NATIONAL

ICT AUSTRALIA
LIMITED

NICTA Advanced Course

Theorem Proving

Slide 1 L . o
Principles, Techniques, Applications
CONTENT
O
0 Foundations & Principles
e Lambda Calculus
e Higher Order Logic, natural deduction
Slide 2 °

A CALCULUS IS INCONSISTENT

A CALCULUS IS INCONSISTENT

From last lecture:
Can find term R such that R R =; not (R R)

There are more terms that do not make sense:
Slide 3 12, truefalse, etc.

Solution: rule out ill-formed terms by using types.
(Church 1940)

INTRODUCING TYPES

Idea: assign a type to each “sensible” A term.

Examples:

O for termthastype o write ¢::«

Slide 4 O if z has type athen Az.z is afunction from a to a

Write: (A\z.z) ta=a

O for st tobe sensible:
s must be function
t must be right type for parameter

Ifs:a= pGandt: athen(st): (3

Slide 5

THAT’'S ABOUT IT

Slide 6

NOW FORMALLY, AGAIN

SYNTAX FOR A~

SYNTAX FOR \

Terms: ¢t == v | ¢ | (tt) | (M. ?)
v,z €V, ceC, V,C setsof names

Types: 7 = b |v |7 =71
b € {bool ,int,...} base types
v € {a,B,...} type variables

Slide 7
a=pf=y = a= (=)
Contexts I
T': function from variable and constant names to types.
Term ¢ has type 7 in context I': TFtoT
EXAMPLES
THMz.z2) ta=>a
ly—int]Fy:int
z < bool | F (\y. y) z :: bool
Slide 8 |])

JFXfz. fzu(a=8)=a=p

Aterm t is well typed or type correct
if there are "'and 7 such that "' - ¢ :: 7

TYPE CHECKING RULES

TYPE CHECKING RULES

Variables: Tkz:D(x)

I'Ftiim=mn ThHityumn

Application: Tk (trts) =7
Slide 9
T Ft:
Abstraction: v =] i
TFAz.t)um =1
EXAMPLE TYPE DERIVATION:
[z —ay—plFz:a
[z—alFXy.z:0=a
JFXyzia=p=a
Slide 10

MORE COMPLEX EXAMPLE

MORE COMPLEX EXAMPLE

'Ffra=s(a=0) Tro:a

'rfxzra=p T'Fr:a
I'tfax:p
Slide 11 f—a=a=0FX. fzax:a=p

[FXMaz. fzeu(a=a=>0)=a=0

T'=[f—a=>a=p,zq]

MORE GENERAL TYPES

A term can have more than one type.

Example: [+ Az. 2 :: bool = bool

JFM2z:ra=a

Slide 12
Some types are more general than others:

7 <o ifthere is a substitution S such that 7 = S(o)

Examples:

int ==bool < a=8 < f=a £ a=a

MOST GENERAL TYPES

MOST GENERAL TYPES

Fact: each type correct term has a most general type

Formally:
Tkter = FJo.TktuoANo' . THtuo =0 So)

It can be found by executing the typing rules backwards.
Slide 13

O type checking: checkingif I ¢ :: 7 for given I" and 7

O typeinference: computingI" and 7 such thatT' - ¢ :: 7

Type checking and type inference on A~ are decidable.

WHAT ABOUT 3 REDUCTION?

Definition of J reduction stays the same.

Fact: Well typed terms stay well typed during (3 reduction
Slide 14
Formally: I'ksur As—pgt=TFturT

This property is called subject reduction

WHAT ABOUT TERMINATION?

Slide 15

Slide 16

WHAT ABOUT TERMINATION?

[reduction in A~ always terminates.

(Alan Turing, 1942)

0 =g is decidable
To decide if s =3 t, reduce s and ¢ to normal form (always exists,
because — 3 terminates), and compare result.

O =asn is decidable
This is why Isabelle can automatically reduce
each term to 3n normal form.

WHAT DOES THIS MEAN FOR EXPRESSIVENESS?

Not all computable functions can be expressed in A™!
How can typed functional languages then be turing complete?

Fact:

Each computable function can be encoded as closed, type correct
A~ termusingY (1= 7) = 7wWithY t —3 ¢ (Y t) as only
constant.

O Y is called fix point operator

0 used for recursion

TYPES AND TERMS IN ISABELLE

TYPES AND TERMS IN ISABELLE

Types: 7 == b | v | veC |7 =71]| (..., T) K

b € {bool ,int,...} base types

v €{a,f,...} type variables

K € {set,list,...} type constructors
C € {order,linord,...} type classes

Slide 17 Terms: t == v |c| 70| (tt) | (M. t)

v,x €V, ceC, V,C setsof names
type constructors: construct a new type out of a parameter type.
Example:int [|ist

type classes: restrict type variables to a class defined by axioms.
Example: « :: order

schematic variables: variables that can be instantiated.

Slide1s8 Y

TYPE CLASSES

similar to Haskell’s type classes, but with semantic properties

axclass order < ord
orderrefl: 7z < z”
ordertrans: "z < y;y < z] = = < 27

theorems can be proved in the abstract
lemma orderless_trans: ” Az ::'a :: order. [z < y;y < 2] = v < 27

can be used for subtyping
axclass linorder < order
linorderlinear: 7z <y vy <z’
can be instantiated
instance nat :: ”{order, linorder}” by ...

SCHEMATIC VARIABLES

SCHEMATIC VARIABLES

X Y
XANY

0 X and Y must be instantiated to apply the rule

But: lemma’z+0=0+2"

O =zisfree
O convention: lemma must be true for all =
O during the proof, must not be instantiated

Slide 19

Solution:
Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

HIGHER ORDER UNIFICATION

Unification:
Find substitution o on variables for terms s, ¢ such that o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that o(s) =ag, o(t)

Slide 20
Examples:

TXNY =gy AT ?X — 2,77 « a]
Pz =agy TAT [?P — \z. z A x]
P(?fz) =apy Y [?7f «— Az. 2,7V «— P]

Higher Order: schematic variables can be functions.

HIGHER ORDER UNIFICATION

10

Slide 21

Slide 22

HIGHER ORDER UNIFICATION

O Unification modulo a3 (Higher Order Unification) is semi-decidable
0 Unification modulo «3n is undecidable

O Higher Order Unification has possibly infinitely many solutions

But:

0 Most cases are well-behaved

O Important fragments (like Higher Order Patterns) are decidable
Higher Order Pattern:

O is atermin g normal form where

0 each occurrence of a schematic variable is of the from ?f ¢, ... t,
0 andthet; ... t, are n-convertible into n distinct bound variables

WE HAVE LEARNED SO FAR...

Simply typed lambda calculus: A~
Typing rules for A~ type variables, type contexts
B-reduction in A7 satisfies subject reduction

B-reduction in A~ always terminates

o o o o o

Types and terms in Isabelle

11

Slide 23 PREVIEW: PROOFS IN ISABELLE
PROOFS IN ISABELLE

General schema:

lemma name: "<goal>"

apply <method>

apply <method>
Slide 24 .

done

0 Sequential application of methods until
all subgoals are solved.
THE PROOF STATE 12

THE PROOF STATE

L Azi...zp[A;.. ;A = B
2. /\yl-"yq-[[cl;-“;Cm]] -

)

z1...x, Parameters

Slide 25 A;...A, Local assumptions
B Actual (sub)goal
ISABELLE THEORIES
Syntax:
theory MyTh = ImpThy + ...+ ImpTh,:
(declarations, definitions, theorems, proofs, ...}
end
Slide 26

0 MyTh: name of theory. Must live in file MyTh. t hy

O ImpTh;: name of imported theories. Import transitive.

Unless you need something special:

theory MyTh = Main:

NATURAL DEDUCTION RULES

NATURAL DEDUCTION RULES

A B . AANB [A;B]=C
A/\Bconjl c

conjE

A B

AVB A= C B=C 4.
IVE disjE
B

c

disjl1/2
Slide 27

A—B A B=~C
c

L= 2 impl impE

AV B
A=
A— B

For each connective (A, V, etc):
introduction and elemination rules

PROOF BY ASSUMPTION

apply assumption
proves
1. [Bi;...;Bn] = C

Slide 28
by unifying C with one of the B;

There may be more than one matching B; and multiple unifiers.

Backtracking!

Explicit backtracking command: back

13 INTRO RULES

INTRO RULES

Intro rules decompose formulae to the right of —=-.

apply (rule <intro-rule>)

Introrule [4;;...;4,] = A means
Slide 29 0 To prove A it suffices to show A; ... A, Slide 31 DEMO
Applying rule [A;;...; A,] = A to subgoal C:
O unify Aand C
O replace C with n new subgoals A; ... A,
ELIM RULES EXERCISES

Elim rules decompose formulae on the left of —. 0 whatare the types of Az y. y z and Az y z. &y (y 2)
. 0 construct a type derivation tree on paper for A .
apply (erule <elim-rule>) uctatype derivat pap vyz2y(y2)
O find a unifier (substitution) such that Az y. 7F z = Az y. ¢ (?G y z)
Elimrule [A;;...;A,] = A means O prove (A — B — C) = (AN B — C)inIsabelle
Slide 30 Slide 32 O

O If I know A; and want to prove A it suffices to show A, ... A, prove =(A A B) = —A V =B in Isabelle (tricky!)

Like rule but also
O unifies first premise of rule with an assumption

O eliminates that assumption

15 EXERCISES 16

