NATIONAL
ICT AUSTRALIA

LIMITED

NICTA Advanced Course

Theorem Proving
Principles, Techniques, Applications

[

[Foundations & Principles
e Lambda Calculus
{

CONTENT

A-CALCULUS

Alonzo Church
1 lived 1903-1995
[supervised people like Alan Turing, Stephen Kleene

[1 famous for Church-Turing thesis, lambda calculus,
first undecidability results

[1 invented)\ calculus in 1930’s

A-CALCULUS

A-CALCULUS

Alonzo Church
1 lived 1903-1995
[supervised people like Alan Turing, Stephen Kleene

[1 famous for Church-Turing thesis, lambda calculus,
first undecidability results

[1 invented)\ calculus in 1930’s

A-calculus
[1 originally meant as foundation of mathematics
[important applications in theoretical computer science

[1 foundation of computability and functional programming

A-CALCULUS

3-A

[turing complete model of computation

[1 a simple way of writing down functions

UNTYPED A-CALCULUS

[turing complete model of computation
[1 a simple way of writing down functions
Basic intuition:

instead of f(x)=x+5
write f=Xx.z+5

UNTYPED A-CALCULUS

[turing complete model of computation
[1 a simple way of writing down functions
Basic intuition:

instead of f(x)=x+5
write f=Xx.z+5

ANC. T+ 5

[aterm

UNTYPED A-CALCULUS

[turing complete model of computation
[1 a simple way of writing down functions
Basic intuition:

instead of f(x)=x+5
write f=Xx.z+5

ANC. x+ D
[] aterm

[1 a nameless function

UNTYPED A-CALCULUS

4-c

[turing complete model of computation
[1 a simple way of writing down functions
Basic intuition:
instead of f(x)=x+5
write f=Xx.z+5
Ax. T+ 5
[J aterm
[1 anameless function

[1 that adds 5 to its parameter

UNTYPED A-CALCULUS

For applying arguments to functions

instead of f(x)

write fax

FUNCTION APPLICATION

For applying arguments to functions

instead of f(x)

write fax

Example: (Az.x+5)a

FUNCTION APPLICATION

5-A

For applying arguments to functions

instead of f(x)

write fax

Example: (Az.x+5)a

Evaluating: in (A\z.t) areplace x by aint

(computation!)

FUNCTION APPLICATION

For applying arguments to functions

instead of f(x)

write fax

Example: (Az.x+5)a

Evaluating: in (A\z.t) areplace x by aint

(computation!)

Example: (Az. z+5) (e +0b) evaluates to

(a+b)+5

FUNCTION APPLICATION

5-C

NOow FORMAL

Terms: t = v ‘ C ‘ (t t) ’ ()\:c. t)

v,r eV, ceC, V,(C setsof names

SYNTAX

Terms:

N I R I R

t = v | c| (tt) | (Ax. t)

v,r eV, ceC, V,(C setsof names

v, X variables
C constants
(t t) application

(Az. t) abstraction

SYNTAX

8-A

[leave out parentheses where possible

[1 list variables instead of multiple A

Example: instead of (\y. (\z. (zy))) write Jyzx.zy

CONVENTIONS

[leave out parentheses where possible

[1 list variables instead of multiple A

Example: instead of (A\y. (A\z. (zy))) write

Rules:
[0 listvariables: Az. (A\y.t) = Az y.t
[1 application binds to the left: z y 2 = (z y) =
[1 abstraction binds to the right: Ax. z y = Az. (z y)
[l

leave out outermost parentheses

AY T.xyY

CONVENTIONS

9-A

GETTING USED TO THE SYNTAX

Example:

Meyz.xz(yz) =

GETTING USED TO THE SYNTAX

10

GETTING USED TO THE SYNTAX

Example:

Meyz.xz(yz) =

Ay z. (xz)(yz)=

GETTING USED TO THE SYNTAX

10-A

GETTING USED TO THE SYNTAX

Example:
Meyz.xz(yz) =
Ayzo(xz)(yz)=

Aey 2z ((z2) (y 2)) =

GETTING USED TO THE SYNTAX

10-B

GETTING USED TO THE SYNTAX

Example:
Neyzowz(yz) =
Aoy oz (z2) (yz) =
ey zo((x2) (y2) =

Ax. Ay. Az ((x 2) (y 2)) =

GETTING USED TO THE SYNTAX 10-C

GETTING USED TO THE SYNTAX

Example:
Neyzoxz(yz) =
Aeyzo (xz)(yz)=
Aey 2z ((z2) (y 2)) =

Ax. Ay. Az ((x 2) (y 2)) =

(Az. (Ay. (Az. ((z 2) (¥ 2)))))

GETTING USED TO THE SYNTAX

10-D

Intuition: replace parameter by argument

this is called 5-reduction

Example

Az y. fyz) 5 (Ar.x) —p

COMPUTATION

11

Intuition: replace parameter by argument

this is called 5-reduction

Example

Az y. fyz)) 5 (M. x) —p
(Ay. f(y5)) (Ar.z) —p

COMPUTATION 11-A

Intuition: replace parameter by argument

this is called 5-reduction

Example

(Ary. f(yz) 5 (Ar. 1) —p
(M. f(y5)) (Ao z) —p
f Az 2)5) —p

COMPUTATION

11-8B

Intuition: replace parameter by argument

this is called 5-reduction

Example

Az y. fyx) 5 (Av.z) —p
(Ay. f(y5)) (Ar.2) —p
f((Az.x) 5) —pg

fb

COMPUTATION 11-cC

DEFINING COMPUTATION

ﬂ reduction:
(A\x.s)t —p s[z—t]
s —pg § = (st) —p5 (s'1)
L —3 t/ — (S t) —3 (S t’)
s —p § = (Ar.s) —p3 (A\z.$)

DEFINING COMPUTATION

ﬂ reduction:

(A\x.s)t —p s[z—t]
s —pg § = (st) —p5 (s'1)
t —p t = (st) —p5 (st
s —pg s = (Az.s) —p5 (Az.s)

Still to do: define s|x « t]

DEFINING COMPUTATION 12-A

Easy concept. Small problem: variable capture.

Example: (A\z. x z)[z < z]

DEFINING SUBSTITUTION

13

Easy concept. Small problem: variable capture.

Example: (A\z. x z)[z < z]

We do not want: (Ax. x =) as result.

What do we want?

DEFINING SUBSTITUTION 13-A

Easy concept. Small problem: variable capture.

Example: (A\z. x z)[z < z]

We do not want: (Ax. x =) as result.

What do we want?

In (\y. y 2) [z < x] = (\y. y x) there would be no problem.

So, solution is: rename bound variables.

DEFINING SUBSTITUTION

13-B

Bound variables: in (Azx. t), z is a bound variable.

FREE VARIABLES

14

Bound variables: in (Azx. t), z is a bound variable.

Free variables F'V of a term;

FV (x) = {z}

EV(e) ={}

FV (st) =FV(s)UFV(t)
(

FV (\x. t) = FV(t) \ {z)

Example: FV(Azx. (\y. (Az.2)y) yx

FREE VARIABLES

Bound variables: in (Azx. t), z is a bound variable.

Free variables F'V of a term;

FV (x) = {z}

EV(e) ={}

FV (st) =FV(s)UFV(t)
(

FV (\x. t) = FV(t) \ {z)

Example: FV(Azx. (\y. (Az.2)y) yx

FREE VARIABLES

Bound variables: in (Azx. t), z is a bound variable.

Free variables F'V of a term;

FV (x) = {z}

EV(e) ={}

FV (st) =FV(s)UFV(t)
(

FV (\x. t) = FV(t) \ {z)

Example: FV(Az. (Ay. Az.2)y)yx) ={y}

Term t is called closed if FV (t) = {}

FREE VARIABLES 14-c

T |x — t] =t

y [z —1 =y

c |z «—t] =c

(s182) [# 1] =

if x #£y

SUBSTITUTION

15

T |x 1] =1

Yz —1] =y if z £y

c |z «—t] =c
(s182) [— 1] = (s1]z — 1] sa|lz —1])

(Az. s) [x «—t] =

SUBSTITUTION 15-A

T |x 1] =1

Y v 1] =y

c |z «—t] =c

(s1 82) [x «— t] = (s1|x « t] sa|x «— t])

if 2 4 y

SUBSTITUTION

15-B

T |x — t] =t

y |z 1 =y ifz #y

clr 1 =c

(51 82) [T 1] = (s1|w « 1] sa[z « t])

(Ax. s) [z «— t] = (A\x. s)
(Ay. s) [x «— t] = (A\y. s|lz «— t]) ifx Ayandy & FV(t)
(Ay. s) lv —t] =

SUBSTITUTION 15-c

T |x 1]

y v 1]

c |z «—t]

= C

(s1 82) [x «— t] = (s1|x « t] sa|x «— t])

(Az. s)
(Ay. s)
(Ay. s)

v —1

vt

vt

(Az. s)
(Ay. sz —1])
(Az. sly « z][z —t])

if 2 4 y

ifx Ayandy & FV(t)

if z £y
and z ¢ FV(t) U FV(t)

SUBSTITUTION

15-D

SUBSTITUTION EXAMPLE

(z (Az.) (Ay. 2z 2))[z — Yy

SUBSTITUTION EXAMPLE

16

SUBSTITUTION EXAMPLE

(z (Az.) (Ay. 2z 2))[z — Yy
= (@lr —y]) (Az. 2)lr —y]) (\y. 2 2)|z < y])

SUBSTITUTION EXAMPLE 16-A

SUBSTITUTION EXAMPLE

(z (Az.) (Ay. 2z 2))[z — Yy

(zlr —y]) (Az. z)[z —y]) (A\y. 2 2)[x —y])
= y(Az.z) (Y. 2 y)

SUBSTITUTION EXAMPLE

16-B

Bound names are irrelevant:
Az. x and \y. y denote the same function.

(v conversion:
s =, t means s = t up to renaming of bound variables.

(Y CONVERSION

17

Bound names are irrelevant:
Az. x and \y. y denote the same function.

(v conversion:
s =, t means s = t up to renaming of bound variables.

Formally:
Az t) —a My tlz—y)]) ify ¢ FV (L)
s — s = (st) —a (8'1)
t —a t = (st) —a (st
s —q & = (Ar.s) —4 (Az.S)

(Y CONVERSION 17-A

Bound names are irrelevant:

Az. x and \y. y denote the same function.

(v conversion:
s =, t means s = t up to renaming of bound variables.

Formally:
S —
t %a
S —

(—> = transitive, reflexive closure of —, = multiple steps)

/ t)
t')
Ax. s

V)

Ve N e N e N
V)

s=qt Iff s—71

Ay. tlx — y]) ify & FV(t)

()Y CONVERSION

17-B

Equality in Isabelle is equality modulo « conversion:

If s =, t then s and ¢t are syntactically equal.

Examples:
r (A\ry. xy)

(Y CONVERSION

18

Equality in Isabelle is equality modulo « conversion:

If s =, t then s and ¢t are syntactically equal.

Examples:
r (A\ry. xy)
=« T (Ayz.yuzx)

(Y CONVERSION 18-A

Equality in Isabelle is equality modulo « conversion:

If s =, t then s and ¢t are syntactically equal.

Examples:
r (A\ry. xy)
=« T (Ayz.yuzx)
=a T (A2y.zYy)

(Y CONVERSION 18-B

Equality in Isabelle is equality modulo « conversion:

If s =, t then s and ¢t are syntactically equal.

Examples:

(Y CONVERSION 18-C

Equality in Isabelle is equality modulo « conversion:

If s =, t then s and ¢t are syntactically equal.

Examples:
r (A\ry. xy)
=« T (Ayz.yuzx)
=a T (A2y.zYy)

Fa 2 (A2y. 2y)

#o T (AT x. 2 T)

(
(
(
(

(Y CONVERSION 18-D

We have defined [reduction: —;

Some notation and concepts:

0 (3 conversion: s=gt iff 3n.s —5nAt—%n

BACK TO 6

19

We have defined [reduction: —;

Some notation and concepts:
0 (3 conversion: s=gt iff 3n.s —5nAt—%n

[J tisreducible if thereis an s such thatt —g3 s

BACK TO 5 19-A

We have defined [reduction: —;

Some notation and concepts:
0 (3 conversion: s=gt iff 3n.s —5nAt—%n
[J tisreducible if thereis an s such thatt —g3 s

[0 (Az. s) tis called a redex (reducible expression)

BACK TO 6

19-B

We have defined [reduction: —;

Some notation and concepts:
0 (3 conversion: s=gt iff 3n.s —5nAt—%n
[J tisreducible if thereis an s such thatt —g3 s
[0 (Az. s) tis called a redex (reducible expression)

[1 tis reducible iff it contains a redex

BACK TO 5 19-c

We

have defined 3 reduction: —;

Some notation and concepts:

[

3 conversion: s =gt iff In.s —5nAt—5n
t isreducible if there is an s such thatt —g3 s
(Ax. s) tis called a redex (reducible expression)

t is reducible iff it contains a redex

if it is not reducible, ¢ is in normal form

BACK TO 6

19-D

We

have defined 3 reduction: —;

Some notation and concepts:

[

[]
[]
[]
[]
[]

3 conversion: s =gt iff In.s —5nAt—5n
t isreducible if there is an s such thatt —g3 s
(Ax. s) tis called a redex (reducible expression)

t is reducible iff it contains a redex

if it is not reducible, ¢ is in normal form

t has a normal form if there is an irreducible s such thatt —73 s

BACK TO 6

19-E

DOES EVERY A TERM HAVE A NORMAL FORM?

Example:

(Ar.zz) (A x x) —p3

DOES EVERY)\ TERM HAVE A NORMAL FORM?

20

DOES EVERY A TERM HAVE A NORMAL FORM?

Example:

(Ar.zz) (A x x) —p3

(Az. zz) (A\z. z2) —p3

DOES EVERY)\ TERM HAVE A NORMAL FORM? 20-A

DOES EVERY A TERM HAVE A NORMAL FORM?

No!

Example:

(Ar.zz) (A x x) —p3
(Az. zz) (A\z. z2) —p3
(Ar.zz) (M. xx) —p3...

DOES EVERY)\ TERM HAVE A NORMAL FORM?

20-B

DOES EVERY A TERM HAVE A NORMAL FORM?

No!

Example:

(Ar.zz) (A x x) —p3
(Az. zz) (A\z. z2) —p3
(Ar.zz) (M. xx) —p3...

(but: Az y.y) (M. x x) (Az. z) —5 Ay. Y)

DOES EVERY)\ TERM HAVE A NORMAL FORM? 20-C

DOES EVERY A TERM HAVE A NORMAL FORM?

No!

Example:

(Ar.zz) (A x x) —p3
(Az. zz) (A\z. z2) —p3
(Ar.zz) (M. xx) —p3...

(but: Az y.y) (M. x x) (Az. z) —5 Ay. Y)

A calculus is not terminating

DOES EVERY)\ TERM HAVE A NORMAL FORM?

20-D

5 REDUCTION IS CONFLUENT

Confluence: s —jaAs —jy=— Jt.o —5t Ay —p3t

7N

/B REDUCTION IS CONFLUENT

21

Confluence: s —jaAs —jy=— Jt.o —5t Ay —p3t
S
/ X
:C\ /y

Order of reduction does not matter for result
Normal forms in A calculus are unique

/B REDUCTION IS CONFLUENT 21-A

ﬁ REDUCTION IS CONFLUENT

Example:

Az y.y) (Mr.zx) a)
(A\ry.y) (M. xx) a)

/B REDUCTION IS CONFLUENT

22

5 REDUCTION IS CONFLUENT

Example:

Az y.y) (\e.zx) a)—p (Az y. y) (aa)
(AN y.y) (M. xx)a)—pg Ay. y

ﬁ REDUCTION IS CONFLUENT 22-A

5 REDUCTION IS CONFLUENT

Example:

Az y.y) (\e. z x) a)—pg (Az y.y) (a a)—p Ay. y
Az y.y) (Ao 2 x) a)—pg Ay. y

/8 REDUCTION IS CONFLUENT

22-B

Another case of trivially equal functions: ¢t = (\x. t x)

77 CONVERSION

23

Another case of trivially equal functions: ¢t = (\x. t x)

Definition:
(A\r.tz) —p if x ¢ FV(t)
s —, § = (st) —y (1)
—y T = (st) —, (st)
s —, § = (Ax.s) —p (Az.)

s=pt Iff Eln.s—xj;n/\t—xj;n

Example: (\z. f z) (A\y. g y) —,

77 CONVERSION 23-A

Another case of trivially equal functions: ¢t = (\x. t x)

Definition:
(A\r.tz) —p if x ¢ FV(t)
s —, § = (st) —y (1)
—y T = (st) —, (st)
s —, § = (Ax.s) —p (Az.)

s=pt Iff Eln.s—xj;n/\t—xj;n

Example: (\z. f) (\y. gy) —, Oz f2) g —

77 CONVERSION 23-B

Another case of trivially equal functions: ¢t = (\x. t x)

Definition:
(A\r.tz) —p if x ¢ FV(t)
s —, § = (st) —y (1)
—y T = (st) —, (st)
s —, § = (Ax.s) —p (Az.)

s=pt Iff Eln.s—xj;n/\t—xj;n

Example: (\z. fz) \y. gy) —, Az. f2)g—n f g

77 CONVERSION 23-C

Another case of trivially equal functions: ¢t = (\x. t x)

Definition:
(A\r.tz) —p if x ¢ FV(t)
s —, § = (st) —y (1)
—y T = (st) —, (st)
s —, § = (Ax.s) —p (Az.)

s=pt Iff Eln.s—xj;n/\t—xj;n

Example: (\z. fz) \y. gy) —, Az. f2)g—n f g

[1 n reduction is confluent and terminating.

[—p3, IS confluent.
— 3, Means — 3 and —,, steps are both allowed.

[J Equality in Isabelle is also modulo n conversion.

77 CONVERSION 23-D

Equality in Isabelle is modulo «, 3, and n conversion.

We will see next lecture why that is possible.

IN FACT ...

24

A calculus is very expressive, you can encode:
[logic, set theory

[J turing machines, functional programs, etc.

Examples:

SO, WHAT CAN YOU DO WITH A CALCULUS?

25

A calculus is very expressive, you can encode:
[logic, set theory

[J turing machines, functional programs, etc.

Examples:
true =X\ry.x

false=Xry. vy
| f =\z2TYyY.z2TY

SO, WHAT CAN YOU DO WITH A CALCULUS? 25-A

A calculus is very expressive, you can encode:
[logic, set theory

[J turing machines, functional programs, etc.

Examples:
true =Xzxy.x Iftruezy —ju
false= Xz y.y If falsexzy —jy
| f =\zTyY.z2TY

SO, WHAT CAN YOU DO WITH A CALCULUS?

25-B

A calculus is very expressive, you can encode:
[logic, set theory

[J turing machines, functional programs, etc.

Examples:
true =Xzxy.x Iftruezy —ju
false= Xz y.y If falsexzy —jy
| f =\zTyY.z2TY

Now, not , and, or, etc is easy:

SO, WHAT CAN YOU DO WITH A CALCULUS? 25-C

A calculus is very expressive, you can encode:
[logic, set theory

[J turing machines, functional programs, etc.

Examples:
true =Xzxy.x Iftruezy —ju
false= Xz y.y If falsexzy —jy
| f =\zTyY.z2TY

Now, not , and, or, etc is easy:

not = x.1f xfal setrue
and=Xxy.1f zyfal se
or =Xxy.if ztruey

SO, WHAT CAN YOU DO WITH A CALCULUS?

25-D

Encoding natural numbers (Church Numerals)

0 =Afz. x
1 =Afx. fx
2 =Afax f(fx)

3 =Afa f(f(fx)

Numeral n is takes arguments f and x, applies f n-times to x.

MORE EXAMPLES

26

Encoding natural numbers (Church Numerals)

0 =Afz. x
1 =Afx. fx
2 =Afax f(fx)

3 =Afa f(f(fx)

Numeral n is takes arguments f and x, applies f n-times to x.

| szero = An.n (Ax.fal se)true

MORE EXAMPLES 26-A

Encoding natural numbers (Church Numerals)

0 =Afz. x
1 =Afx. fx
2 =Afax f(fx)

3 =Afa f(f(fx)

Numeral n is takes arguments f and x, applies f n-times to x.

| szero = An.n (Ax.fal se)true
succ =Mfz. f(nfx

MORE EXAMPLES

26-B

Encoding natural numbers (Church Numerals)
0 =Afz. x
1 =Afx. fx
2 =Afax f(fx)
3 =Ma f(f(fa))

Numeral n is takes arguments f and x, applies f n-times to x.

| szero = An.n (Ax.fal se)true
succ =Mfz. f(nfx
add = xmn. Afx.mf(nfx)

MORE EXAMPLES 26-C

M fof(xaf) Mf fzxaf) t—p

FIX POINTS

27

FIX POINTS

M fof(xaf) Mf fzxaf) t—p
M F(Qaf feaf) Qaf f@s)) L —p

FiIX POINTS 27-A

(
(
t

FIX POINTS

e fof(xaxf)) M f. feaf)) t—p
AP (e fof(wx f)) (Ao f. f (e f)) f)) t —p
((Az f. f(xax f)) Ax f. f(zxf)))

FIX POINTS

27-B

FIX POINTS

M fof(xaf) Mf fzxaf) t—p
M F(Qaf feaf) Qaf f@s)) L —p
t((Az f. f(zax f)) Ae f. f(za f))1)

p=0af. f(a f) Oaf. f (@)
it —pt (ut) — b (t (1)) —gt ((t (1) —p ...

FiX POINTS 27-C

M fof(xaf) Mf fzxaf) t—p
A f (A fo fzz f)) (Ao f. f () f)) t —p
t((Az f. f(zax f)) Ae f. f(za f))1)

= (0af. f@ef) Oaf. f @z f))
it —sgt (ut) —p t (¢ (ut) —pt (t(t (1) —g ...

Aef. f(xx f)) Aef. f (xa f))is Turing’s fix point operator

FIX POINTS

27-D

As a mathematical foundation, \ does not work. It IS iInconsistent.

NICE, BUT ...

28

As a mathematical foundation, \ does not work. It IS iInconsistent.

[1 Frege (Predicate Logic, ~ 1879):
allows arbitrary quantification over predicates

[0 Russel (1901): Paradox R = {X|X ¢ X}

[0 Whitehead & Russel (Principia Mathematica, 1910-1913):
Fix the problem

[0 Church (1930): X calculus as logic, true, fal se, A, ... as A terms

Problem:

NICE, BUT ... 28-A

As a mathematical foundation, \ does not work. It IS iInconsistent.

[1 Frege (Predicate Logic, ~ 1879):
allows arbitrary quantification over predicates

[0 Russel (1901): Paradox R = {X|X ¢ X}

[0 Whitehead & Russel (Principia Mathematica, 1910-1913):
Fix the problem

[0 Church (1930): X calculus as logic, true, fal se, A, ... as A terms

Problem:
with {x| Px}=Xx. Px reM=Mx

NICE, BUT ... 28-B

As a mathematical foundation, \ does not work. It IS iInconsistent.

[1 Frege (Predicate Logic, ~ 1879):
allows arbitrary quantification over predicates

[0 Russel (1901): Paradox R = {X|X ¢ X}

[0 Whitehead & Russel (Principia Mathematica, 1910-1913):
Fix the problem

[0 Church (1930): X calculus as logic, true, fal se, A, ... as A terms

Problem:
with {x| Px}=Xx. Px reM=Mx

you can write R = Az. not (x x)

NICE, BUT ... 28-C

As a mathematical foundation, \ does not work. It IS iInconsistent.

[1 Frege (Predicate Logic, ~ 1879):
allows arbitrary quantification over predicates

[0 Russel (1901): Paradox R = {X|X ¢ X}

[0 Whitehead & Russel (Principia Mathematica, 1910-1913):
Fix the problem

[0 Church (1930): X calculus as logic, true, fal se, A, ... as A terms

Problem:
with {x| Px}=Xx. Px reM=Mx
you can write R = Az. not (x x)
and get (R R) =g not (R R)

NICE, BUT ... 28-D

A calculus syntax

free variables, substitution
(G reduction

« and 7 conversion

(G reduction is confluent

A calculus is very expressive (turing complete)

N I I I I A I B

)\ calculus is inconsistent

WE HAVE LEARNED SO FAR...

29

ISABELLE DEMO

30

N I R N B I

Play around with the syntax. Enter a number of)\ terms into Isabelle.
Not all A terms are accepted by Isabelle. Which are not? Why?
Evaluate the substitution (y (Av. z v))[x < (Ay. v y)] on paper.

Reduce (An. Afxz. f(n fx)) (An.Afz. f(nfx)) Afz.x))toits 8
normal form on paper and in Isabelle.

Pairs in A calculus: define functions fs, sn, and pair such that
fs (pair ab) —35 a and sn (pair ab) —p5 b

What can be done to fix the inconsistency in A\ calculus?

EXERCISES

31

