
Slide 1

NICTA Advanced Course

Theorem Proving

Principles, Techniques, Applications

λ→

Slide 2

CONTENT

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Datatypes, recursion, induction

• Inductively defined sets, rule induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs

λ CALCULUS IS INCONSISTENT 1

Slide 3

λ CALCULUS IS INCONSISTENT

From last lecture:
Can find term R such that R R =β not(R R)

There are more terms that do not make sense:
1 2, true false, etc.

Solution: rule out ill-formed terms by using types.
(Church 1940)

Slide 4

INTRODUCING TYPES

Idea: assign a type to each “sensible” λ term.

Examples:

➜ for term t has type α write t :: α

➜ if x has type α then λx. x is a function from α to α

Write: (λx. x) :: α ⇒ a

➜ for s t to be sensible:

s must be function

t must be right type for parameter

If s :: α ⇒ β and t :: α then (s t) :: β

2

Slide 5 THAT’S ABOUT IT

Slide 6 NOW FORMALLY, AGAIN

SYNTAX FOR λ→ 3

Slide 7

SYNTAX FOR λ→

Terms: t ::= v | c | (t t) | (λx. t)
v, x ∈ V, c ∈ C, V, C sets of names

Types: τ ::= b | ν | τ ⇒ τ

b ∈ {bool,int, . . .} base types

ν ∈ {α, β, . . .} type variables

α⇒ β ⇒ γ = α⇒ (β ⇒ γ)

Contexts Γ:

Γ: function from variable and constant names to types.

Term t has type τ in context Γ: Γ ` t :: τ

Slide 8

EXAMPLES

Γ ` (λx. x) :: α⇒ α

[y ← int] ` y :: int

[z ← bool] ` (λy. y) z :: bool

[] ` λf x. f x :: (α⇒ β)⇒ α⇒ β

A term t is well typed or type correct
if there are Γ and τ such that Γ ` t :: τ

TYPE CHECKING RULES 4

Slide 9

TYPE CHECKING RULES

Variables: Γ ` x :: Γ(x)

Application:
Γ ` t1 :: τ2 ⇒ τ1 Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ1

Abstraction:
Γ[x← τ1] ` t :: τ2

Γ ` (λx. t) :: τ1 ⇒ τ2

Slide 10

EXAMPLE TYPE DERIVATION:

[x← α, y ← β] ` x :: α

[x← α] ` λy. x :: β ⇒ α

[] ` λx y. x :: α⇒ β ⇒ α

MORE COMPLEX EXAMPLE 5

Slide 11

MORE COMPLEX EXAMPLE

Γ ` f :: α⇒ (α⇒ β) Γ ` x :: α

Γ ` f x :: α⇒ β Γ ` x :: α

Γ ` f x x :: β

[f ← α⇒ α⇒ β] ` λx. f x x :: α⇒ β

[] ` λf x. f x x :: (α⇒ α⇒ β)⇒ α⇒ β

Γ = [f ← α⇒ α⇒ β, x← α]

Slide 12

MORE GENERAL TYPES

A term can have more than one type.

Example: [] ` λx. x :: bool ⇒ bool

[] ` λx. x :: α⇒ α

Some types are more general than others:

τ . σ if there is a substitution S such that τ = S(σ)

Examples:

int ⇒ bool . α⇒ β . β ⇒ α 6. α⇒ α

MOST GENERAL TYPES 6

Slide 13

MOST GENERAL TYPES

Fact: each type correct term has a most general type

Formally:
Γ ` t :: τ =⇒ ∃σ. Γ ` t :: σ ∧ (∀σ′. Γ ` t :: σ′ =⇒ σ′ . σ)

It can be found by executing the typing rules backwards.

➜ type checking: checking if Γ ` t :: τ for given Γ and τ

➜ type inference: computing Γ and τ such that Γ ` t :: τ

Type checking and type inference on λ→ are decidable.

Slide 14

WHAT ABOUT β REDUCTION?

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: Γ ` s :: τ ∧ s −→β t =⇒ Γ ` t :: τ

This property is called subject reduction

WHAT ABOUT TERMINATION? 7

Slide 15

WHAT ABOUT TERMINATION?

β reduction in λ→ always terminates.

(Alan Turing, 1942)

➜ =β is decidable
To decide if s =β t, reduce s and t to normal form (always exists,

because −→β terminates), and compare result.

➜ =αβη is decidable
This is why Isabelle can automatically reduce

each term to βη normal form.

Slide 16

WHAT DOES THIS MEAN FOR EXPRESSIVENESS?

Not all computable functions can be expressed in λ→!

How can typed functional languages then be turing complete?

Fact:
Each computable function can be encoded as closed, type correct
λ→ term using Y :: (τ ⇒ τ)⇒ τ with Y t −→β t (Y t) as only
constant.

➜ Y is called fix point operator

➜ used for recursion

TYPES AND TERMS IN ISABELLE 8

Slide 17

TYPES AND TERMS IN ISABELLE

Types: τ ::= b | ′ν | ′ν :: C | τ ⇒ τ | (τ, . . . , τ) K

b ∈ {bool,int, . . .} base types
ν ∈ {α, β, . . .} type variables
K ∈ {set,list, . . .} type constructors

C ∈ {order,linord, . . .} type classes

Terms: t ::= v | c | ?v | (t t) | (λx. t)

v, x ∈ V, c ∈ C, V, C sets of names

➜ type constructors: construct a new type out of a parameter type.
Example: int list

➜ type classes: restrict type variables to a class defined by axioms.
Example: α :: order

➜ schematic variables: variables that can be instantiated.

Slide 18

TYPE CLASSES

➜ similar to Haskell’s type classes, but with semantic properties

axclass order < ord

order refl: ”x ≤ x”

order trans: ”[[x ≤ y; y ≤ z]] =⇒ x ≤ z”

. . .

➜ theorems can be proved in the abstract

lemma order less trans: ”
V

x ::′a :: order. [[x < y; y < z]] =⇒ x < z”

➜ can be used for subtyping

axclass linorder < order

linorder linear: ”x ≤ y ∨ y ≤ x”

➜ can be instantiated

instance nat :: ”{order, linorder}” by . . .

SCHEMATIC VARIABLES 9

Slide 19

SCHEMATIC VARIABLES

X Y
X ∧ Y

➜ X and Y must be instantiated to apply the rule

But: lemma ”x + 0 = 0 + x”

➜ x is free

➜ convention: lemma must be true for all x

➜ during the proof, x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

Slide 20

HIGHER ORDER UNIFICATION

Unification:
Find substitution σ on variables for terms s, t such that σ(s) = σ(t)

In Isabelle:
Find substitution σ on schematic variables such that σ(s) =αβη σ(t)

Examples:

?X∧?Y =αβη x ∧ x [?X ← x, ?Y ← x]

?P x =αβη x ∧ x [?P ← λx. x ∧ x]

P (?f x) =αβη ?Y x [?f ← λx. x, ?Y ← P]

Higher Order: schematic variables can be functions.

HIGHER ORDER UNIFICATION 10

Slide 21

HIGHER ORDER UNIFICATION

➜ Unification modulo αβ (Higher Order Unification) is semi-decidable

➜ Unification modulo αβη is undecidable

➜ Higher Order Unification has possibly infinitely many solutions

But:

➜ Most cases are well-behaved

➜ Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

➜ is a term in β normal form where

➜ each occurrence of a schematic variable is of the from ?f t1 . . . tn

➜ and the t1 . . . tn are η-convertible into n distinct bound variables

Slide 22

WE HAVE LEARNED SO FAR...

➜ Simply typed lambda calculus: λ→

➜ Typing rules for λ→, type variables, type contexts

➜ β-reduction in λ→ satisfies subject reduction

➜ β-reduction in λ→ always terminates

➜ Types and terms in Isabelle

11

Slide 23 PREVIEW: PROOFS IN ISABELLE

Slide 24

PROOFS IN ISABELLE

General schema:

lemma name: ”<goal>”
apply <method>

apply <method>

. . .

done

➜ Sequential application of methods until
all subgoals are solved.

THE PROOF STATE 12

Slide 25

THE PROOF STATE

1.
∧

x1 . . . xp.[[A1; . . . ; An]] =⇒ B

2.
∧

y1 . . . yq.[[C1; . . . ; Cm]] =⇒ D

x1 . . . xp Parameters

A1 . . . An Local assumptions

B Actual (sub)goal

Slide 26

ISABELLE THEORIES

Syntax:

theory MyTh = ImpTh1 + . . .+ ImpThn:

(declarations, definitions, theorems, proofs, ...)∗

end

➜ MyTh: name of theory. Must live in file MyTh.thy

➜ ImpThi: name of imported theories. Import transitive.

Unless you need something special:

theory MyTh = Main:

NATURAL DEDUCTION RULES 13

Slide 27

NATURAL DEDUCTION RULES

A B
A ∧B

conjI
A ∧ B [[A; B]] =⇒ C

C
conjE

A
A ∨B

B
A ∨B

disjI1/2 A ∨ B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI A −→ B A B =⇒ C
C

impE

For each connective (∧,∨, etc):
introduction and elemination rules

Slide 28

PROOF BY ASSUMPTION

apply assumption

proves

1. [[B1; . . . ; Bm]] =⇒ C

by unifying C with one of the Bi

There may be more than one matching Bi and multiple unifiers.

Backtracking!

Explicit backtracking command: back

INTRO RULES 14

Slide 29

INTRO RULES

Intro rules decompose formulae to the right of =⇒.

apply (rule <intro-rule>)

Intro rule [[A1; . . . ; An]] =⇒ A means

➜ To prove A it suffices to show A1 . . . An

Applying rule [[A1; . . . ; An]] =⇒ A to subgoal C:

➜ unify A and C

➜ replace C with n new subgoals A1 . . . An

Slide 30

ELIM RULES

Elim rules decompose formulae on the left of =⇒.

apply (erule <elim-rule>)

Elim rule [[A1; . . . ; An]] =⇒ A means

➜ If I know A1 and want to prove A it suffices to show A2 . . . An

Applying rule [[A1; . . . ; An]] =⇒ A to subgoal C:
Like rule but also

➜ unifies first premise of rule with an assumption

➜ eliminates that assumption

15

Slide 31 DEMO

Slide 32

EXERCISES

➜ what are the types of λx y. y x and λx y z. x y (y z)

➜ construct a type derivation tree on paper for λx y z. x y (y z)

➜ find a unifier (substitution) such that λx y. ?F x = λx y. c (?G y x)

➜ prove (A −→ B −→ C) = (A ∧ B −→ C) in Isabelle

➜ prove ¬(A ∧ B) =⇒ ¬A ∨ ¬B in Isabelle (tricky!)

EXERCISES 16

