NATIONAL
ICT AUSTRALIA

LIMITED

NICTA Advanced Course

Theorem Proving
Principles, Techniques, Applications

—

[

[Foundations & Principles
e Lambda Calculus

e Higher Order Logic, natural deduction

CONTENT

From last lecture:
Can find term R such that R R =3 not (R R)

There are more terms that do not make sense:
12, truefal se, etc.

A CALCULUS IS INCONSISTENT

From last lecture:
Can find term R such that R R =3 not (R R)

There are more terms that do not make sense:
12, truefal se, etc.

Solution: rule out ill-formed terms by using types.
(Church 1940)

A CALCULUS IS INCONSISTENT

3-A

Idea: assign a type to each “sensible” A\ term.

Examples:

INTRODUCING TYPES

Idea: assign a type to each “sensible” A\ term.

Examples:

[1 for termt hastype a write t:: «

INTRODUCING TYPES

Idea: assign a type to each “sensible” A\ term.

Examples:
[1 for termt hastype a write t:: «

[if x has type athen Ax. x is a function from « to «
Write: (Az.z) =t a=a

INTRODUCING TYPES

Idea: assign a type to each “sensible” A\ term.

Examples:
[1 for termt hastype a write t:: «

[if x has type athen Ax. x is a function from « to «
Write: (Az.z) =t a=a

[1 for st to be sensible:
s must be function
t must be right type for parameter

Ifs:a=pandt: athen(st): 3

INTRODUCING TYPES

4-c

THAT'S ABOUT IT

NOW FORMALLY, AGAIN

Terms: t == v | ¢ | (tt) | (A\z.?)
v,x €V, ceC, V,(C setsof names

Types: 7 == b | v |7 =7

b € {bool ,int,...} base types
v e{a,S,...} type variables

a=f=y = a=(@=9)

SYNTAX FOR A\

Terms: t == v | ¢ | (tt) | (A\z.?)
v,x €V, ceC, V,(C setsof names

Types: 7 == b | v |7 =7

b € {bool ,int,...} base types
v e{a,S,...} type variables

a=f=y = a=(@=9)

Contexts I':

I[': function from variable and constant names to types.

SYNTAX FOR A\

7-A

Terms: t == v | ¢ | (tt) | (A\z.?)
v,x €V, ceC, V,(C setsof names

Types: 7 == b | v |7 =7
b € {bool ,int,...} base types
v e{a,S,...} type variables

a=f=y = a=(@=9)

Contexts I':

I[': function from variable and constant names to types.

Term ¢t has type 7 in context I 'Htor

SYNTAX FOR A\

'z x2) ta=«

EXAMPLES

'z x2) ta=«

ly«—int]Fy:int

EXAMPLES

8-A

'z x2) ta=«
ly«—int]Fy:int

|z «— bool | F (A\y. y) z :: bool

EXAMPLES

'z x2) ta=«
ly—int]Fy:int
|z «— bool | F (A\y. y) z :: bool

JFAfz. feo(a=0)=a=p0

EXAMPLES

8-C

'z x2) ta=«
ly«—int]Fy:int
|z «— bool | F (A\y. y) z :: bool

JFAfz. feo(a=0)=a=p0

A term t is well typed or type correct
If there areI" and 7 suchthatI'~¢ :: 7

EXAMPLES

TYPE CHECKING RULES

Variables: I'Fax::D(x)

TYPE CHECKING RULES

Variables:

Application:

-2 T(x)

U (ty te) 1y

TYPE CHECKING RULES

9-A

Variables:

Application:

-2 T(x)

I'ti =17 I'Ftyim

U (ty te) 1y

TYPE CHECKING RULES

Variables:

Application:

Abstraction:

-2 T(x)

I'ti =17 I'Ftyim

U (ty te) 1y

L'E(Ax. t) 1 =7

TYPE CHECKING RULES

9-C

Variables:

Application:

Abstraction:

-2 T(x)

I'ti =17 I'Ftyim

U (ty te) 1y

Dz «—]kt
L' (Ax.t) i1 = 7

TYPE CHECKING RULES

EXAMPLE TYPE DERIVATION:

|FAXyxz:a= 0=«

EXAMPLE TYPE DERIVATION:

10

EXAMPLE TYPE DERIVATION:

x—alFXy.z 3=«
|FAXyxz:a= 0=«

EXAMPLE TYPE DERIVATION:

10-A

EXAMPLE TYPE DERIVATION:

x — a,y«— PBlFz:a«
x—alFXy.z 3=«
|FAXyxz:a= 0=«

EXAMPLE TYPE DERIVATION:

10-B

EXAMPLE TYPE DERIVATION:

x — a,y«— PBlFz:a«
x—alFXy.z 3=«
|FAXyxz:a= 0=«

EXAMPLE TYPE DERIVATION: 10-c

MORE COMPLEX EXAMPLE

|FAfz. foax:

MORE COMPLEX EXAMPLE

11

MORE COMPLEX EXAMPLE

JFAfz. feou(a=a=0)=a=[

MORE COMPLEX EXAMPLE 11-A

MORE COMPLEX EXAMPLE

f—a=a=plFXx. frx:a=p0

JFAfz. feou(a=a=0)=a=[

MORE COMPLEX EXAMPLE

11-B

I'-fxxp
f—a=a=plFXx. frx:a=p0
JFAfz.feax:(a=a=0)=a=7

F=[f—a=a= 0,z q]

MORE COMPLEX EXAMPLE 11-c

I'-fzia=p
I'-faxao:p
f—a=a=plFXx. frx:a=p0

JFAfz. feou(a=a=0)=a=[

F=[f—a=a= 0,z q]

MORE COMPLEX EXAMPLE

11-D

'Ffrxra=p NI
I'-fxxp
f—a=a=plFXx. frx:a=p0

JFAfz. feou(a=a=0)=a=[

F=[f—a=a= 0,z q]

MORE COMPLEX EXAMPLE

11-E

'-fra=(a=p)
'Ffrxra=p NI
I'-faxao:p
f—a=a=plFXx. frx:a=p0

JFAfz. feou(a=a=0)=a=[

F=[f—a=a= 0,z q]

MORE COMPLEX EXAMPLE

11-F

'fra=(a=p) T'Fz:a
I'-fxa=p I'-2:«
I'-fxzax:p
f—a=a=0FXx. fzx:a=0
JFAfx. feox:(a=a=0)=a=7

'=[f—a=a= 0,z q

MORE COMPLEX EXAMPLE 11-G

A term can have more than one type.

MORE GENERAL TYPES

12

A term can have more than one type.

Example: [J]F Az. z :: bool = bool

JFAr. 2z a= «

MORE GENERAL TYPES 12-A

A term can have more than one type.

Example: [J]F Az. z :: bool = bool

JFAr. 2z a= «

Some types are more general than others:

T < o ifthere is a substitution S such that 7 = S(o)

MORE GENERAL TYPES

12-B

A term can have more than one type.

Example: [J]F Az. z :: bool = bool

JFAr. 2z a= «

Some types are more general than others:

T < o ifthere is a substitution S such that 7 = S(o)

Examples:

int ==bool S a=p

MORE GENERAL TYPES 12-c

A term can have more than one type.

Example: [J]F Az. z :: bool = bool

JFAr. 2z a= «

Some types are more general than others:

T < o ifthere is a substitution S such that 7 = S(o)

Examples:

int =bool < a=08 < (=«

MORE GENERAL TYPES

12-D

A term can have more than one type.

Example: [J]F Az. z :: bool = bool

JFAr. 2z a= «

Some types are more general than others:

T < o ifthere is a substitution S such that 7 = S(o)

Examples:

Int ==bool < a=p0 < ff=a L a=a«

MORE GENERAL TYPES

12-E

Fact: each type correct term has a most general type

MOST GENERAL TYPES

13

Fact: each type correct term has a most general type

Formally:
'cter = doTktuooANo'.THt:o = o <o)

MOST GENERAL TYPES 13-A

Fact: each type correct term has a most general type

Formally:
'cter = doTktuooANo'.THt:o = o <o)

It can be found by executing the typing rules backwards.

MOST GENERAL TYPES

13-B

Fact: each type correct term has a most general type

Formally:
'cter = doTktuooANo'.THt:o = o <o)

It can be found by executing the typing rules backwards.

[1 type checking: checking if I' - ¢ :: 7 for given I" and =

MOST GENERAL TYPES 13-C

Fact: each type correct term has a most general type

Formally:
'cter = doTktuooANo'.THt:o = o <o)

It can be found by executing the typing rules backwards.

[1 type checking: checking if I' - ¢ :: 7 for given I" and =

[typeinference: computing I' and 7 such thatI' - ¢ :: 7

MOST GENERAL TYPES

13-D

Fact: each type correct term has a most general type

Formally:
'cter = doTktuooANo'.THt:o = o <o)

It can be found by executing the typing rules backwards.

[1 type checking: checking if I' - ¢ :: 7 for given I" and =

[typeinference: computing I' and 7 such thatI' - ¢ :: 7

Type checking and type inference on A\~ are decidable.

MOST GENERAL TYPES 13-E

WHAT ABOUT 5 REDUCTION?

WHAT ABOUT 3 REDUCTION?

14

WHAT ABOUT 5 REDUCTION?

Definition of (3 reduction stays the same.

WHAT ABOUT 3 REDUCTION?

14-A

Definition of (3 reduction stays the same.

Fact: Well typed terms stay well typed during @ reduction

Formally: I'FsuT ANs—pt=ITFturT

WHAT ABOUT 3 REDUCTION?

14-B

Definition of (3 reduction stays the same.

Fact: Well typed terms stay well typed during @ reduction
Formally: I'FsuT ANs—pt=ITFturT

This property is called subject reduction

WHAT ABOUT 3 REDUCTION? 14-cC

WHAT ABOUT TERMINATION?

WHAT ABOUT TERMINATION?

15

WHAT ABOUT TERMINATION?

(3 reduction in A~ always terminates.

(Alan Turing, 1942)

WHAT ABOUT TERMINATION?

15-A

WHAT ABOUT TERMINATION?

(3 reduction in A~ always terminates.

(Alan Turing, 1942)

[0 =g is decidable
To decide if s =4 t, reduce s and t to normal form (always exists,
because — 3 terminates), and compare result.

WHAT ABOUT TERMINATION?

15-B

WHAT ABOUT TERMINATION?

(3 reduction in A~ always terminates.

(Alan Turing, 1942)

[0 =g is decidable
To decide if s =4 t, reduce s and t to normal form (always exists,
because — 3 terminates), and compare result.

[0 =.pn IS decidable
This is why Isabelle can automatically reduce
each term to Sn normal form.

WHAT ABOUT TERMINATION?

15-C

WHAT DOES THIS MEAN FOR EXPRESSIVENESS?

WHAT DOES THIS MEAN FOR EXPRESSIVENESS?

16

WHAT DOES THIS MEAN FOR EXPRESSIVENESS?

Not all computable functions can be expressed in A~

WHAT DOES THIS MEAN FOR EXPRESSIVENESS? 16-A

WHAT DOES THIS MEAN FOR EXPRESSIVENESS?

Not all computable functions can be expressed in A~

How can typed functional languages then be turing complete?

WHAT DOES THIS MEAN FOR EXPRESSIVENESS?

16-B

Not all computable functions can be expressed in A~

How can typed functional languages then be turing complete?

Fact:
Each computable function can be encoded as closed, type correct

AT termusingyY (1= 17)=7withY t—3t (Y t)asonly
constant.

WHAT DOES THIS MEAN FOR EXPRESSIVENESS? 16-C

Not all computable functions can be expressed in A~

How can typed functional languages then be turing complete?

Fact:
Each computable function can be encoded as closed, type correct

AT termusingyY (1= 17)=7withY t—3t (Y t)asonly
constant.

[Y is called fix point operator

[1 used for recursion

WHAT DOES THIS MEAN FOR EXPRESSIVENESS? 16-D

Types: 7 == b | v | vuC | 17=71](r....,7) K
b € {bool ,int,...} base types
v € {a,p,...} type variables
K € {set,list,...} type constructors
C € {order,linord,...} type classes

Terms: ¢t == v | c | 7v | (tt) | (Az. 1)
v,x €V, ceC, V, (C setsof names

TYPES AND TERMS IN ISABELLE

17

Types: 7 == b | v | vuC | 17=71](r....,7) K
b € {bool ,int,...} base types
v € {a,p,...} type variables
K € {set,list,...} type constructors
C € {order,linord,...} type classes

Terms: ¢t == v | c | 7v | (tt) | (Az. 1)
v,x €V, ceC, V, (C setsof names

[J type constructors: construct a new type out of a parameter type.
Example:int |i st

TYPES AND TERMS IN ISABELLE 17-A

Types: 7 == b | v | vuC | 17=71](r....,7) K
b € {bool ,int,...} base types
v € {a,p,...} type variables
K € {set,list,...} type constructors
C € {order,linord,...} type classes

Terms: ¢t == v | c | 7v | (tt) | (Az. 1)
v,x €V, ceC, V, (C setsof names

[J type constructors: construct a new type out of a parameter type.
Example:int |i st

[type classes: restrict type variables to a class defined by axioms.
Example: « :: order

TYPES AND TERMS IN ISABELLE

17-B

Types: 7 == b | v | vuC | 17=71](r....,7) K
b € {bool ,int,...} base types
v € {a,p,...} type variables
K € {set,list,...} type constructors
C € {order,linord,...} type classes

Terms: ¢t == v | c | 7v | (tt) | (Az. 1)
v,x €V, ceC, V, (C setsof names

[J type constructors: construct a new type out of a parameter type.
Example:int |i st

[type classes: restrict type variables to a class defined by axioms.
Example: « :: order

[1 schematic variables: variables that can be instantiated.

TYPES AND TERMS IN ISABELLE 17-Cc

[similar to Haskell's type classes, but with semantic properties

axclass order < ord
order_refl: "x < z”
order_trans: "[r < y;y < z] = x < 27

TYPE CLASSES

18

[similar to Haskell's type classes, but with semantic properties

axclass order < ord
order_refl: "x < z”
order_trans: "[r < y;y < z] = x < 27

[1 theorems can be proved in the abstract

lemma order_less_trans: ” Az :'a :: order. [z < y;y < 2] = © < 27

TYPE CLASSES 18-A

[similar to Haskell's type classes, but with semantic properties

axclass order < ord
order_refl: "x < z”
order_trans: "[r < y;y < z] = x < 27

[1 theorems can be proved in the abstract

lemma order_less_trans: ” Az :'a :: order. [z < y;y < 2] = © < 27

[1 can be used for subtyping

axclass linorder < order
linorder_linear: "z <y Vvy < x”

TYPE CLASSES

18-B

[similar to Haskell's type classes, but with semantic properties

axclass order < ord
order_refl: "x < z”
order_trans: "[r < y;y < z] = x < 27

[1 theorems can be proved in the abstract

lemma order_less_trans: ” Az :'a :: order. [z < y;y < 2] = © < 27

[1 can be used for subtyping

axclass linorder < order
linorder_linear: "z <y Vvy < x”

[1 can be instantiated

instance nat :: ”{order, linorder}” by ...

TYPE CLASSES 18-c

XY
XNY

[0 X and Y must be instantiated to apply the rule

SCHEMATIC VARIABLES

19

XY
XNY

[0 X and Y must be instantiated to apply the rule

But: lemma’z+0=0+2"

1 zis free

[]

convention: lemma must be true for all x
[1 during the proof, z must not be instantiated

SCHEMATIC VARIABLES 19-A

XY
XNY

[0 X and Y must be instantiated to apply the rule

But: lemma’z+0=0+2"

1 zis free

[]

convention: lemma must be true for all x
[1 during the proof, z must not be instantiated

Solution:

Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

SCHEMATIC VARIABLES

19-B

Unification:
Find substitution o on variables for terms s, ¢t such that o(s) = o(t)

HIGHER ORDER UNIFICATION

20

Unification:
Find substitution o on variables for terms s, ¢t such that o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that o(s) =43, o ()

HIGHER ORDER UNIFICATION

20-A

Unification:
Find substitution o on variables for terms s, ¢t such that o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that o(s) =43, o ()

Examples:
TXATYY =4y TAT
"Px =aBn TAX
P(?fx) =apy Yz

HIGHER ORDER UNIFICATION

Unification:
Find substitution o on variables for terms s, ¢t such that o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that o(s) =43, o ()

Examples:
TXAYY =a8p TAX X — 1,77 «— x|
P x =afn TAX TP «— Ax. x A 1]
P(?fx) =apy Yz 7f — x. x,7Y «— P]

Higher Order: schematic variables can be functions.

HIGHER ORDER UNIFICATION 20-C

HIGHER ORDER UNIFICATION

[1 Unification modulo a3 (Higher Order Unification) is semi-decidable

HIGHER ORDER UNIFICATION

21

[1 Unification modulo a3 (Higher Order Unification) is semi-decidable

[1 Unification modulo o387 is undecidable

HIGHER ORDER UNIFICATION 21-A

[1 Unification modulo a3 (Higher Order Unification) is semi-decidable
[1 Unification modulo o387 is undecidable

[1 Higher Order Unification has possibly infinitely many solutions

HIGHER ORDER UNIFICATION

21-B

[1 Unification modulo a3 (Higher Order Unification) is semi-decidable
[1 Unification modulo o387 is undecidable

[1 Higher Order Unification has possibly infinitely many solutions

But:

[1 Most cases are well-behaved

HIGHER ORDER UNIFICATION 21-C

[1 Unification modulo a3 (Higher Order Unification) is semi-decidable
[1 Unification modulo o387 is undecidable

[1 Higher Order Unification has possibly infinitely many solutions

But:
[1 Most cases are well-behaved

[1 Important fragments (like Higher Order Patterns) are decidable

HIGHER ORDER UNIFICATION

21-D

[1 Unification modulo a3 (Higher Order Unification) is semi-decidable
[1 Unification modulo o387 is undecidable

[1 Higher Order Unification has possibly infinitely many solutions

But:
[1 Most cases are well-behaved

[1 Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:
[is aterm in 8 normal form where
[1 each occurrence of a schematic variable is of the from 7f t; ... t,
[1 andthet; ... t, are n-convertible into n distinct bound variables

HIGHER ORDER UNIFICATION

21-E

WE HAVE LEARNED SO FAR...

[1 Simply typed lambda calculus: A\™

WE HAVE LEARNED SO FAR...

22

[1 Simply typed lambda calculus: \™

[0 Typing rules for A\, type variables, type contexts

WE HAVE LEARNED SO FAR... 22-A

[0 Simply typed lambda calculus: A™
[0 Typing rules for A\, type variables, type contexts

[1 p-reduction in A satisfies subject reduction

WE HAVE LEARNED SO FAR...

22-B

[0 Simply typed lambda calculus: A™
[0 Typing rules for A\, type variables, type contexts
[1 p-reduction in A satisfies subject reduction

[1 p-reduction in A7 always terminates

WE HAVE LEARNED SO FAR... 22-C

Simply typed lambda calculus: A™
Typing rules for A7, type variables, type contexts
pB-reduction in A~ satisfies subject reduction

B-reduction in A7 always terminates

[] [[] []

Types and terms in Isabelle

WE HAVE LEARNED SO FAR...

22-D

PREVIEW:. PROOFS IN ISABELLE

23

General schema:

lemma name: "<goal>"
apply <method>
apply <method>

done

PROOFS IN ISABELLE

24

General schema:

lemma name: "<goal>"
apply <method>
apply <method>

done

0 Sequential application of methods until
all subgoals are solved.

PROOFS IN ISABELLE

24-A

Sy

2. Ny1...yq.[Ch;...;Cp] = D

THE PROOF STATE

25

Sy

2. Ny1...yq.[Ch;...;Cp] = D

x1...x, Parameters
Aqi... A, Local assumptions
B Actual (sub)goal

THE PROOF STATE 25-A

Syntax:

theory MyTh=ImpThy + ...+ ImpTh,:
(declarations, definitions, theorems, proofs, ...J

end

[0 MwyTh: name of theory. Must live in file MyTh. t hy

I ImpTh;: name of imported theories. Import transitive.

ISABELLE THEORIES

26

Syntax:

theory MyTh=ImpThy + ...+ ImpTh,:
(declarations, definitions, theorems, proofs, ...J
end

[0 MwyTh: name of theory. Must live in file MyTh. t hy

I ImpTh;: name of imported theories. Import transitive.

Unless you need something special:

theory MyTh = Mai n:

ISABELLE THEORIES

26-A

ANB

VN conjl C conjE
. AV B .
1VE AVE disjl1/2 C disjE
: A— B :
R Impl C ImpE

For each connective (A, V, etc):
Introduction and elemination rules

NATURAL DEDUCTION RULES

27

A B ANB

AND conjl C conjE
. AV B .
1VE AVE disjl1/2 C disjE
: A— B :
R Impl C ImpE

For each connective (A, V, etc):
Introduction and elemination rules

NATURAL DEDUCTION RULES 27-A

A B ANB [A;B] = C

AND conjl C conjE
. AV B .
1VE AVE disjl1/2 C disjE
: A— B :
R Impl C ImpE

For each connective (A, V, etc):
Introduction and elemination rules

NATURAL DEDUCTION RULES

27-B

A B ANB [A;B] = C

AND conjl C conjE
A B s AV B .
1VvE AVE disjl1/2 C disjE
: A— B :
R Impl C ImpE

For each connective (A, V, etc):
Introduction and elemination rules

NATURAL DEDUCTION RULES 27-C

A B ANB [A;B] = C

AND conjl C conjE
A B .. AVB A—C B=—00 ..
1VvE AVE disjl1/2 C disjE
: A— B :
R Impl C ImpE

For each connective (A, V, etc):
Introduction and elemination rules

NATURAL DEDUCTION RULES

27-D

A B ANB [A;B] = C

AND conjl C conjE

A B .. AVB A—C B=—00 ..
1VvE AVE disjl1/2 C disjE
A— B . A— B :
T Impl C ImpE

For each connective (A, V, etc):
Introduction and elemination rules

NATURAL DEDUCTION RULES

27-E

A B ANB [A;B] = C

AND conjl C conjE

A B .. AVB A—C B=—00 ..
1VvE AVE disjl1/2 C disjE
A_>B|mpl C ImpE

For each connective (A, V, etc):
Introduction and elemination rules

NATURAL DEDUCTION RULES

27-F

apply assumption
proves
1. [By;...;Bn] = C

by unifying C with one of the B;

PROOF BY ASSUMPTION

28

apply assumption
proves
1. [By;...;Bn] = C

by unifying C with one of the B;

There may be more than one matching B; and multiple unifiers.

Backtracking!

Explicit backtracking command: back

PROOF BY ASSUMPTION 28-A

Intro rules decompose formulae to the right of —=-.

apply (rule <intro-rule>)

INTRO RULES

29

Intro rules decompose formulae to the right of —=-.

apply (rule <intro-rule>)

Intro rule [A;;...; A,] = A means

[1 To prove A it suffices to show A; ... A,

INTRO RULES 29-A

Intro rules decompose formulae to the right of —=-.

apply (rule <intro-rule>)

Intro rule [A;;...; A,] = A means

[1 To prove A it suffices to show A; ... A,

Applying rule [A;y;...; A,] = A to subgoal C:
(1 unify Aand C

[replace C' with n new subgoals A; ... A,

INTRO RULES

29-B

Elim rules decompose formulae on the left of —-.

apply (erule <elim-rule>)

ELIM RULES

30

Elim rules decompose formulae on the left of —-.

apply (erule <elim-rule>)

Elimrule [A;...;A,] = A means

0 If I know A; and want to prove A it suffices to show A, ... A,

ELIM RULES 30-A

Elim rules decompose formulae on the left of —-.

apply (erule <elim-rule>)

Elimrule [A;...;A,] = A means

0 If I know A; and want to prove A it suffices to show A ...

Applying rule [A;y;...; A,] = A to subgoal C:
Like rule but also

[unifies first premise of rule with an assumption

[1 eliminates that assumption

ELIM RULES

30-B

31

N [I) A I B

what are the types of Az y. y zand Az y z. x y (y 2)

construct a type derivation tree on paper for Az y z. z y (y 2)

find a unifier (substitution) such that Ax y. 7F xz = Az y. ¢ ("G y x)
prove (A — B — C)=(AANB — C)inIsabelle

prove (A A B) = = A V =B in Isabelle (tricky!)

EXERCISES

32

