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Constructive Logic & Curry-Howard-Isomorphism
The Coqg System
The HOL4 system

Before that: datatypes, recursion, induction
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The Choice

[] Limited expressiveness, automatic termination

e primrec

[1 High expressiveness, prove termination manually

e recdef

GENERAL RECURSION



consts sep ;. "a x 'alist = 'a list”

recdef sep "measure (A(a, Xs). size xs)”
"sep (a,x#Yy#zs)=x#a#sep(a y#zs)
"sep (a, Xs) = XS’
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consts sep ;. "a x 'alist = 'a list”
recdef sep "measure (A(a, Xs). size xs)”

"sep (a, X #y#zs)=x#a#sep (a,y#zs)
"sep (a, Xs) = xs”

consts ack :: "nat x nat = nat”

recdef ack "measure (Am. m) <*lex*> measure (An.

naCk (O, n) = SUC n’1
"ack (Suc m, 0) = ack (m, 1)"
"ack (Suc m, Suc n) = ack (m, ack (Suc m, n))”

n)”

RECDEF — EXAMPLES
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[1 The definiton:
e One parameter
e free pattern matching, order of rules important

e termination relation
(measure sufficient for most cases)
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e must be well founded

RECDEF

6-A



[1 The definiton:
e ONe parameter
e free pattern matching, order of rules important
e termination relation
(measure sufficient for most cases)
[1 Termination relation:
e Mmust decrease for each recursive call

e must be well founded

[1 Generates own induction principle

RECDEF



RECDEF — INDUCTION PRINCIPLE

[1 Each recdef definition induces an induction principle
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[1 Each recdef definition induces an induction principle

[1 For each equation:

show that the property holds for the Ihs provided it holds for each
recursive call on the rhs

RECDEF — INDUCTION PRINCIPLE
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[1 Each recdef definition induces an induction principle

[1 For each equation:

show that the property holds for the Ihs provided it holds for each
recursive call on the rhs

[1 Example sep.induct:

[ Aa- Pall;
Naw. Pa [w]

Nazxyzs. Pa(y#Hzs) = P a (z#y#zs);
| = Paxs

RECDEF — INDUCTION PRINCIPLE



Isabelle tries to prove termination automatically

[1 For most functions and termination relations this works.
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Isabelle tries to prove termination automatically

[1 For most functions and termination relations this works.
[1 Sometimes not = error message with unsolved subgoal
[J You can give hints (additional lemmas) to the recdef package:

recdef quicksort "measure length”

quicksort [] =]

quicksort (x#xs) = quicksort [y € xs.y < z]@Q[x]|@Q quicksort [y € xs.z < Y]
(hints recdef_simp: less_Suc_eq_le)
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Isabelle tries to prove termination automatically

[1 For most functions and termination relations this works.
[1 Sometimes not = error message with unsolved subgoal
[J You can give hints (additional lemmas) to the recdef package:

recdef quicksort "measure length”

quicksort [] =]

quicksort (x#xs) = quicksort [y € xs.y < z]@Q[x]|@Q quicksort [y € xs.z < Y]
(hints recdef_simp: less_Suc_eq_le)

For exploration:

[1 allow failing termination proof
[1 recdef (permissive) quicksort "measure length”
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Isabelle tries to prove termination automatically

[1 For most functions and termination relations this works.
[1 Sometimes not = error message with unsolved subgoal
[J You can give hints (additional lemmas) to the recdef package:

recdef quicksort "measure length”

quicksort [] =]

quicksort (x#xs) = quicksort [y € xs.y < z]@Q[x]|@Q quicksort [y € xs.z < Y]
(hints recdef_simp: less_Suc_eq_le)

For exploration:

[1 allow failing termination proof
[1 recdef (permissive) quicksort "measure length”
[ termination conditions as assumption in simp and induct rules

TERMINATION 8-F






HoOw DOES RECDEF WORK?

We need:

general recursion operator
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We need:

something like:

Example:

general recursion operator
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(F' stands for the recursion equations)
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We need:

something like:

Example:

[] recursion equations:

general recursion operator

rec ' =F (rec F)

(F' stands for the recursion equations)

f=0

f (Sucn) = fn
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something like: rec F' = F (rec F)
(F' stands for the recursion equations)
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[J recursion equations: f =0 f (Sucn) = fn
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We need.: general recursion operator

something like: rec F' = F (rec F)
(F' stands for the recursion equations)

Example:

[J recursion equations: f =0 f (Sucn) = fn
[0 asone A-term:  f=An'.casen’ of 0= 0| Sucn = fn
00 functor: F = \Af.An'.casen’ of 0= 0|Sucn= fn

0 rec: ((a = B) = (a = B)) = (a = B) like above cannot exist in
HOL (only total functions)

[1 But 'guarded’ form possible:
wfrec :: (a X a) set = ((a = B) = (o= F)) = (o = )
0 (a x «) set a well founded order, decreasing with execution

HoOw DOES RECDEF WORK?
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HoOw DOES RECDEF WORK?

Why rec F' = F (rec F')?
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Why rec F = F (rec F')?

Because we want the recursion equations to hold.

Example:
F = MXg.Mn/.casen’of 0 =0]|Sucn=gn
f = reckF
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Why rec F = F (rec F')?

Because we want the recursion equations to hold.

Example:
F = MXg.Mn/.casen’of 0 =0]|Sucn=gn
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Why rec F = F (rec F')?

Because we want the recursion equations to hold.

Example:
F = MXg.Mn/.casen’of 0 =0]|Sucn=gn
f = reckF
fO = reckFO

= F(recF)0
= (Ag. A\n’.casen’ of 0 = 0| Sucn = gn) (rec F) 0
= (case 0 of 0 = 0| Sucn = rec F n)
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Why rec F = F (rec F')?

Because we want the recursion equations to hold.

Example:
F = MXg.Mn/.casen’of 0 =0]|Sucn=gn
f = reckF
fO = reckFO

= F(recF)O0
(Ag. A\n’. case n’ of 0 = 0| Sucn = gn) (rec F) 0

(case 0 of 0 = 0 | Suc n = rec F' n)
= 0

HoOw DOES RECDEF WORK?

11-F



Definition
<, I1s well founded if well founded induction holds
wf r=VP. (Vz. Yy <, z.Py) — Px) — (Vz. P 1)

WELL FOUNDED ORDERS
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Definition
<, I1s well founded if well founded induction holds
wf r=VP. (Vz. Yy <, z.Py) — Px) — (Vz. P 1)

Well founded induction rule:
wfr Az (Vy <, x.Py) = Px
Pa
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Definition
<, I1s well founded if well founded induction holds
wf r=VP. (Vz. Yy <, z.Py) — Px) — (Vz. P 1)

Well founded induction rule:
wfr Az (Vy <, x.Py) = Px
Pa

Alternative definition (equivalent):

there are no infinite descending chains, or (equivalent):

every nonempty set has a minimal element wrt <,
mnrQx = YyeQ.yL,x
wf r = VQ #{}.Im € Q. minrQ m)

WELL FOUNDED ORDERS
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WELL FOUNDED ORDERS: EXAMPLES

[ < on IN is well founded
well founded induction = complete induction
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[0 > and < on IN are not well founded
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the minimal elements are the prime numbers
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[ < on IN is well founded
well founded induction = complete induction

[0 > and < on IN are not well founded

0 xz<,y=xdvd y Az # 1onIN is well founded
the minimal elements are the prime numbers

O (a,b) <r (z,y) =a <1 xVa=zAb<yyis well founded
if <; and <2 are

[0 A<, B=A C B A finite B is well founded

[1 C and C in general are not well founded

More about well founded relations: Term Rewriting and All That

WELL FOUNDED ORDERS: EXAMPLES
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THE RECURSION OPERATOR

Back to recursion: rec F = F (rec F') not possible

ldea:
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Back to recursion: rec F' = F (rec F') not possible

ldea: have wfrec R ' where R i1s well founded
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Back to recursion: rec F' = F (rec F') not possible
ldea: have wfrec R F' where R is well founded

Cut:

[1 only do recursion if parameter decreases wrt R
[1 otherwise: abort

THE RECURSION OPERATOR
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Back to recursion: rec F' = F (rec F') not possible
ldea: have wfrec R F' where R is well founded

Cut:

[1 only do recursion if parameter decreases wrt R
[1 otherwise: abort

[ arbitrary :: «
cut: (a=0)= (axa)set=a= (a= 0
cut G Rx = \y. if (y,x) € R then G y else arbitrary
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Back to recursion: rec F' = F (rec F') not possible
ldea: have wfrec R F' where R is well founded

Cut:

[1 only do recursion if parameter decreases wrt R
[1 otherwise: abort

[ arbitrary :: «
cut: (a=0)= (axa)set=a= (a= 0
cut G Rx = \y. if (y,x) € R then G y else arbitrary

wf R = wfrec R F x = F (cut (wfrec R ) Rx) x

THE RECURSION OPERATOR
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Admissible recursion

[ recursive call for x only depends on parameters y <gr x
[1 describes exactly one function if R is well founded
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[ recursive call for x only depends on parameters y <gr x
[1 describes exactly one function if R is well founded

admwf RF=Vfgz. V2. (z,x) ER— fz=gz2) — F fx=Fgx

Definition of wf_rec: again first by induction, then by epsilon

(, ) € wfrec_rel R F
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Admissible recursion

[ recursive call for x only depends on parameters y <gr x
[1 describes exactly one function if R is well founded

admwf RF=Vfgz. V2. (z,x) ER— fz=gz2) — F fx=Fgx

Definition of wf_rec: again first by induction, then by epsilon

Vz. (z,2) € R — (2,9 2) € wfrec_rel R F
(x,F g x) € wfrec_rel R I
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Admissible recursion

[ recursive call for x only depends on parameters y <gr x
[1 describes exactly one function if R is well founded

admwf RF=Vfgz. V2. (z,x) ER— fz=gz2) — F fx=Fgx

Definition of wf_rec: again first by induction, then by epsilon

Vz. (z,2) € R — (2,9 2) € wfrec_rel R F
(x,F g x) € wfrec_rel R I

wfrec R F'z = THE y. (z,y) € wfrec.rel R (A\f x. F (cut f R x) x)

More: John Harrison, Inductive definitions: automation and application

THE RECURSION OPERATOR 15-E
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Can we do this in Isabelle?

18-A

THE GOAL



r-xl=1-(x- -2z
=1.-z-27¢
= (aj_l)_l . x—l e T - x—l
= (@) (@t a) 2!
= (gj_l)_l -1 - ZU_l
=(z7H) 7 (127
= (271" . 1
=1

Can we do this in Isabelle?

[1 Simplifier: too eager
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r-xl=1-(x- -2z
=1.-z-27¢
= (aj_l)_l . x—l e T - x—l
= (@) (@t a) 2!
= (gj_l)_l -1 - ZU_l
=(z7H) 7 (127
= (271" . 1
=1

Can we do this in Isabelle?

[1 Simplifier: too eager
[J Manual: difficult in apply stile

THE GOAL 18-c



|
b—l

8
8
|
—_
£}
| 8
—_
—_

= (zH)t.pl.g. gl
= (@)@ )
=(z7H) t.1.271

= (@) (1)

= (z~1)~1. g1

=1

Can we do this in Isabelle?

[1 Simplifier: too eager
[J Manual: difficult in apply stile
(] Isar: with the methods we know, too verbose

THE GOAL
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The Problem

shows a = d by transitivity of =

CHAINS OF EQUATIONS
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= d
shows a = d by transitivity of =
Each step usually nontrivial (requires own subproof)
Solution in Isar:
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CHAINS OF EQUATIONS

19-B



The Problem

a = b
= c

= d
shows a = d by transitivity of =
Each step usually nontrivial (requires own subproof)
Solution in Isar:

[1 Keywords also and finally to delimit steps

[ ...: predefined schematic term variable,
refers to right hand side of last expression
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The Problem

a = b
= C
= d
shows a = d by transitivity of =
Each step usually nontrivial (requires own subproof)

Solution in Isar:

[1 Keywords also and finally to delimit steps

[ ...: predefined schematic term variable,
refers to right hand side of last expression

[J Automatic use of transitivity rules to connect steps

CHAINS OF EQUATIONS
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have "t, = t1” [proof]

also

ALSO/FINALLY
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have "t, = t1” [proof] calculation register

also "to = t1”
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have "t, = t1” [proof]
also

have "... =t3” [proof]

calculation register

”to — tlﬂ

ALSO/FINALLY
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have "t, = t1” [proof] calculation register

also "to = t1”
have "... =t3” [proof]
also "t = to”
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have "t, = t1” [proof] calculation register

also "to = t1”
have "... =t3” [proof]

also "t = to”
also "to = th—1"
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have "t, = t1” [proof] calculation register

also "to = t1”
have "... =t3” [proof]

also "t = to”
also "to = th—1"
have ”--- =1t,” [proof]
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have "t, = t1” [proof] calculation register

also "to = t1”
have ”... =t3” [proof]

also "t = to”
also "to = th—1"
have ”--- =t," [proof]

finally to =t,
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have "t, = t1” [proof] calculation register

also "to = t1”
have "... =t3” [proof]

also "to = to”
also "to = th—1"
have ”--- =1t,” [proof]

finally to =t,
show P

— "finally’ pipes fact "ty = ¢,,” into the proof

ALSO/FINALLY 20-G



[0 Works for all combinations of =, < and <.

MORE ABOUT ALSO
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[0 Works for all combinations of =, < and <.

[1 Uses all rules declared as [t rans] .
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[0 Works for all combinations of =, < and <.

[1 Uses all rules declared as [t rans] .

[1 To view all combinations in Proof General:

Isabelle/lsar — Show me — Transitivity rules
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DESIGING [TRANS] RULES

calculation ="l; ® r1”
have ”... ® r2” [proof]
also <

DESIGING [TRANS] RULES
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calculation ="l; ® r1”
have ”... ® r2” [proof]
also —

Anatomy of a [trans] rule:

[0 Usual form: plain transitivity [l1 ® r1;7m1 @ r2] = 1 ® r2
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calculation ="l; ® r1”
have ”... ® r2” [proof]
also —

Anatomy of a [trans] rule:
[0 Usual form: plain transitivity [l1 ® r1;7m1 @ r2] = 1 ® r2

[0 More general form: [P 11 r1;Q 71 r2; A] = C' 11 12

Examples:

DESIGING [TRANS] RULES

22-B



calculation ="l; ® r1”
have ”... ® r2” [proof]
also —

Anatomy of a [trans] rule:
[0 Usual form: plain transitivity [l1 ® r1;7m1 @ r2] = 1 ® r2
[0 More general form: [P 11 r1;Q 71 r2; A] = C' 11 12
Examples:

[0 pure transitivity: [a=b;b=c] = a=c¢
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calculation ="l; ® r1”
have ”... ® r2” [proof]
also —

Anatomy of a [trans] rule:
[0 Usual form: plain transitivity [l1 ® r1;7m1 @ r2] = 1 ® r2
[0 More general form: [P 11 r1;Q 71 r2; A] = C' 11 12
Examples:

[0 pure transitivity: [a=b;b=c] = a=c¢
0 mixed: [a <bb<c]=a<c

DESIGING [TRANS] RULES
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calculation ="l; ® r1”
have ”... ® r2” [proof]
also —

Anatomy of a [trans] rule:
[0 Usual form: plain transitivity [l1 ® r1;7m1 @ r2] = 1 ® r2
[0 More general form: [P 11 r1;Q 71 r2; A] = C' 11 12
Examples:

[0 pure transitivity: [a=b;b=c] = a=c¢
0 mixed: [a <b;b<c]=a<c
[0 substitution: [P a;a =b] = P b

DESIGING [TRANS] RULES
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calculation ="l; ® r1”
have ”... ® r2” [proof]
also —

Anatomy of a [trans] rule:

[]
[]

Usual form: plain transitivity [l1 © ri;r1 @ re] = 11 © r2
More general form: [P l; r1;Q r1 r2; Al = C' 11 7o

Examples:

[]

[]
[]
[]

pure transitivity: J[a = b;b =c] = a =c¢
mixed: [a < b;jb<c]=a<c
substitution: [P a;a =b] = P b
antisymmetry: Ja < b;b < a] = P

DESIGING [TRANS] RULES
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calculation ="l; ® r1”
have ”... ® r2” [proof]
also —

Anatomy of a [trans] rule:

[0 Usual form: plain transitivity [l1 ® r1;7m1 @ r2] = 1 ® r2
[0 More general form: [P 11 r1;Q 71 r2; A] = C' 11 12

Examples:

[0 pure transitivity: [a=b;b=c] = a=c¢

mixed: J[a < b;b<c]=a<c

substitution: [P a;a =b] = P b

antisymmetry: Ja < b;b < a] = P

monotonicity: [a = fbb<cANry. z<y= fe< fyl=a< fc

N O N [

DESIGING [TRANS] RULES 22-G
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Recdef

More induction

Well founded orders
Well founded recursion

Calculations: also/finally

o oo 0O o O 0O

[trans]-rules

WE HAVE SEEN TODAY ...
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Define a predicate sorted over lists
Show that sorted (quicksort xs) holds

Look athttp://isabelle.in.tumde/library/ HOL/
Wl | f ounded_Recur si on. ht i

Show that in groups, the left-one is also a right-one: z -1 =«
(you can use the right_inv lemma from the demo)

Take an algebra textbook and formalize a simple theorem over groups
in Isabelle.

EXERCISES
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