

NICTA Advanced Course

Theorem Proving Principles, Techniques, Applications

CONTENT

- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
 - Lambda Calculus
 - Higher Order Logic, natural deduction
 - Term rewriting
- → Proof & Specification Techniques
 - Datatypes, recursion, induction
 - Inductively defined sets, rule induction
 - Calculational reasoning, mathematics style proofs
 - Hoare logic, proofs about programs

λ -CALCULUS

Alonzo Church

- → lived 1903–1995
- → supervised people like Alan Turing, Stephen Kleene
- → famous for Church-Turing thesis, lambda calculus, first undecidability results
- \rightarrow invented λ calculus in 1930's

λ -CALCULUS

Alonzo Church

- → lived 1903–1995
- → supervised people like Alan Turing, Stephen Kleene
- → famous for Church-Turing thesis, lambda calculus, first undecidability results
- \rightarrow invented λ calculus in 1930's

λ -calculus

- → originally meant as foundation of mathematics
- → important applications in theoretical computer science
- → foundation of computability and functional programming

- → turing complete model of computation
- → a simple way of writing down functions

UNTYPED λ -CALCULUS

- → turing complete model of computation
- → a simple way of writing down functions

Basic intuition:

instead of
$$f(x) = x + 5$$

write
$$f = \lambda x. \ x + 5$$

- → turing complete model of computation
- → a simple way of writing down functions

Basic intuition:

instead of
$$f(x) = x + 5$$

write
$$f = \lambda x. \ x + 5$$

$$\lambda x. x + 5$$

→ a term

- → turing complete model of computation
- → a simple way of writing down functions

Basic intuition:

instead of
$$f(x) = x + 5$$

write
$$f = \lambda x. \ x + 5$$

$$\lambda x. x + 5$$

- → a term
- → a nameless function

- → turing complete model of computation
- → a simple way of writing down functions

Basic intuition:

instead of
$$f(x) = x + 5$$

write
$$f = \lambda x. \ x + 5$$

$$\lambda x. x + 5$$

- → a term
- → a nameless function
- → that adds 5 to its parameter

For applying arguments to functions

instead of f(x)

write f x

For applying arguments to functions

instead of
$$f(x)$$

write
$$f x$$

Example: $(\lambda x. \ x+5) \ a$

For applying arguments to functions

instead of
$$f(x)$$

write
$$f x$$

Example:
$$(\lambda x. \ x+5) \ a$$

Evaluating: in
$$(\lambda x. t)$$
 a replace x by a in t

(computation!)

For applying arguments to functions

instead of
$$f(x)$$

write
$$f x$$

Example:
$$(\lambda x. x + 5) a$$

Evaluating: in
$$(\lambda x. t)$$
 a replace x by a in t

(computation!)

Example:
$$(\lambda x. \ x+5) \ (a+b)$$
 evaluates to $(a+b)+5$

THAT'S IT!

Now Formal

SYNTAX

Terms:
$$t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$$

 $v, x \in V, \quad c \in C, \quad V, C \text{ sets of names}$

SYNTAX

$$t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$$

 $v, x \in V, \quad c \in C, \quad V, C \text{ sets of names}$

- $\rightarrow v, x$ variables
- \rightarrow c constants
- \rightarrow $(t \ t)$ application
- \rightarrow $(\lambda x. t)$ abstraction

CONVENTIONS

- → leave out parentheses where possible
- \rightarrow list variables instead of multiple λ

Example: instead of $(\lambda y. (\lambda x. (x y)))$ write $\lambda y x. x y$

CONVENTIONS

- → leave out parentheses where possible
- \rightarrow list variables instead of multiple λ

Example: instead of $(\lambda y. (\lambda x. (x y)))$ write $\lambda y x. x y$

Rules:

- \rightarrow list variables: $\lambda x. (\lambda y. t) = \lambda x y. t$
- \rightarrow application binds to the left: $x \ y \ z = (x \ y) \ z \neq x \ (y \ z)$
- \rightarrow abstraction binds to the right: $\lambda x. \ x \ y = \lambda x. \ (x \ y) \neq (\lambda x. \ x) \ y$
- → leave out outermost parentheses

$$\lambda x \ y \ z. \ x \ z \ (y \ z) =$$

$$\lambda x \ y \ z. \ x \ z \ (y \ z) =$$

$$\lambda x \ y \ z. \ (x \ z) \ (y \ z) =$$

$$\lambda x \ y \ z. \ x \ z \ (y \ z) =$$

$$\lambda x \ y \ z. \ (x \ z) \ (y \ z) =$$

$$\lambda x \ y \ z. \ ((x \ z) \ (y \ z)) =$$

$$\lambda x \ y \ z. \ x \ z \ (y \ z) =$$

$$\lambda x \ y \ z. \ (x \ z) \ (y \ z) =$$

$$\lambda x \ y \ z. \ ((x \ z) \ (y \ z)) =$$

$$\lambda x. \ \lambda y. \ \lambda z. \ ((x \ z) \ (y \ z)) =$$

$$\lambda x \ y \ z. \ x \ z \ (y \ z) =$$
 $\lambda x \ y \ z. \ (x \ z) \ (y \ z) =$
 $\lambda x \ y \ z. \ ((x \ z) \ (y \ z)) =$
 $\lambda x. \ \lambda y. \ \lambda z. \ ((x \ z) \ (y \ z)) =$
 $(\lambda x. \ (\lambda y. \ (\lambda z. \ ((x \ z) \ (y \ z)))))$

Intuition: replace parameter by argument

this is called β -reduction

$$(\lambda x \ y. \ f \ (y \ x)) \ 5 \ (\lambda x. \ x) \longrightarrow_{\beta}$$

Intuition: replace parameter by argument this is called β -reduction

$$(\lambda x \ y. \ f \ (y \ x)) \ 5 \ (\lambda x. \ x) \longrightarrow_{\beta}$$

 $(\lambda y. \ f \ (y \ 5)) \ (\lambda x. \ x) \longrightarrow_{\beta}$

Intuition: replace parameter by argument this is called β -reduction

$$(\lambda x \ y. \ f \ (y \ x)) \ 5 \ (\lambda x. \ x) \longrightarrow_{\beta}$$
$$(\lambda y. \ f \ (y \ 5)) \ (\lambda x. \ x) \longrightarrow_{\beta}$$
$$f \ ((\lambda x. \ x) \ 5) \longrightarrow_{\beta}$$

Intuition: replace parameter by argument this is called β -reduction

$$(\lambda x \ y. \ f \ (y \ x)) \ 5 \ (\lambda x. \ x) \longrightarrow_{\beta}$$
$$(\lambda y. \ f \ (y \ 5)) \ (\lambda x. \ x) \longrightarrow_{\beta}$$
$$f \ ((\lambda x. \ x) \ 5) \longrightarrow_{\beta}$$
$$f \ 5$$

DEFINING COMPUTATION

eta reduction:

$$(\lambda x. s) t \longrightarrow_{\beta} s[x \leftarrow t]$$

$$s \longrightarrow_{\beta} s' \implies (s t) \longrightarrow_{\beta} (s' t)$$

$$t \longrightarrow_{\beta} t' \implies (s t) \longrightarrow_{\beta} (s t')$$

$$s \longrightarrow_{\beta} s' \implies (\lambda x. s) \longrightarrow_{\beta} (\lambda x. s')$$

DEFINING COMPUTATION

eta reduction:

$$(\lambda x. s) t \longrightarrow_{\beta} s[x \leftarrow t]$$

$$s \longrightarrow_{\beta} s' \implies (s t) \longrightarrow_{\beta} (s' t)$$

$$t \longrightarrow_{\beta} t' \implies (s t) \longrightarrow_{\beta} (s t')$$

$$s \longrightarrow_{\beta} s' \implies (\lambda x. s) \longrightarrow_{\beta} (\lambda x. s')$$

Still to do: defi ne $s[x \leftarrow t]$

DEFINING SUBSTITUTION

Easy concept. Small problem: variable capture.

Example: $(\lambda x. \ x \ z)[z \leftarrow x]$

DEFINING SUBSTITUTION

Easy concept. Small problem: variable capture.

Example: $(\lambda x. \ x \ z)[z \leftarrow x]$

We do **not** want: $(\lambda x. x x)$ as result.

What do we want?

DEFINING SUBSTITUTION

Easy concept. Small problem: variable capture.

Example: $(\lambda x. \ x \ z)[z \leftarrow x]$

We do **not** want: $(\lambda x. x x)$ as result.

What do we want?

In $(\lambda y.\ y.\ z)$ $[z \leftarrow x] = (\lambda y.\ y.\ x)$ there would be no problem.

So, solution is: rename bound variables.

FREE VARIABLES

Bound variables: in $(\lambda x.\ t)$, x is a bound variable.

FREE VARIABLES

Bound variables: in $(\lambda x. t)$, x is a bound variable.

Free variables FV of a term:

$$FV (x) = \{x\}$$

$$FV (c) = \{\}$$

$$FV (s t) = FV(s) \cup FV(t)$$

$$FV (\lambda x. t) = FV(t) \setminus \{x\}$$

Example: $FV(-\lambda x. (\lambda y. (\lambda x. x) y) y x)$

FREE VARIABLES

Bound variables: in $(\lambda x. t)$, x is a bound variable.

Free variables FV of a term:

$$FV (x) = \{x\}$$

$$FV (c) = \{\}$$

$$FV (s t) = FV(s) \cup FV(t)$$

$$FV (\lambda x. t) = FV(t) \setminus \{x\}$$

Example: $FV(\lambda x. (\lambda y. (\lambda x. x) y) y x) = \{y\}$

FREE VARIABLES

Bound variables: in $(\lambda x. t)$, x is a bound variable.

Free variables FV of a term:

$$FV (x) = \{x\}$$

$$FV (c) = \{\}$$

$$FV (s t) = FV(s) \cup FV(t)$$

$$FV (\lambda x. t) = FV(t) \setminus \{x\}$$

Example: $FV(\lambda x. (\lambda y. (\lambda x. x) y) y x) = \{y\}$

Term t is called **closed** if $FV(t) = \{\}$

$$x [x \leftarrow t] = t$$

$$y [x \leftarrow t] = y$$

$$c\left[x \leftarrow t\right] \qquad = c$$

$$(s_1 \ s_2) \left[x \leftarrow t \right] =$$

if
$$x \neq y$$

$$x [x \leftarrow t] = t$$

$$y [x \leftarrow t] = y$$

$$c [x \leftarrow t] = c$$
if $x \neq y$

 $(s_1 \ s_2) \ [x \leftarrow t] = (s_1 [x \leftarrow t] \ s_2 [x \leftarrow t])$

$$(\lambda x.\ s)\ [x \leftarrow t] =$$

$$x [x \leftarrow t] = t$$

$$y [x \leftarrow t] = y \qquad \text{if } x \neq y$$

$$c [x \leftarrow t] = c$$

$$(s_1 s_2) [x \leftarrow t] = (s_1[x \leftarrow t] s_2[x \leftarrow t])$$

$$(\lambda x. s) [x \leftarrow t] = (\lambda x. s)$$

$$(\lambda y. s) [x \leftarrow t] =$$

$$x [x \leftarrow t] = t$$

$$y [x \leftarrow t] = y \qquad \text{if } x \neq y$$

$$c [x \leftarrow t] = c$$

$$(s_1 s_2) [x \leftarrow t] = (s_1[x \leftarrow t] s_2[x \leftarrow t])$$

$$(\lambda x. s) [x \leftarrow t] = (\lambda x. s)$$

$$(\lambda y. s) [x \leftarrow t] = (\lambda y. s[x \leftarrow t]) \qquad \text{if } x \neq y \text{ and } y \notin FV(t)$$

$$(\lambda y. s) [x \leftarrow t] = (\lambda y. s[x \leftarrow t]) \qquad \text{if } x \neq y \text{ and } y \notin FV(t)$$

$$(\lambda y. s) [x \leftarrow t] = (\lambda y. s[x \leftarrow t]) \qquad \text{if } x \neq y \text{ and } y \notin FV(t)$$

$$\begin{array}{lll} x \ [x \leftarrow t] & = t \\ y \ [x \leftarrow t] & = y & \text{if } x \neq y \\ c \ [x \leftarrow t] & = c \\ \\ (s_1 \ s_2) \ [x \leftarrow t] & = (s_1[x \leftarrow t] \ s_2[x \leftarrow t]) \\ (\lambda x. \ s) \ [x \leftarrow t] & = (\lambda x. \ s) \\ (\lambda y. \ s) \ [x \leftarrow t] & = (\lambda y. \ s[x \leftarrow t]) & \text{if } x \neq y \ \text{and } y \notin FV(t) \\ (\lambda y. \ s) \ [x \leftarrow t] & = (\lambda z. \ s[y \leftarrow z][x \leftarrow t]) & \text{if } x \neq y \\ & \text{and } z \notin FV(t) \cup FV(t) \end{array}$$

SUBSTITUTION EXAMPLE

$$(x \ (\lambda x. \ x) \ (\lambda y. \ z \ x))[x \leftarrow y]$$

SUBSTITUTION EXAMPLE

$$(x (\lambda x. x) (\lambda y. z x))[x \leftarrow y]$$

$$= (x[x \leftarrow y]) ((\lambda x. x)[x \leftarrow y]) ((\lambda y. z x)[x \leftarrow y])$$

SUBSTITUTION EXAMPLE

$$(x (\lambda x. x) (\lambda y. z x))[x \leftarrow y]$$

$$= (x[x \leftarrow y]) ((\lambda x. x)[x \leftarrow y]) ((\lambda y. z x)[x \leftarrow y])$$

$$= y (\lambda x. x) (\lambda y'. z y)$$

Bound names are irrelevant:

 $\lambda x. \ x$ and $\lambda y. \ y$ denote the same function.

α conversion:

 $s =_{\alpha} t$ means s = t up to renaming of bound variables.

Bound names are irrelevant:

 $\lambda x. \ x$ and $\lambda y. \ y$ denote the same function.

α conversion:

 $s =_{\alpha} t$ means s = t up to renaming of bound variables.

Formally:

$$(\lambda x.\ t) \longrightarrow_{\alpha} (\lambda y.\ t[x \leftarrow y]) \ \text{if} \ y \notin FV(t)$$

$$s \longrightarrow_{\alpha} s' \implies (s\ t) \longrightarrow_{\alpha} (s'\ t)$$

$$t \longrightarrow_{\alpha} t' \implies (s\ t) \longrightarrow_{\alpha} (s\ t')$$

$$s \longrightarrow_{\alpha} s' \implies (\lambda x.\ s) \longrightarrow_{\alpha} (\lambda x.\ s')$$

Bound names are irrelevant:

 $\lambda x. \ x$ and $\lambda y. \ y$ denote the same function.

α conversion:

 $s =_{\alpha} t$ means s = t up to renaming of bound variables.

Formally:

$$(\lambda x.\ t) \longrightarrow_{\alpha} (\lambda y.\ t[x \leftarrow y]) \ \text{if} \ y \notin FV(t)$$

$$s \longrightarrow_{\alpha} s' \implies (s\ t) \longrightarrow_{\alpha} (s'\ t)$$

$$t \longrightarrow_{\alpha} t' \implies (s\ t) \longrightarrow_{\alpha} (s\ t')$$

$$s \longrightarrow_{\alpha} s' \implies (\lambda x.\ s) \longrightarrow_{\alpha} (\lambda x.\ s')$$

$$s =_{\alpha} t \quad \text{iff} \quad s \longrightarrow_{\alpha}^{*} t$$

 $(\longrightarrow_{\alpha}^* = \text{transitive}, \text{ reflexive closure of } \longrightarrow_{\alpha} = \text{multiple steps})$

Equality in Isabelle is equality modulo α conversion:

if $s =_{\alpha} t$ then s and t are syntactically equal.

$$x (\lambda x y. x y)$$

Equality in Isabelle is equality modulo α conversion:

if $s =_{\alpha} t$ then s and t are syntactically equal.

$$x (\lambda x y. x y)$$

$$=_{\alpha} x (\lambda y \ x. \ y \ x)$$

Equality in Isabelle is equality modulo α conversion:

if $s =_{\alpha} t$ then s and t are syntactically equal.

$$x (\lambda x y. x y)$$

$$=_{\alpha} x (\lambda y \ x. \ y \ x)$$

$$=_{\alpha} x (\lambda z y. z y)$$

Equality in Isabelle is equality modulo α conversion:

if $s =_{\alpha} t$ then s and t are syntactically equal.

$$x (\lambda x y. x y)$$

$$=_{\alpha} x (\lambda y x. y x)$$

$$=_{\alpha} x (\lambda z y. z y)$$

$$\neq_{\alpha} z (\lambda z y. z y)$$

Equality in Isabelle is equality modulo α conversion:

if $s =_{\alpha} t$ then s and t are syntactically equal.

$$x (\lambda x y. x y)$$

$$=_{\alpha} x (\lambda y x. y x)$$

$$=_{\alpha} x (\lambda z y. z y)$$

$$\neq_{\alpha} z (\lambda z y. z y)$$

$$\neq_{\alpha} x (\lambda x x. x x)$$

We have defined β reduction: \longrightarrow_{β}

Some notation and concepts:

 $\rightarrow \beta$ conversion: $s =_{\beta} t$ iff $\exists n. \ s \longrightarrow_{\beta}^{*} n \land t \longrightarrow_{\beta}^{*} n$

BACK TO β

We have defined β reduction: \longrightarrow_{β}

- ightharpoonup eta conversion: $s =_{\beta} t$ iff $\exists n. \ s \longrightarrow_{\beta}^{*} n \land t \longrightarrow_{\beta}^{*} n$
- ightharpoonup t is **reducible** if there is an s such that $t \longrightarrow_{\beta} s$

We have defined β reduction: \longrightarrow_{β}

- $\rightarrow \beta$ conversion: $s =_{\beta} t$ iff $\exists n. \ s \longrightarrow_{\beta}^{*} n \land t \longrightarrow_{\beta}^{*} n$
- ightharpoonup t is **reducible** if there is an s such that $t \longrightarrow_{\beta} s$
- \rightarrow ($\lambda x.\ s$) t is called a **redex** (reducible expression)

We have defined β reduction: \longrightarrow_{β}

- $\rightarrow \beta$ conversion: $s =_{\beta} t$ iff $\exists n. \ s \longrightarrow_{\beta}^{*} n \land t \longrightarrow_{\beta}^{*} n$
- ightharpoonup t is **reducible** if there is an s such that $t \longrightarrow_{\beta} s$
- \rightarrow ($\lambda x.\ s$) t is called a **redex** (reducible expression)
- → t is reducible iff it contains a redex

We have defined β reduction: \longrightarrow_{β}

- $\rightarrow \beta$ conversion: $s =_{\beta} t$ iff $\exists n. \ s \longrightarrow_{\beta}^{*} n \land t \longrightarrow_{\beta}^{*} n$
- ightharpoonup t is **reducible** if there is an s such that $t \longrightarrow_{\beta} s$
- \rightarrow ($\lambda x.\ s$) t is called a **redex** (reducible expression)
- → t is reducible iff it contains a redex
- \rightarrow if it is not reducible, t is in **normal form**

We have defined β reduction: \longrightarrow_{β}

- $\rightarrow \beta$ conversion: $s =_{\beta} t$ iff $\exists n. \ s \longrightarrow_{\beta}^{*} n \land t \longrightarrow_{\beta}^{*} n$
- \rightarrow t is **reducible** if there is an s such that $t \longrightarrow_{\beta} s$
- \rightarrow ($\lambda x.\ s$) t is called a **redex** (reducible expression)
- → t is reducible iff it contains a redex
- \rightarrow if it is not reducible, t is in **normal form**
- ightharpoonup t has a normal form if there is an irreducible s such that $t \longrightarrow_{\beta}^* s$

$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta}$$

$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta}$$

$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta}$$

No!

$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta}$$
$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta}$$
$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta} \dots$$

No!

Example:

$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta}$$
$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta}$$
$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta} \dots$$

(but: $(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ (\lambda x. \ x \ x)) \longrightarrow_{\beta} \ \lambda y. \ y)$

No!

Example:

$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta}$$
$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta}$$
$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta} \dots$$

(but:
$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ (\lambda x. \ x \ x)) \longrightarrow_{\beta} \ \lambda y. \ y)$$

λ calculus is not terminating

Confluence: $s \longrightarrow_{\beta}^* x \land s \longrightarrow_{\beta}^* y \Longrightarrow \exists t. \ x \longrightarrow_{\beta}^* t \land y \longrightarrow_{\beta}^* t$

Confluence: $s \longrightarrow_{\beta}^{*} x \land s \longrightarrow_{\beta}^{*} y \Longrightarrow \exists t. \ x \longrightarrow_{\beta}^{*} t \land y \longrightarrow_{\beta}^{*} t$

Order of reduction does not matter for result Normal forms in λ calculus are unique

$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ a)$$

$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ a)$$

$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ a) \longrightarrow_{\beta} (\lambda x \ y. \ y) \ (a \ a)$$
$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ a) \longrightarrow_{\beta} \lambda y. \ y$$

$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ a) \longrightarrow_{\beta} (\lambda x \ y. \ y) \ (a \ a) \longrightarrow_{\beta} \lambda y. \ y$$
$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ a) \longrightarrow_{\beta} \lambda y. \ y$$

η Conversion

Another case of trivially equal functions: $t = (\lambda x. \ t \ x)$

η Conversion

Another case of trivially equal functions: $t = (\lambda x. t x)$

Defi nition:

Example: $(\lambda x. f x) (\lambda y. g y) \longrightarrow_{\eta}$

η Conversion

Another case of trivially equal functions: $t = (\lambda x. t x)$

Defi nition:

Example: $(\lambda x. f x) (\lambda y. g y) \longrightarrow_{\eta} (\lambda x. f x) g \longrightarrow_{\eta}$

η Conversion

Another case of trivially equal functions: $t = (\lambda x. t x)$

Defi nition:

Example: $(\lambda x. f x) (\lambda y. g y) \longrightarrow_{\eta} (\lambda x. f x) g \longrightarrow_{\eta} f g$

η Conversion

Another case of trivially equal functions: $t = (\lambda x. t x)$

Defi nition:

Example: $(\lambda x. f x) (\lambda y. g y) \longrightarrow_{\eta} (\lambda x. f x) g \longrightarrow_{\eta} f g$

- \rightarrow η reduction is confluent and terminating.
- $\longrightarrow_{\beta\eta}$ is confluent. $\longrightarrow_{\beta\eta}$ means \longrightarrow_{β} and \longrightarrow_{η} steps are both allowed.
- \rightarrow Equality in Isabelle is also modulo η conversion.

IN FACT ...

Equality in Isabelle is modulo α , β , and η conversion.

We will see next lecture why that is possible.

24

 λ calculus is very expressive, you can encode:

- → logic, set theory
- → turing machines, functional programs, etc.

Examples:

 λ calculus is very expressive, you can encode:

- → logic, set theory
- → turing machines, functional programs, etc.

Examples:

```
true \equiv \lambda x \ y. \ x false \equiv \lambda x \ y. \ y if \equiv \lambda z \ x \ y. \ z \ x \ y
```

 λ calculus is very expressive, you can encode:

- → logic, set theory
- → turing machines, functional programs, etc.

Examples:

$$\begin{array}{ll} \text{true} & \equiv \lambda x \; y. \; x & \text{if true} \; x \; y \longrightarrow_{\beta}^* x \\ \\ \text{false} & \equiv \lambda x \; y. \; y & \text{if false} \; x \; y \longrightarrow_{\beta}^* y \\ \\ \text{if} & \equiv \lambda z \; x \; y. \; z \; x \; y \end{array}$$

 λ calculus is very expressive, you can encode:

- → logic, set theory
- → turing machines, functional programs, etc.

Examples:

true
$$\equiv \lambda x \ y. \ x$$
 if true $x \ y \longrightarrow_{\beta}^* x$ false $\equiv \lambda x \ y. \ y$ if false $x \ y \longrightarrow_{\beta}^* y$ if $\equiv \lambda z \ x \ y. \ z \ x \ y$

Now, not, and, or, etc is easy:

 λ calculus is very expressive, you can encode:

- → logic, set theory
- → turing machines, functional programs, etc.

Examples:

```
true \equiv \lambda x \ y. \ x if true x \ y \longrightarrow_{\beta}^* x false \equiv \lambda x \ y. \ y if false x \ y \longrightarrow_{\beta}^* y if \equiv \lambda z \ x \ y. \ z \ x \ y
```

Now, not, and, or, etc is easy:

```
not \equiv \lambda x. \text{ if } x \text{ false true}
and \equiv \lambda x y. \text{ if } x y \text{ false}
or \equiv \lambda x y. \text{ if } x \text{ true } y
```

Encoding natural numbers (Church Numerals)

```
0 \equiv \lambda f \ x. \ x
1 \equiv \lambda f \ x. \ f \ x
2 \equiv \lambda f \ x. \ f \ (f \ x)
3 \equiv \lambda f \ x. \ f \ (f \ (f \ x))
```

. . .

Numeral n is takes arguments f and x, applies f n-times to x.

Encoding natural numbers (Church Numerals)

- $0 \equiv \lambda f x. x$
- $1 \equiv \lambda f x. f x$
- $2 \equiv \lambda f x. f (f x)$
- $3 \equiv \lambda f x. f (f (f x))$

. . .

Numeral n is takes arguments f and x, applies f n-times to x.

iszero $\equiv \lambda n. \ n \ (\lambda x. \ \text{false}) \ \text{true}$

Encoding natural numbers (Church Numerals)

```
0 \equiv \lambda f \ x. \ x
1 \equiv \lambda f \ x. \ f \ x
2 \equiv \lambda f \ x. \ f \ (f \ x)
3 \equiv \lambda f \ x. \ f \ (f \ (f \ x))
```

. . .

Numeral n is takes arguments f and x, applies f n-times to x.

iszero
$$\equiv \lambda n. \ n \ (\lambda x. \ \text{false})$$
 true succ $\equiv \lambda n \ f \ x. \ f \ (n \ f \ x)$

Encoding natural numbers (Church Numerals)

```
0 \equiv \lambda f \ x. \ x
1 \equiv \lambda f \ x. \ f \ x
2 \equiv \lambda f \ x. \ f \ (f \ x)
3 \equiv \lambda f \ x. \ f \ (f \ (f \ x))
```

Numeral n is takes arguments f and x, applies f n-times to x.

iszero
$$\equiv \lambda n. \ n \ (\lambda x. \ \text{false})$$
 true succ $\equiv \lambda n \ f \ x. \ f \ (n \ f \ x)$ add $\equiv \lambda m \ n. \ \lambda f \ x. \ m \ f \ (n \ f \ x)$

$$(\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t \longrightarrow_{\beta}$$

$$(\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t \longrightarrow_{\beta}$$
$$(\lambda f. f ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) f)) t \longrightarrow_{\beta}$$

$$(\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t \longrightarrow_{\beta}$$

$$(\lambda f. f ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) f)) t \longrightarrow_{\beta}$$

$$t ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t)$$

$$(\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t \longrightarrow_{\beta}$$

$$(\lambda f. f ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) f)) t \longrightarrow_{\beta}$$

$$t ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t)$$

$$\mu = (\lambda x f. \ f \ (x \ x \ f)) \ (\lambda x f. \ f \ (x \ x \ f))$$

$$\mu \ t \longrightarrow_{\beta} t \ (\mu \ t) \longrightarrow_{\beta} t \ (t \ (\mu \ t)) \longrightarrow_{\beta} t \ (t \ (\mu \ t)) \longrightarrow_{\beta} \dots$$

$$(\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t \longrightarrow_{\beta}$$

$$(\lambda f. f ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) f)) t \longrightarrow_{\beta}$$

$$t ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t)$$

$$\mu = (\lambda x f. \ f \ (x \ x \ f)) \ (\lambda x f. \ f \ (x \ x \ f))$$

$$\mu \ t \longrightarrow_{\beta} t \ (\mu \ t) \longrightarrow_{\beta} t \ (t \ (\mu \ t)) \longrightarrow_{\beta} t \ (t \ (\mu \ t)) \longrightarrow_{\beta} \dots$$

 $(\lambda x f. \ f \ (x \ x \ f)) \ (\lambda x f. \ f \ (x \ x \ f))$ is Turing's fix point operator

As a mathematical foundation, λ does not work. It is inconsistent.

NICE, BUT ... 28

As a mathematical foundation, λ does not work. It is inconsistent.

- → Frege (Predicate Logic, ~ 1879): allows arbitrary quantification over predicates
- \rightarrow Russel (1901): Paradox $R \equiv \{X | X \notin X\}$
- → Whitehead & Russel (Principia Mathematica, 1910-1913): Fix the problem
- \rightarrow Church (1930): λ calculus as logic, true, false, \wedge , ... as λ terms

Problem:

NICE, BUT ...

As a mathematical foundation, λ does not work. It is inconsistent.

- → Frege (Predicate Logic, ~ 1879): allows arbitrary quantification over predicates
- \rightarrow Russel (1901): Paradox $R \equiv \{X | X \notin X\}$
- → Whitehead & Russel (Principia Mathematica, 1910-1913): Fix the problem
- \rightarrow Church (1930): λ calculus as logic, true, false, \wedge , ... as λ terms

Problem:

with

$$\{x \mid P \mid x\} \equiv \lambda x. P \mid x \qquad x \in M \equiv M \mid x$$

As a mathematical foundation, λ does not work. It is inconsistent.

- → Frege (Predicate Logic, ~ 1879): allows arbitrary quantification over predicates
- \rightarrow Russel (1901): Paradox $R \equiv \{X | X \notin X\}$
- → Whitehead & Russel (Principia Mathematica, 1910-1913): Fix the problem
- \rightarrow Church (1930): λ calculus as logic, true, false, \wedge , ... as λ terms

Problem:

with $\{x|\ P\ x\} \equiv \lambda x.\ P\ x \qquad x \in M \equiv M\ x$ you can write $R \equiv \lambda x.\ {\rm not}\ (x\ x)$

NICE, BUT ...

As a mathematical foundation, λ does not work. It is inconsistent.

- → Frege (Predicate Logic, ~ 1879): allows arbitrary quantification over predicates
- \rightarrow Russel (1901): Paradox $R \equiv \{X | X \notin X\}$
- → Whitehead & Russel (Principia Mathematica, 1910-1913): Fix the problem
- \rightarrow Church (1930): λ calculus as logic, true, false, \wedge , ... as λ terms

Problem:

with
$$\{x|\ P\ x\} \equiv \lambda x.\ P\ x \qquad x \in M \equiv M\ x$$
 you can write
$$R \equiv \lambda x.\ \mathrm{not}\ (x\ x)$$
 and get
$$(R\ R) =_{\beta} \mathrm{not}\ (R\ R)$$

WE HAVE LEARNED SO FAR...

- $\rightarrow \lambda$ calculus syntax
- → free variables, substitution
- $\rightarrow \beta$ reduction
- \rightarrow α and η conversion
- \rightarrow β reduction is confluent
- \rightarrow λ calculus is very expressive (turing complete)
- $\rightarrow \lambda$ calculus is inconsistent

ISABELLE DEMO

EXERCISES

- \rightarrow Play around with the syntax. Enter a number of λ terms into Isabelle.
- \rightarrow Not all λ terms are accepted by Isabelle. Which are not? Why?
- \rightarrow Evaluate the substitution $(y (\lambda v. x v))[x \leftarrow (\lambda y. v y)]$ on paper.
- → Reduce $(\lambda n. \ \lambda f \ x. \ f \ (n \ f \ x)) \ ((\lambda n. \ \lambda f \ x. \ f \ (n \ f \ x)) \ (\lambda f \ x. \ x))$ to its β normal form on paper and in Isabelle.
- ightharpoonup Pairs in λ calculus: define functions fs, sn, and pair such that fs $(pair\ a\ b)$ $\longrightarrow_{\beta}^{*}$ a and sn $(pair\ a\ b)$ $\longrightarrow_{\beta}^{*}$ b
- \rightarrow What can be done to fix the inconsistency in λ calculus?