NATIONAL
ICT AUSTRALIA

LIMITED

NICTA Advanced Course

Theorem Proving
Slide 1 Principles, Techniques, Applications

CONTENT

O

0 Foundations & Principles
e Lambda Calculus

Slide 2 °

A-CALCULUS

A-CALCULUS

Alonzo Church
O lived 1903-1995
O supervised people like Alan Turing, Stephen Kleene

O famous for Church-Turing thesis, lambda calculus,

first undecidability results “
Slide 3

0 invented X calculus in 1930's

A-calculus
O originally meant as foundation of mathematics
0 important applications in theoretical computer science

O foundation of computability and functional programming

UNTYPED A-CALCULUS

O turing complete model of computation
O a simple way of writing down functions
Basic intuition:
instead of f(z)=x+5
Slide 4 write f=Xr.a+5
Ax.x+5
0 aterm

0 anameless function

O that adds 5 to its parameter

FUNCTION APPLICATION

FUNCTION APPLICATION

For applying arguments to functions

instead of f(z)

write fz

Slide 5 Example: (Az.z+5)a Slide 7 Now FORMAL

Evaluating: in (Az. t) areplace z by aint

(computation!)

Example: (Az.z+5) (a+b) evaluatesto (a+b)+5

SYNTAX
Terms: t = v ’ c | (t t) ‘ ()\{B. t)
v,x €V, ceC, V,C setsof names

Slide 6 THAT'S IT! Slide 8 v, T variables

C constants

(tt) application

O o o g

(Az. t) abstraction

3 CONVENTIONS

CONVENTIONS COMPUTATION

O leave out parentheses where possible Intuition: replace parameter by argument

O list variables instead of multiple A this is called S-reduction

Example: instead of (\y. (Az. (zy))) write Ayz.xzy Example

Slide Slide 11 (xuy f(ya) 5 (o) s
(Ay. f(y5) (Mw.z) —p

O list variables: A\z. (A\y.t) = Az y.t
f Az 2)5) —p
O application bindsto the left: x y 2 = (z y) = 5
O abstraction binds to the right: A\z. z y = Az. (z y)
O leave out outermost parentheses
GETTING USED TO THE SYNTAX DEFINING COMPUTATION
Example: ﬁ reduction:
Ayzrxzz(yz) = Az.s)t —p slz 1]
Aeyz (z2)(yz)= s —p 8§ = (st) —p (51)
Slide 10 Slide 12 b o= 5D s (60
ide A . - ide
vy 2 ((@2) (y2) s —p & = (Ax.s) —p (Mx.d)
Az Ay Az ((z2) (y 2)) =
(Az. (Ay. (A2 ((z 2) (y 2))))) Still to do: define s[z « t]

COMPUTATION 5 DEFINING SUBSTITUTION

DEFINING SUBSTITUTION

Easy concept. Small problem: variable capture.

Example: (A\z. z 2)[z « z]

We do not want: (A\z. x z) as result.

Slide 13 Slide 15

What do we want?

In (A\y. y 2) [z < z] = (\y. y) there would be no problem.

So, solution is: rename bound variables.

FREE VARIABLES

Bound variables: in (Az. t), z is a bound variable.

Free variables F'V of a term:
FV (z) ={x}
_ FV() ={}
Slide 14 FV (st) =FV(s)UFV(t)
FV (\x.t) = FV(t) \ {«}

Slide 16

Example: FV(Az. Ay. Az 2)y) vz) ={y}

Term t is called closed if FV(t) = {}

SUBSTITUTION 7

SUBSTITUTION

x [z — t] =t
y [z —1] =y ity
¢z —1 =c

(51 52) [— 1] = (s1fa — 1] sale — 1)

(Ax. s) [x — t] = (\z. 5)
(Ay. s) [z — 1] = (A\y. sle — 1))
(Ay- s) [z — 1] = (A2 sly — 2[[z — 1))

ife#Ayandy ¢ FV(t)

ifex#y
and z ¢ FV(t)U FV(t)

SUBSTITUTION EXAMPLE

(x (Az.z) My z2))x — vy
= (zlz—y]) (Az.2)[z —y]) (A\y. z2)[z —y))
= yz.2) (M. z2y)

(¢ CONVERSION

« CONVERSION
Bound names are irrelevant:
Az. x and \y. y denote the same function.

o conversion:
s =o t means s =t up to renaming of bound variables.

Formally:
Slide 17 (Ar.t) —a Oy tle—y)) ifyg FV(1)
s — 8§ = (st) —a (s'0)
t o = (st) —a (st)
s —a § = (Az.s) —a (Az.d)
s=qt Iff s—%1t
(— = transitive, reflexive closure of —,, = multiple steps)
o CONVERSION
Equality in Isabelle is equality modulo « conversion:
if s =, t then s and t are syntactically equal.
Examples:
Slide 18 r(\ry.oy)
= z(\yaz.yz)
=a T (Azy.2y)
Fa 2 (Azy. zy)
#o x(Azz.2T)

BACK TO ﬁ

BAck 10 3
We have defined (reduction: —3

Some notation and concepts:
O [conversion: s =gt iff In.s —5nAt—5n
Slide 19 tis reducible if there is an s such that t —g s
(Az. s) tis called a redex (reducible expression)

O

0

O tis reducible iff it contains a redex

0O if it is not reducible, ¢ is in normal form
O

t has a normal form if there is an irreducible s such thatt —7 s

DOES EVERY A TERM HAVE A NORMAL FORM?

No!

Example:

Ar.zx) Az zz) —p
Slide 20 (Az.zz) (M. xx) —p

Az.zz) (Ar.zz) —p...

(but: Az y.y) (A\z. zz) Az z x)) —p5 Ay.)

A calculus is not terminating

ﬁ REDUCTION IS CONFLUENT 10

3 REDUCTION IS CONFLUENT

Confluence: s —jaAs—jpy=Jt.o—jtAy —jt

S
7N
:I/.\ /y

Slide 21
N 7
N 7
\\ //
N ¥
t
Order of reduction does not matter for result
Normal forms in A calculus are unique
(3 REDUCTION IS CONFLUENT
Example:
Az y. y) (Ao x x) a)—p Az y. y) (a a)—p Ay. y
My y) (Ao, zx)a)—g Ay. y
Slide 22

7) CONVERSION

1) CONVERSION

Another case of trivially equal functions: ¢t = (Az. t x)
Definition:
if v ¢ FV(t)

Slide 23 s=pt iff In.s H; nAt—n

Example: (Az. f z) (Ay. gy) —y (A f2) g —n f g

O n reduction is confluent and terminating.
0 —pgy is confluent.

— s, Means — gz and —,, steps are both allowed.
0 Equality in Isabelle is also modulo n conversion.

IN FACT ...

Equality in Isabelle is modulo «, 8, and n conversion.

We will see next lecture why that is possible.
Slide 24

11 SO, WHAT CAN YOU DO WITH A CALCULUS? 12

S0, WHAT CAN YOU DO WITH A CALCULUS?

A calculus is very expressive, you can encode:
O logic, set theory

0 turing machines, functional programs, etc.

Examples:

Slide 25

true =\xy.z iftruezy —ja

false=Xxy.y iffalsezy—py
i f =Xzzy. zzy
Now, not , and, or, etc is easy:

not =Xz.if zfalsetrue
and=MXzy.if xyfal se
or =Xxy.ifaxtruey

MORE EXAMPLES

Encoding natural numbers (Church Numerals)
0 =Afz.x
1 =Afa. fz
2 =M f(fx)

=\ f(f(fx)

w

Slide 26

Numeral n is takes arguments f and z, applies f n-times to x.

iszero=An.n (\z.fal se)true
= fz. f(nfa)
add =xmn. Afz.mf(nfx)

succ

Fix POINTS

FIX POINTS

Az f f(@af)) Qe f fraf) t—p
A (O f feaf) Az f flxzf)f) t —p
t Az f f(xzf)) Ax f f(zzf))

Slide 27 = Qaf. f@e) Caf. f (@)
pt—pt(ut) —pt(t(ut) —pt(t(t(ut) —p...
Mzf. f(xz f)) Mxf. f (xz f))is Turing’s fix point operator
NICE, BUT ...
As a mathematical foundation, A does not work. It is inconsistent.
0 Frege (Predicate Logic, ~ 1879):
allows arbitrary quantification over predicates
O Russel (1901): Paradox R = {X|X ¢ X}
. O Whitehead & Russel (Principia Mathematica, 1910-1913):
Slide 28 Fix the problem
O Church (1930): X calculus as logic, t rue, f al se, A, ... as X terms
Problem:
with {z| Pz} =X z. Px reEM=Mz
you can write R = Az.not (z x)
and get (R R)=gnot (RR)
13 WE HAVE LEARNED SO FAR... 14

WE HAVE LEARNED SO FAR...

A calculus syntax

free variables, substitution
3 reduction

Slide 29 « and n conversion

3 reduction is confluent

A calculus is very expressive (turing complete)

0o o o o o o o

A calculus is inconsistent

Slide 30 ISABELLE DEMO

EXERCISES

15

EXERCISES

Play around with the syntax. Enter a number of A terms into Isabelle.
Not all A terms are accepted by Isabelle. Which are not? Why?

Evaluate the substitution (y (Av. z v))[z < (Ay. v y)] on paper.

o o o 4

Reduce (A\n. Af z. f (n fz)) (An. Af z. f (n fx)) (A\f z.z))toits 3
normal form on paper and in Isabelle.

Slide 31

O Pairsin A calculus: define functions fs, sn, and pair such that
fs (pair ab) —} a and sn (pair ab) —5 b

0 What can be done to fix the inconsistency in A calculus?

EXERCISES

16

