
Slide 1

NICTA Advanced Course

Theorem Proving

Principles, Techniques, Applications

{P} . . . {Q}

Slide 2

CONTENT

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction

• Datatypes, recursion, induction

• More recursion, Calculational reasoning

• Hoare logic, proofs about programs

• Locales, Presentation

LAST TIME 1

Slide 3

LAST TIME

➜ Recdef

➜ More induction

➜ Well founded orders

➜ Well founded recursion

➜ Calculations: also/finally

➜ [trans]-rules

Slide 4 A CRASH COURSE IN SEMANTICS

IMP - A SMALL IMPERATIVE LANGUAGE 2

Slide 5

IMP - A SMALL IMPERATIVE LANGUAGE

Commands:

datatype com = SKIP
| Assign loc aexp (:=)

| Semi com com (;)

| Cond bexp com com (IF THEN ELSE)

| While bexp com (WHILE DO OD)

types loc = string

types state = loc ⇒ nat

types aexp = state ⇒ nat
types bexp = state ⇒ bool

Slide 6

EXAMPLE PROGRAM

Usual syntax:
B := 1;

WHILE A 6= 0 DO
B := B ∗ A;

A := A − 1

OD

Expressions are functions from state to bool or nat:

B := (λσ. 1);

WHILE (λσ. σ A 6= 0) DO
B := (λσ. σ B ∗ σ A);

A := (λσ. σ A − 1)

OD

WHAT DOES IT DO? 3

Slide 7

WHAT DOES IT DO?

So far we have defined:

➜ Syntax of commands and expressions

➜ State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

➜ A wide field of its own (visit a semantics course!)

➜ Some choices:

• Operational (inductive relations, big step, small step)
• Denotational (programs as functions on states, state transformers)
• Axiomatic (pre-/post conditions, Hoare logic)

Slide 8

STRUCTURAL OPERATIONAL SEMANTICS

〈SKIP, σ〉 −→ σ

e σ = v

〈x := e, σ〉 −→ σ[x 7→ v]

〈c1, σ〉 −→ σ′ 〈c2, σ
′〉 −→ σ′′

〈c1; c2, σ〉 −→ σ′′

b σ = True 〈c1, σ〉 −→ σ′

〈IF b THEN c1 ELSE c2, σ〉 −→ σ′

b σ = False 〈c2, σ〉 −→ σ′

〈IF b THEN c1 ELSE c2, σ〉 −→ σ′

STRUCTURAL OPERATIONAL SEMANTICS 4

Slide 9

STRUCTURAL OPERATIONAL SEMANTICS

b σ = False

〈WHILE b DO c OD, σ〉 −→ σ

b σ = True 〈c, σ〉 −→ σ′ 〈WHILE b DO c OD, σ′〉 −→ σ′′

〈WHILE b DO c OD, σ〉 −→ σ′′

Slide 10 DEMO: THE DEFINITIONS IN ISABELLE

PROOFS ABOUT PROGRAMS 5

Slide 11

PROOFS ABOUT PROGRAMS

Now we know:

➜ What programs are: Syntax

➜ On what they work: State

➜ How they work: Semantics

So we can prove properties about programs

Example:
Show that example program from slide 6 implements the factorial.

lemma 〈factorial, σ〉 −→ σ′ =⇒ σ′B = fac (σA)

(where fac 0 = 0, fac (Suc n) = (Suc n) ∗ fac n)

Slide 12 DEMO: EXAMPLE PROOF

TOO TEDIOUS 6

Slide 13

TOO TEDIOUS

Induction needed for each loop

Is there something easier?

Slide 14

FLOYD/HOARE

Idea: describe meaning of program by pre/post conditions

Examples:
{True} x := 2 {x = 2}

{y = 2} x := 21 ∗ y {x = 42}

{x = n} IF y < 0 THEN x := x + y ELSE x := x− y {x = n− |y|}

{A = n} factorial {B = fac n}

Proofs: have rules that directly work on such triples

MEANING OF A HOARE-TRIPLE 7

Slide 15

MEANING OF A HOARE-TRIPLE

{P} c {Q}

What are the assertions P and Q?

➜ Here: again functions from state to bool

(shallow embedding of assertions)

➜ Other choice: syntax and semantics for assertions (deep embedding)

What does {P} c {Q} mean?

Partial Correctness:
|= {P} c {Q} ≡ (∀σ σ′. P σ ∧ 〈c, σ〉 −→ σ′ =⇒ Q σ′)

Total Correctness:
|= {P} c {Q} ≡ (∀σ. P σ =⇒ ∃σ′. 〈c, σ〉 −→ σ′ ∧ Q σ′)

This lecture: partial correctness only (easier)

Slide 16

HOARE RULES

{P} SKIP {P} {P [x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}

{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q

{P} WHILE b DO c OD {Q}

P =⇒ P ′ {P ′} c {Q′} Q′ =⇒ Q

{P} c {Q}

HOARE RULES 8

Slide 17

HOARE RULES

` {P} SKIP {P} ` {λσ. P (σ(x := e σ))} x := e {P}

` {P} c1 {R} ` {R} c2 {Q}

` {P} c1; c2 {Q}

` {λσ. P σ ∧ b σ} c1 {R} ` {λσ. P σ ∧ ¬b σ} c2 {Q}

` {P} IF b THEN c1 ELSE c2 {Q}

` {λσ. P σ ∧ b σ} c {P}
∧

σ. P σ ∧ ¬b σ =⇒ Q σ

` {P} WHILE b DO c OD {Q}

∧
σ. P σ =⇒ P ′ σ ` {P ′} c {Q′}

∧
σ. Q′ σ =⇒ Qσ

` {P} c {Q}

Slide 18

ARE THE RULES CORRECT?

Soundness: ` {P} c {Q} =⇒|= {P} c {Q}

Proof: by rule induction on ` {P} c {Q}

Demo: Hoare Logic in Isabelle

NICER, BUT STILL KIND OF TEDIOUS 9

Slide 19

NICER, BUT STILL KIND OF TEDIOUS

Hoare rule application seems boring & mechanical.

Automation?

Problem: While – need creativity to find right (invariant) P

Solution:

➜ annotate program with invariants

➜ then, Hoare rules can be applied automatically

Example:
{M = 0 ∧ N = 0}

WHILE M 6= a INV {N = M ∗ b} DO N := N + b; M := M + 1 OD

{N = a ∗ b}

Slide 20

WEAKEST PRECONDITIONS

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q

pre (x := a) Q = λσ. Q(σ(x := aσ))

pre (c1; c2) Q = pre c1 (pre c2 Q)

pre (IF b THEN c1 ELSE c2) Q = λσ. (b −→ pre c1 Q σ) ∧

(¬b −→ pre c2 Q σ)

pre (WHILE b INV I DO c OD) Q = I

VERIFICATION CONDITIONS 10

Slide 21

VERIFICATION CONDITIONS

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True

vc (x := a) Q = True

vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))

vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q

vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧

vc c I

vc c Q ∧ (pre c Q =⇒ P) =⇒ {P} c {Q}

Slide 22

SYNTAX TRICKS

➜ x := λσ. 1 instead of x := 1 sucks

➜ {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:
➜ declare program variables with each Hoare triple

• nice, usual syntax
• works well if you state full program and only use vcg

➜ separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically

• more syntactic overhead
• program pieces compose nicely

RECORDS IN ISABELLE 11

Slide 23

RECORDS IN ISABELLE

Records are a tuples with named components

Example:

record A = a :: nat
b :: int

➜ Selectors: a :: A ⇒ nat, b :: A ⇒ int, a r = Suc 0

➜ Constructors: (| a = Suc 0, b = −1 |)

➜ Update: r(| a := Suc 0 |)

Records are extensible:
record B = A +

c :: nat list

(| a = Suc 0, b = −1, c = [0, 0] |)

Slide 24 DEMO

MORE 12

Slide 25

MORE

Available now in Isablle:

➜ procedures

➜ with blocks and local variables

➜ and (mutual) recursion

➜ exceptions

➜ arrays

➜ pointers

We’re working at:

➜ nondeterminsm

➜ probability

➜ object orientation

Slide 26

WE HAVE SEEN TODAY ...

➜ Syntax and semantics of IMP

➜ Hoare logic rules

➜ Soundness of Hoare logic

➜ Verification conditions

➜ Example program proofs

EXERCISES 13

Slide 27

EXERCISES

➜ Write a program in IMP that calculates quotient and reminder of

x ∈ IN and y ∈ IN

➜ Find the right invariant for its while loop.

➜ Show its correctness in Isabelle:

` {True} program { Q́ ∗ y + Ŕ = x ∧ Ŕ < y }

➜ Write an IMP program that sorts arrays (lists) by insertion sort.

➜ Formulate and show its correctness in Isabelle.

EXERCISES 14

