

NICTA Advanced Course

Slide 1

Theorem Proving Principles, Techniques, Applications

CONTENT

- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
 - Lambda Calculus
 - Higher Order Logic, natural deduction

Slide 2

- Term rewriting
- → Proof & Specification Techniques
 - Datatypes, recursion, induction
 - Inductively defined sets, rule induction
 - Calculational reasoning, mathematics style proofs
 - Hoare logic, proofs about programs

λ -CALCULUS

Alonzo Church

- → lived 1903-1995
- → supervised people like Alan Turing, Stephen Kleene
- → famous for Church-Turing thesis, lambda calculus, first undecidability results

Slide 3

Slide 4

 \rightarrow invented λ calculus in 1930's

λ -calculus

- → originally meant as foundation of mathematics
- → important applications in theoretical computer science
- → foundation of computability and functional programming

UNTYPED λ -CALCULUS

- → turing complete model of computation
- → a simple way of writing down functions

Basic intuition:

instead of
$$f(x) = x + 5$$

write $f = \lambda x. x + 5$

$\lambda x. x + 5$

- → a term
- → a nameless function
- → that adds 5 to its parameter

FUNCTION APPLICATION

For applying arguments to functions

 $\begin{array}{ll} \text{instead of} & f(x) \\ \text{write} & f(x) \end{array}$

Slide 5 Example: $(\lambda x. x + 5) a$

Evaluating: in $(\lambda x. t)$ a replace x by a in t

(computation!)

Example: $(\lambda x. x + 5) (a + b)$ evaluates to (a + b) + 5

Slide 6 THAT'S IT!

Slide 7 Now FORMAL

SYNTAX

 $\label{eq:terms:terms:terms:terms:terms:term} t \ ::= \ v \ | \ c \ | \ (t \ t) \ | \ (\lambda x. \ t)$

 $v, x \in V, \quad c \in C, \quad V, C \text{ sets of names}$

Slide 8

- $\rightarrow v, x$ variables
- $\rightarrow c$ constants
- \rightarrow $(t \ t)$ application
- \rightarrow $(\lambda x.\ t)$ abstraction

3 CONVENTIONS 4

CONVENTIONS

- → leave out parentheses where possible
- \rightarrow list variables instead of multiple λ

Example: instead of $(\lambda y. (\lambda x. (x y)))$ write $\lambda y. x. x. y$

Slide 9

Rules:

- \rightarrow list variables: $\lambda x. (\lambda y. t) = \lambda x y. t$
- \rightarrow application binds to the left: $x \ y \ z = (x \ y) \ z \neq x \ (y \ z)$
- \rightarrow abstraction binds to the right: $\lambda x. \ x \ y = \lambda x. \ (x \ y) \neq (\lambda x. \ x) \ y$
- → leave out outermost parentheses

GETTING USED TO THE SYNTAX

Example:

$$\lambda x y z. x z (y z) =$$

$$\lambda x \ y \ z. \ (x \ z) \ (y \ z) =$$

Slide 10

$$\lambda x\;y\;z.\;((x\;z)\;(y\;z))=$$

$$\lambda x.\;\lambda y.\;\lambda z.\;((x\;z)\;(y\;z))=$$

$$(\lambda x. (\lambda y. (\lambda z. ((x z) (y z)))))$$

COMPUTATION

Intuition: replace parameter by argument this is called β -reduction

Example

Slide 12

$$(\lambda x \ y. \ f \ (y \ x)) \ 5 \ (\lambda x. \ x) \longrightarrow_{\beta}$$
$$(\lambda y. \ f \ (y \ 5)) \ (\lambda x. \ x) \longrightarrow_{\beta}$$
$$f \ ((\lambda x. \ x) \ 5) \longrightarrow_{\beta}$$
$$f \ 5$$

DEFINING COMPUTATION

eta reduction:

$$(\lambda x. s) t \longrightarrow_{\beta} s[x \leftarrow t]$$

$$s \longrightarrow_{\beta} s' \Longrightarrow (s t) \longrightarrow_{\beta} (s' t)$$

$$t \longrightarrow_{\beta} t' \Longrightarrow (s t) \longrightarrow_{\beta} (s t')$$

$$s \longrightarrow_{\beta} s' \Longrightarrow (\lambda x. s) \longrightarrow_{\beta} (\lambda x. s')$$

Still to do: defi ne $s[x \leftarrow t]$

DEFINING SUBSTITUTION

Easy concept. Small problem: variable capture.

Example: $(\lambda x. \ x \ z)[z \leftarrow x]$

Slide 13 We do not want: $(\lambda x. \ x \ x)$ as result.

What do we want?

In $(\lambda y.\ y\ z)$ $[z \leftarrow x] = (\lambda y.\ y\ x)$ there would be no problem.

So, solution is: rename bound variables.

FREE VARIABLES

Bound variables: in $(\lambda x. t)$, x is a bound variable.

Free variables FV of a term:

$$FV(x) = \{x\}$$

$$FV(c) = \{\}$$

$$FV(s t) = FV(s) \cup FV(t)$$

$$FV(\lambda x. t) = FV(t) \setminus \{x\}$$

Example: $FV(\lambda x. (\lambda y. (\lambda x. x) y) y x) = \{y\}$

Term t is called **closed** if $FV(t) = \{\}$

SUBSTITUTION

$$\begin{array}{ll} x \; [x \leftarrow t] & = t \\ y \; [x \leftarrow t] & = y & \text{if } x \neq y \\ \end{array}$$

 $c \ [x \leftarrow t]$

Slide 15
$$(s_1 \ s_2) \ [x \leftarrow t] = (s_1[x \leftarrow t] \ s_2[x \leftarrow t])$$

= c

$$(\lambda x.\ s)\ [x \leftarrow t] = (\lambda x.\ s)$$

$$(\lambda y.\ s)\ [x \leftarrow t] = (\lambda y.\ s[x \leftarrow t])$$
 if $x \neq y$ and $y \notin FV(t)$

$$(\lambda y.\ s)\ [x \leftarrow t] = (\lambda z.\ s[y \leftarrow z][x \leftarrow t]) \quad \text{if } x \neq y \\ \text{and } z \notin FV(t) \cup FV(t)$$

SUBSTITUTION EXAMPLE

$$(x (\lambda x. x) (\lambda y. z x))[x \leftarrow y]$$

$$= (x[x \leftarrow y]) ((\lambda x. x)[x \leftarrow y]) ((\lambda y. z x)[x \leftarrow y])$$

$$= y (\lambda x. x) (\lambda y'. z y)$$

Slide 16

Slide 14

7

α Conversion

Bound names are irrelevant:

 $\lambda x. \ x$ and $\lambda y. \ y$ denote the same function.

α conversion:

 $s =_{\alpha} t$ means s = t up to renaming of bound variables.

Formally:

Slide 17

$$s \longrightarrow_{\alpha} s' \implies (\lambda x. s) \longrightarrow_{\alpha} (\lambda x. s')$$

$$s=_{lpha}t \quad \text{iff} \quad s\longrightarrow_{lpha}^*t$$

 $(\longrightarrow_{\alpha}^{*}$ = transitive, reflexive closure of \longrightarrow_{α} = multiple steps)

α Conversion

Equality in Isabelle is equality modulo α conversion:

if $s =_{\alpha} t$ then s and t are syntactically equal.

Examples:

Slide 18

$$x (\lambda x y. x y)$$

$$=_{\alpha} x (\lambda y x. y x)$$

$$=_{\alpha} x (\lambda z y. z y)$$

$$\neq_{\alpha} z (\lambda z y. z y)$$

$$\neq_{\alpha} x (\lambda x x. x x)$$

BACK TO β

We have defi ned β reduction: \longrightarrow_{β}

Some notation and concepts:

$$\rightarrow \beta$$
 conversion: $s =_{\beta} t$ iff $\exists n. \ s \longrightarrow_{\beta}^* n \land t \longrightarrow_{\beta}^* n$

Slide 19

- \rightarrow t is **reducible** if there is an s such that $t \longrightarrow_{\beta} s$
- \rightarrow ($\lambda x. s$) t is called a **redex** (reducible expression)
- → t is reducible iff it contains a redex
- → if it is not reducible. t is in **normal form**
- \rightarrow t has a normal form if there is an irreducible s such that $t \longrightarrow_{\beta}^* s$

Does every λ term have a normal form?

No!

Example:

$$(\lambda x. x x) (\lambda x. x x) \longrightarrow_{\beta} (\lambda x. x x) (\lambda x. x x) \longrightarrow_{\beta} (\lambda x. x x) (\lambda x. x x) \longrightarrow_{\beta} \dots$$

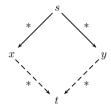
(but:
$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ (\lambda x. \ x \ x)) \longrightarrow_{\beta} \lambda y. \ y)$$

λ calculus is not terminating

β reduction is confluent

Confluence:
$$s \longrightarrow_{\beta}^* x \land s \longrightarrow_{\beta}^* y \Longrightarrow \exists t. \ x \longrightarrow_{\beta}^* t \land y \longrightarrow_{\beta}^* t$$

Slide 21



Order of reduction does not matter for result Normal forms in λ calculus are unique

β reduction is confluent

Example:

$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ a) \longrightarrow_{\beta} (\lambda x \ y. \ y) \ (a \ a) \longrightarrow_{\beta} \lambda y. \ y$$
$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ a) \longrightarrow_{\beta} \lambda y. \ y$$

Slide 22

η Conversion

Another case of trivially equal functions: $t = (\lambda x. t x)$

Defi nition:

Example: $(\lambda x. f x) (\lambda y. g y) \longrightarrow_{\eta} (\lambda x. f x) g \longrightarrow_{\eta} f g$

- $\rightarrow \eta$ reduction is confluent and terminating.
- → $\longrightarrow_{\beta\eta}$ is confluent. $\longrightarrow_{\beta\eta}$ means \longrightarrow_{β} and \longrightarrow_{η} steps are both allowed.
- \rightarrow Equality in Isabelle is also modulo η conversion.

IN FACT ...

Equality in Isabelle is modulo $\alpha,\,\beta,$ and η conversion.

We will see next lecture why that is possible.

Slide 24

11

Slide 23

So, what can you do with λ calculus?

 λ calculus is very expressive, you can encode:

- → logic, set theory
- → turing machines, functional programs, etc.

Examples:

Slide 25

```
\begin{array}{ll} \text{true } \equiv \lambda x \; y. \; x & \text{if true } x \; y \; \longrightarrow_{\beta}^* x \\ \\ \text{false} \equiv \lambda x \; y. \; y & \text{if false } x \; y \; \longrightarrow_{\beta}^* y \\ \\ \text{if } \equiv \lambda z \; x \; y. \; z \; x \; y & \end{array}
```

Now, not, and, or, etc is easy:

```
\begin{array}{l} \operatorname{not} \equiv \lambda x. \ \operatorname{if} \ x \ \operatorname{false} \ \operatorname{true} \\ \operatorname{and} \equiv \lambda x \ y. \ \operatorname{if} \ x \ y \ \operatorname{false} \\ \operatorname{or} \quad \equiv \lambda x \ y. \ \operatorname{if} \ x \ \operatorname{true} \ y \end{array}
```

MORE EXAMPLES

Encoding natural numbers (Church Numerals)

$$0 \equiv \lambda f x. x$$

$$1 \equiv \lambda f x. f x$$

$$2 \equiv \lambda f x. f (f x)$$

$$3 \equiv \lambda f x. f (f (f x))$$

Slide 26

Numeral n is takes arguments f and x, applies f n-times to x.

```
iszero \equiv \lambda n. \ n \ (\lambda x. \ \text{false}) true succ \equiv \lambda n. f \ x. \ f \ (n. f \ x) add \equiv \lambda m. \ \lambda f \ x. \ m. \ f \ (n. f \ x)
```

FIX POINTS

$$(\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t \longrightarrow_{\beta}$$

$$(\lambda f. f ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) f)) t \longrightarrow_{\beta}$$

$$t ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t)$$

Slide 27

$$\mu = (\lambda x f. \ f \ (x \ x \ f)) \ (\lambda x f. \ f \ (x \ x \ f))$$

$$\mu \ t \longrightarrow_{\beta} t \ (\mu \ t) \longrightarrow_{\beta} t \ (t \ (\mu \ t)) \longrightarrow_{\beta} t \ (t \ (t \ (\mu \ t))) \longrightarrow_{\beta} \dots$$

$$(\lambda x f. \ f \ (x \ x \ f)) \ (\lambda x f. \ f \ (x \ x \ f)) \text{ is Turing's fi x point operator}$$

NICE, BUT ...

As a mathematical foundation, λ does not work. It is inconsistent.

- → Frege (Predicate Logic, ~ 1879): allows arbitrary quantification over predicates
- → Russel (1901): Paradox $R \equiv \{X | X \notin X\}$

Slide 28

- → Whitehead & Russel (Principia Mathematica, 1910-1913): Fix the problem
- → Church (1930): λ calculus as logic, true, false, \wedge , ... as λ terms

Problem:

with
$$\{x|\ P\ x\} \equiv \lambda x.\ P\ x \qquad x \in M \equiv M\ x$$
 you can write
$$R \equiv \lambda x.\ \mathrm{not}\ (x\ x)$$
 and get
$$(R\ R) =_{\beta} \mathrm{not}\ (R\ R)$$

WE HAVE LEARNED SO FAR...

- → λ calculus syntax
- → free variables, substitution
- $\rightarrow \beta$ reduction

Slide 29

- $\rightarrow \alpha$ and η conversion
- $\rightarrow \beta$ reduction is confluent
- → λ calculus is very expressive (turing complete)
- $\rightarrow \lambda$ calculus is inconsistent

Slide 30

ISABELLE DEMO

EXERCISES 15

EXERCISES

- \rightarrow Play around with the syntax. Enter a number of λ terms into Isabelle.
- \rightarrow Not all λ terms are accepted by Isabelle. Which are not? Why?
- **→** Evaluate the substitution $(y (\lambda v. x v))[x \leftarrow (\lambda y. v y)]$ on paper.

Slide 31

- → Reduce $(\lambda n. \lambda f \ x. \ f \ (n \ f \ x)) \ ((\lambda n. \lambda f \ x. \ f \ (n \ f \ x)) \ (\lambda f \ x. \ x))$ to its β normal form on paper and in Isabelle.
- ightharpoonup Pairs in λ calculus: define functions fs, sn, and pair such that $fs\ (pair\ a\ b)\ \longrightarrow_{\beta}^*\ a\ and\ sn\ (pair\ a\ b)\ \longrightarrow_{\beta}^*\ b$
- \rightarrow What can be done to fix the inconsistency in λ calculus?