NATIONAL
ICT AUSTRALIA

LIMITED

NICTA Advanced Course

Slide 1 Theorem Proving
Principles, Techniques, Applications

Py ... {Q}

O
O
O
Slide 3 O Well founded recursion
O
O

CONTENT

Slide 2 *
O Proof & Specification Techniques
.
.
.
e Hoare logic, proofs about programs

Slide 4

LAST TIME

LAST TIME

Recdef
More induction

Well founded orders

Calculations: alsoffinally

[trans]-rules

A CRASH COURSE IN SEMANTICS

IMP - A SMALL IMPERATIVE LANGUAGE

IMP - A SMALL IMPERATIVE LANGUAGE

Commands:
datatype com = SKIP
| Assign loc aexp (=)
| Semicom com (50
Slide 5 | Cond bexp comcom (IF _THEN _ELSE .)
| While bexp com (WHILE _DO _OD)
types loc = string
types state = loc = nat
types aexp = state = nat
types bexp = state = bool
EXAMPLE PROGRAM
Usual syntax:
B:=1;
WHILE A # 0 DO
B:=Bx A;
A=A-1
oD
Slide 6

Expressions are functions from state to bool or nat:
B := (\o. 1);
WHILE (Ao. o A # 0) DO
B:=(Xo.oc Bxo A);
A:=(Ao.c A-1)
oD

WHAT DOES IT DO?

WHAT DOES IT DO?

So far we have defined:

0O Syntax of commands and expressions
O State of programs (function from variables to values)

. Now we need: the meaning (semantics) of programs
Slide 7

How to define execution of a program?
O A wide field of its own (visit a semantics course!)

0 Some choices:

e Operational (inductive relations, big step, small step)
e Denotational (programs as functions on states, state transformers)
e Axiomatic (pre-/post conditions, Hoare logic)

STRUCTURAL OPERATIONAL SEMANTICS

(SKIP,0) — &

eoc=v
(x:=e,0) — oz — v]

Slide 8 (c1,0) — o' {ca,0') — 0"
(e15¢0,0) — o

bo=True (c1,0) — 0o’
(IF b THEN ¢; ELSE ¢3,0) — o’

bo =False (c3,0) — o’
(IF b THEN ¢; ELSE ¢9,0) — o’

STRUCTURAL OPERATIONAL SEMANTICS

STRUCTURAL OPERATIONAL SEMANTICS

b o = False
(WHILEb DO ¢ OD,0) — o

Slide 9 bo=True (c,0) — o’ (WHILEbDO ¢OD,c¢’) — o”

(WHILE 6 DO ¢ OD, o) — o

Slide 10 DEMO: THE DEFINITIONS IN ISABELLE

PROOFS ABOUT PROGRAMS

PROOFS ABOUT PROGRAMS

Now we know:

0 What programs are: Syntax
O On what they work: State
0 How they work: Semantics

So we can prove properties about programs

Slide 11
Example:
Show that example program from slide 6 implements the factorial.
lemma (factorial, 0) — o/ = ¢/ B = fac (0 4)
(where fac0 =0, fac (Sucn)= (Sucn)*facn)
Slide 12

DEMO: EXAMPLE PROOF

TOO TEDIOUS

ToO TEDIOUS

Induction needed for each loop

Slide 13
Is there something easier?

FLoOYD/HOARE

Idea: describe meaning of program by pre/post conditions

Examples:
{True} z:=2 {z=2}
Slide 14 =2} z:=21xy {z=42}

{r=n} IFy<OTHENz:=2+yELSEz:=2—y {z=n—|y|}

{A=n} factorial {B=facn}

Proofs: have rules that directly work on such triples

MEANING OF A HOARE-TRIPLE

MEANING OF A HOARE-TRIPLE

{rr ¢ {Q}
What are the assertions P and Q?

O Here: again functions from state to bool
(shallow embedding of assertions)
O Other choice: syntax and semantics for assertions (deep embedding)

Slide 15
What does {P} ¢ {Q} mean?
Partial Correctness:
E{P}c{Q} = (Moo .PoA{co)—d =Q0d)
Total Correctness:
E{P}c{Q} = (Mo.Po=30'.{(c,0) — 0 ANQd)
This lecture: partial correctness only (easier)
HOARE RULES
{P} SKIP {P} {Plz—e¢€]} z:=e {P}
{PYa {R} {R}c{Q}
{P} s {Q}
Slide 16 {PAbY e {QF {PA-D} 2 {Q}

{P} IFbTHEN ¢; ELSEc; {Q}

{PAb}c{P} PA-b=Q
{P} WHILEbDO cOD {Q}

P=P (P}c{Q) @=0Q
P} ¢ (@)

HOARE RULES

HOARE RULES

F{P} SKIP {P} F{Xo.P(o(z:=e0))} x:=e {P}

F{P}ei {R} F{R}ec{Q}
F{P} cie2 {Q}

Slide 17 F{xo.PoAbo}cr {R} F{Xo.PoA-bo}c{Q}
F{P} IFbTHEN ¢ ELSEc; {Q}

F{xo.PoAbo}c{P} ANo.PoA-bo= Qo
F{P} WHILEbDO cOD {Q}

No.Po= P o H{P}c{Q} No.Q o= Qo
H{pPr ¢ {Q}

ARE THE RULES CORRECT?

Soundness: - {P} ¢ {Q} = {P} ¢ {Q}

Proof: by rule induction on - {P} ¢ {Q}

Slide 18

Demo: Hoare Logic in Isabelle

NICER, BUT STILL KIND OF TEDIOUS

NICER, BUT STILL KIND OF TEDIOUS

Hoare rule application seems boring & mechanical.
Automation?
Problem: While — need creativity to find right (invariant) P

Slide 19 ggution:

0 annotate program with invariants
O then, Hoare rules can be applied automatically

Example:

{M=0AN=0}

WHILE M #aINV{N =M xb} DON := N +b;M := M + 10D
{N =axb}

WEAKEST PRECONDITIONS

pre ¢ Q = weakest P such that {P} ¢ {Q}

With annotated invariants, easy to get:

pre SKIP @ = Q

pre (z :=a) Q = Ao. Q(o(z :=a0))
Side 20 pre (ersex) @ = prec (prec» Q)

pre (IF b THEN ¢; ELSE ¢2) Q = M. (b—preci Qo)A

(=b—prec; Qo)
pre (WHILE b INV I DO ¢ OD) Q

Il
~

VERIFICATION CONDITIONS

10

VERIFICATION CONDITIONS

{pre ¢ Q} ¢ {Q} only true under certain conditions

These are called verification conditions vc ¢ Q:

vc SKIP @ = True
ve (z:=a)Q = True
Slide 21 vc (¢15¢2) Q = VCcy QA (Ve (pre ca Q))
vc (IF b THEN ¢; ELSE ¢2) @ = VvCeci QAVCe Q
ve (WHILEbLINV I DO cOD)Q = (Vo.IoAbo — precl o)A

(Vo. Io A —bo — Q o)A\
vcel

vec QA (prec Q@ = P) = {P} c{Q}

SYNTAX TRICKS

0 z:=MXo.1 insteadof «:=1 sucks
0 {Mo.ocxz=n} insteadof {z = n} sucksaswell

Problem: program variables are functions, not values
Solution: distinguish program variables syntactically

Slide 22 Choices: . . .
O declare program variables with each Hoare triple
e nice, usual syntax
e works well if you state full program and only use vcg

O separate program variables from Hoare triple (use extensible records),

indicate usage as function syntactically

e more syntactic overhead
e program pieces compose hicely

RECORDS IN ISABELLE

RECORDS IN ISABELLE

Records are a tuples with named components

Example:
record A= a: nat
b::int

0 Selectors: a:A=nat, b:A=int, ar=Suc0
Slide 23 g constructors: (a=Suc0, b= 1)
0 Update: r(a:=SucO)

Records are extensible:

record B=A+
c :: nat list

(a=Suc0, b=-1,c=10,0])

Slide 24 DEMO

MORE

12

MORE

Available now in Isablle:

O procedures
O with blocks and local variables
0 and (mutual) recursion
O exceptions
Slide 25 O arrays
O

pointers

We’'re working at:

O nondeterminsm
O probability
0 object orientation

WE HAVE SEEN TODAY ...

O Syntax and semantics of IMP

O Hoare logic rules

0O Soundness of Hoare logic
Slide 26 O Verification conditions

0 Example program proofs

EXERCISES 13

EXERCISES

O Write a program in IMP that calculates quotient and reminder of
reNandy e N

0 Find the right invariant for its while loop.

O Show its correctness in Isabelle:
Slide 27 F {True} program {Q+y+R=axAR<y}

O Write an IMP program that sorts arrays (lists) by insertion sort.

0 Formulate and show its correctness in Isabelle.

EXERCISES

14

