAMETERS
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RENAMING PARAMETERS

1. V. dy.x =y

apply (rule alll)
1. Ax. Jy.x =y

apply (rename_tac N)
1. AN.Jy. N =y
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1. V. dy.x =y

apply (rule alll)
1. Ax. Jy.z =y

apply (rename_tac N)
1. AN.Jy. N =y

apply (rule_tac x = "N” in exl)

In general:
(rename_tac z; ...x,) renames the rightmost (inner) n

parameters to z; ...z,

RENAMING PARAMETERS
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FORWARD PROOF: FRULE AND DRULE

apply (frule < rule >)

Rule: [A;.. ;AL = A
Subgoal: 1. [By;...: B, | = C

FORWARD PROOF: FRULE AND DRULE
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FORWARD PROOF: FRULE AND DRULE

apply (frule < rule >)

Rule: [A;.. ;AL = A
Subgoal: 1. [By;...: B, | = C

Substitution: o(B;) =0o(A)

FORWARD PROOF: FRULE AND DRULE 23-A



FORWARD PROOF: FRULE AND DRULE

apply (frule < rule >)
Rule: [A1;.. Ay = A
Subgoal: 1. [By;...: B, | = C
Substitution: o(B;) =0d(A1)
New subgoals: 1. o([Bi;...;B,] = As)

m-1. o([B1;...; B,] = An)
m. o([B1;...; B,; A] = C)

FORWARD PROOF: FRULE AND DRULE
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FORWARD PROOF: FRULE AND DRULE

apply (frule < rule >)

Rule: [A1;.. AR] = A
Subgoal: 1. [By;...: B, | = C
Substitution: o(B;) =0o(A)

New subgoals: 1. o([Bi;...;B,] = As)

m-1. o([B1;...; B,] = An)
m. o([B1;...; B,; A] = C)

Like frule but also deletes B;: apply (drule < rule >)

FORWARD PROOF: FRULE AND DRULE 23-C



EXAMPLES FOR FORWARD RULES

PAQ : A Q :
iz conjunctl 0 conjunct2
P—Q P mp
Q
V. Px spec
P ?x

EXAMPLES FOR FORWARD RULES
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r [OF r1...7p]

Prove assumption 1 of theorem r with theorem r¢, and
assumption 2 with theorem r5, and . ..

FORWARD PROOF: OF
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r [OF r1...7p]

Prove assumption 1 of theorem r with theorem r¢, and
assumption 2 with theorem r5, and . ..

Rule r [A1;.. . AR] = A
Rule r; [[Bl,,Bn]]:B

FORWARD PROOF: OF
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r [OF r1...7p]

Prove assumption 1 of theorem r with theorem r¢, and
assumption 2 with theorem r5, and . ..

Rule r [A1;.. . AR] = A
Rule r; [[Bl,,Bn]]:B

Substitution o(B) = o(A1)

FORWARD PROOF: OF
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r [OF r1...7p]

Prove assumption 1 of theorem r with theorem r¢, and
assumption 2 with theorem r5, and . ..

Rule r [A1;.. . AR] = A
Rule r; [[Bl,,Bn]]:B

Substitution o(B) = o(A1)

r [OF 7] o([Bi1;...;Bn;Ag; ... Ap] = A)

FORWARD PROOF: OF 25-C



FORWARD PROOFS: THEN

r1 [THEN r3]  means ry [OF rq]

FORWARD PROOFS: THEN

26



DEMO: FORWARD PROOFS
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HILBERT'S EPSILON OPERATOR

(David Hilbert, 1862-1943)

e x. Px Is a value that satisfies P (if such a value exists)

HILBERT'S EPSILON OPERATOR
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HILBERT'S EPSILON OPERATOR

(David Hilbert, 1862-1943)
e x. Px Is a value that satisfies P (if such a value exists)

e also known as description operator.
In Isabelle the s-operator is written SOME z. P x
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HILBERT'S EPSILON OPERATOR

(David Hilbert, 1862-1943)
e x. Px Is a value that satisfies P (if such a value exists)

e also known as description operator.
In Isabelle the s-operator is written SOME z. P x

P 7x
P (SOME z. P x)

somel

HILBERT'S EPSILON OPERATOR 28-B



€ implies Axiom of Choice:

Ve, Jy. Q xy = 3f. Vo. Q x (f )

Existential and universial quantification can be defined with .

MORE EPSILON
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€ implies Axiom of Choice:

Ve, Jy. Q xy = 3f. Vo. Q x (f )
Existential and universial quantification can be defined with .

Isabelle also know the definite description operator THE (also .):

the_eq_trivial
(THEx. 2 =a) =a f

MORE EPSILON 29-A



More Proof Methods:

apply (intro <intro-rules>)
apply (elim <elim-rules>)

repeatedly applies intro rules

repeatedly applies elim rules

SOME AUTOMATION
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More Proof Methods:

apply (intro <intro-rules>) repeatedly applies intro rules

apply (elim <elim-rules>) repeatedly applies elim rules

apply clarify applies all safe rules
that do not split the goal
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More Proof Methods:

apply (intro <intro-rules>)
apply (elim <elim-rules>)

apply clarify

apply safe

repeatedly applies intro rules

repeatedly applies elim rules

applies all safe rules
that do not split the goal

applies all safe rules

SOME AUTOMATION
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More Proof Methods:

apply (intro <intro-rules>)
apply (elim <elim-rules>)

apply clarify

apply safe

apply blast

repeatedly applies intro rules

repeatedly applies elim rules

applies all safe rules
that do not split the goal

applies all safe rules

an automatic tableaux prover
(works well on predicate logic)

SOME AUTOMATION
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More Proof Methods:

apply (intro <intro-rules>)
apply (elim <elim-rules>)

apply clarify

apply safe

apply blast

apply fast

repeatedly applies intro rules

repeatedly applies elim rules

applies all safe rules
that do not split the goal

applies all safe rules

an automatic tableaux prover
(works well on predicate logic)

another automatic search tactic

SOME AUTOMATION

30-D



EPSILON AND AUTOMATION DEMO
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WE HAVE LEARNED SO FAR...

[1 Proof rules for negation and contradiction

WE HAVE LEARNED SO FAR...

32



[1 Proof rules for negation and contradiction

[1 Proof rules for predicate calculus
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[1 Proof rules for negation and contradiction
[1 Proof rules for predicate calculus

[1 Safe and unsafe rules

WE HAVE LEARNED SO FAR...
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Proof rules for negation and contradiction
Proof rules for predicate calculus

Safe and unsafe rules

I I N R

Forward Proof
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Proof rules for negation and contradiction
Proof rules for predicate calculus
Safe and unsafe rules

Forward Proof

[] ] ] [] []

The Epsilon Operator

WE HAVE LEARNED SO FAR...
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Proof rules for negation and contradiction
Proof rules for predicate calculus

Safe and unsafe rules

Forward Proof

The Epsilon Operator

[] [] ] ] [] []

Some automation

WE HAVE LEARNED SO FAR...
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Download the exercise file and prove all theorems in there.

Prove or disprove:

If every poor person has a rich mother, then there is a rich person with
a rich grandmother.

EXERCISES
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