NATIONAL
ICT AUSTRALIA

LIMITED

NICTA Advanced Course

Theorem Proving
Principles, Techniques, Applications

Gerwin Klein
Formal Methods

When Mon 14:00 — 15:30
Wed 10:30-12:00
7 weeks ends Mon, 20.9.2004

Exceptions Mon 6.9., 13.9,, 20.9. at 15:00 — 16:30

Web page:
http://www.cse.unsw.edu.au/ kleing/teaching/thprv-04/

free — no credits — no assigments

ORGANISATORIALS

[1 how to use a theorem prover

WHAT YOU WILL LEARN

[1 how to use a theorem prover

[1 background, how it works

WHAT YOU WILL LEARN

3-A

[1 how to use a theorem prover
[1 background, how it works

[1 how to prove and specify

WHAT YOU WILL LEARN

[1 how to use a theorem prover
[1 background, how it works

[1 how to prove and specify

Health Warning

Theorem Proving is addictive

WHAT YOU WILL LEARN

3-C

WHAT YOU WILL NOT LEARN

[1 semantics / model theory

WHAT YOU WILL NOT LEARN

[1 semantics / model theory

[1 soundness / completeness proofs

WHAT YOU WILL NOT LEARN

[1 semantics / model theory
[1 soundness / completeness proofs

[1 decision procedures

WHAT YOU WILL NOT LEARN

[Intro & motivation, getting started with Isabelle (today)

CONTENT

[Intro & motivation, getting started with Isabelle (today)

[J Foundations & Principles
e Lambda Calculus
e Higher Order Logic, natural deduction

e Term rewriting

CONTENT

5-A

[Intro & motivation, getting started with Isabelle (today)

[J Foundations & Principles
e Lambda Calculus
e Higher Order Logic, natural deduction

e Term rewriting

1 Proof & Specification Techniques
e Datatypes, recursion, induction
e Inductively defined sets, rule induction
e Calculational reasoning, mathematics style proofs

e Hoare logic, proofs about programs

CONTENT

CREDITS

material (in part) shamelessly stolen from

David Basin, Burkhardt Wolff

Don’t blame them, errors are mine

CREDITS

to prove

WHAT IS A PROOF?

to prove

[1 from Latin probare (test, approve, prove)

(Marriam-Webster)

WHAT IS A PROOF?

7-A

to prove
[1 from Latin probare (test, approve, prove)

[1 to learn or find out by experience (archaic)

(Marriam-Webster)

WHAT IS A PROOF?

to prove (Marriam-Webster)

[1 from Latin probare (test, approve, prove)
[1 to learn or find out by experience (archaic)

[1 to establish the existence, truth, or validity of
(by evidence or logic)
prove a theorem, the charges were never proved in court

WHAT IS A PROOF?

7-C

to prove (Marriam-Webster)
[1 from Latin probare (test, approve, prove)
[1 to learn or find out by experience (archaic)

[1 to establish the existence, truth, or validity of
(by evidence or logic)
prove a theorem, the charges were never proved in court

pops up everywhere
[1 politics (weapons of mass destruction)
[courts (beyond reasonable doubt)
I religion (god exists)

[science (cold fusion works)

WHAT IS A PROOF?

In mathematics, a proof is a demonstration that, given certain
axioms, some statement of interest is necessarily true.
(Wikipedia)

Example: v/2 is not rational.

Proof:

WHAT IS A MATHEMATICAL PROOF?

In mathematics, a proof is a demonstration that, given certain
axioms, some statement of interest is necessarily true.
(Wikipedia)

Example: v/2 is not rational.

Proof: assume there is » € @ such that r? = 2.

Hence there are mutually prime p and ¢ with r = g.

Thus 2¢* = p?, i.e. p? is divisible by 2.

2 Is prime, hence it also divides p, i.e. p = 2s.

Substituting this into 2¢* = p? and dividing by 2 gives ¢* = 2s°.
Hence, ¢ is also divisible by 2. Contradiction. Qed.

WHAT IS A MATHEMATICAL PROOF?

8-A

[1 still not rigorous enough for some
e what are the rules?
e Wwhat are the axioms?
e how big can the steps be?

e what is obvious or trivial?
I informal language, easy to get wrong

[1 easy to miss something, easy to cheat

NICE, BUT..

[1 still not rigorous enough for some
e what are the rules?
e Wwhat are the axioms?
e how big can the steps be?

e what is obvious or trivial?
I informal language, easy to get wrong
[1 easy to miss something, easy to cheat
Theorem. A cat has nine talils.

Proof. No cat has eight tails. Since one cat has one more tail than
no cat, it must have nine tails.

NICE, BUT..

9-A

WHAT IS A FORMAL PROOF?

A derivation in a formal calculus

WHAT IS A FORMAL PROOF?

10

A derivation in a formal calculus

Example: AN B — B A A derivable in the following system
XeSs . SU{X}+Y |

Rules: ST x (@ssumption) e (Impl)

SFX SFY (conil) SU{X,Y}+FZ
SFXAY SU{XAY}FZ

(conjE)

WHAT IS A FORMAL PROOF?

10-A

A derivation in a formal calculus

Example: AN B — B A A derivable in the following system

X, Yi+Z

TSty (coni SSUU{g(A Y}} — (coNE)
Proof:
1. {A,B}+B (by assumption)
2. {A,B} A (by assumption)
3. {A,B}FBAA (by conjl with 1 and 2)
4. {ANB}-BAA (by conjE with 3)
5. {}FAANB — BAA (byimpl with 4)

WHAT IS A FORMAL PROOF?

10-B

Implementation of a formal logic on a computer.
[fully automated (propositional logic)
[J automated, but not necessarily terminating (first order logic)

[with automation, but mainly interactive (higher order logic)

WHAT IS A THEOREM PROVER?

11

Implementation of a formal logic on a computer.
[fully automated (propositional logic)
[J automated, but not necessarily terminating (first order logic)

[with automation, but mainly interactive (higher order logic)

[1 based on rules and axioms

[can deliver proofs

WHAT IS A THEOREM PROVER? 11-A

Implementation of a formal logic on a computer.
[fully automated (propositional logic)
[J automated, but not necessarily terminating (first order logic)

[with automation, but mainly interactive (higher order logic)

[1 based on rules and axioms

[can deliver proofs

There are other (algorithmic) verification tools:
[1 model checking, static analysis, ...

[1 usually do not deliver proofs

WHAT IS A THEOREM PROVER?

11-B

WHY THEOREM PROVING?

[Analysing systems/programs thoroughly

WHY THEOREM PROVING?

12

[Analysing systems/programs thoroughly

[J Finding design and specification errors early

WHY THEOREM PROVING? 12-A

[Analysing systems/programs thoroughly
[J Finding design and specification errors early

[1 High assurance (mathematical, machine checked proof)

WHY THEOREM PROVING?

12-B

Analysing systems/programs thoroughly
Finding design and specification errors early
High assurance (mathematical, machine checked proof)

it's not always easy

N I I O I B

it's fun

WHY THEOREM PROVING? 12-c

Main theorem proving system for this course:

13

A generic interactive proof assistant

WHAT IS ISABELLE?

14

A generic interactive proof assistant

[1 generic:
not specialised to one particular logic
(two large developments: HOL and ZF, will mainly use HOL)

WHAT IS ISABELLE?

14-A

A generic interactive proof assistant

[1 generic:
not specialised to one particular logic
(two large developments: HOL and ZF, will mainly use HOL)

[interactive:
more than just yes/no, you can interactively guide the system

WHAT IS ISABELLE?

14-B

A generic interactive proof assistant

[1 generic:
not specialised to one particular logic
(two large developments: HOL and ZF, will mainly use HOL)

[interactive:
more than just yes/no, you can interactively guide the system

[1 proof assistant:
helps to explore, find, and maintain proofs

WHAT IS ISABELLE? 14-c

free
widely used system
active development

high expressiveness and automation

] [] [] I

reasonably easy to use

WHY ISABELLE?

15

free

widely used system

active development

high expressiveness and automation

reasonably easy to use

N I I) I A I I

(and because | know it best ;-))

WHY ISABELLE? 15-A

free

widely used system

active development

high expressiveness and automation

reasonably easy to use

[]] [] [] I

(and because | know it best ;-))

We will see other systems, too: HOL4, Coq, Waldmeister

WHY ISABELLE?

15-B

If | prove it on the computer, it is correct, right?

16

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, because:

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

17

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, because:

[hardware could be faulty

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 17-A

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, because:
[hardware could be faulty

[1 operating system could be faulty

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

17-B

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, because:
[hardware could be faulty
[1 operating system could be faulty

I implementation runtime system could be faulty

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 17-c

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, because:
[hardware could be faulty
[1 operating system could be faulty
I implementation runtime system could be faulty

[1 compiler could be faulty

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

17-D

No, because:
[hardware could be faulty
[1 operating system could be faulty
I implementation runtime system could be faulty
[1 compiler could be faulty
[l

iImplementation could be faulty

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

17-E

No, because:
[hardware could be faulty
operating system could be faulty
implementation runtime system could be faulty

[l

[l

[1 compiler could be faulty

[implementation could be faulty
[l

logic could be inconsistent

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

17-F

NoO,

[

[]
[]
[]
[]
[]
[]

because:

hardware could be faulty

operating system could be faulty
implementation runtime system could be faulty
compiler could be faulty

iImplementation could be faulty

logic could be inconsistent

theorem could mean something else

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

17-G

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, but:

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

18

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, but:

probability for

[0 1 and 2 reduced by using different systems

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 18-A

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, but:

probability for
[0 1 and 2 reduced by using different systems

[1 3 and 4 reduced by using different compilers

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

18-B

No, but:

probability for
[0 1 and 2 reduced by using different systems
[1 3 and 4 reduced by using different compilers

1 faulty implementation reduced by right architecture

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 18-c

No, but:

probability for
[0 1 and 2 reduced by using different systems
[1 3 and 4 reduced by using different compilers
1 faulty implementation reduced by right architecture

[I inconsistent logic reduced by implementing and analysing it

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

18-D

No, but:

probability for
[0 1 and 2 reduced by using different systems

3 and 4 reduced by using different compilers

[l

1 faulty implementation reduced by right architecture

[I inconsistent logic reduced by implementing and analysing it
[l

wrong theorem reduced by expressive/intuitive logics

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

18-E

No, but:

probability for
[0 1 and 2 reduced by using different systems
[1 3 and 4 reduced by using different compilers
1 faulty implementation reduced by right architecture
[I inconsistent logic reduced by implementing and analysing it
[l

wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance way higher than manual proof

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

18-F

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

Soundness architectures

careful implementation PVS

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

19

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

Soundness architectures

careful implementation

LCF approach, small proof kernel

PVS

HOLA4

Isabelle

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

19-A

Soundness architectures

careful implementation

LCF approach, small proof kernel

explicit proofs + proof checker

PVS

HOL4

Isabelle

Coq
Twelf

Isabelle

IF | PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

19-B

Meta language:
The language used to talk about another language.

META LOGIC

20

Meta language:
The language used to talk about another language.

Examples:
English in a Spanish class, English in an English class

META LOGIC 20-A

Meta language:
The language used to talk about another language.

Examples:
English in a Spanish class, English in an English class

Meta logic:
The logic used to formalize another logic

Example:
Mathematics used to formalize derivations in formal logic

META LOGIC

20-B

Syntax:
Formulae:

Derivable:

F:=V | F—F | FANF | False
Vi=[A-Z]

SH X X aformula, S a set of formulae

META LOGIC — EXAMPLE

21

Syntax:
Formulae:

Derivable:

META LOGIC — EXAMPLE

F:=V | F—F | FANF | False
V= |A-Z]

SH X X aformula, S a set of formulae

logic / meta logic

X e S SU{X}l—Y
SFX SFX VY
SFX SFY SU{X,)Y}FZ
SEFXAY SU{XAY}FZ

META LOGIC — EXAMPLE

21-A

ISABELLE’S META LOGIC

22

Syntax:
iIn ASCII:

Nz F

I x. F

(F' another meta level formula)

23

Syntax: Ax. F (F' another meta level formula)

iIn ASCIl: !'!'x. F

[1 universial quantifier on the meta level
[1 used to denote parameters

[1 example and more later

23-A

Syntax:
iIn ASCII:

A— B
A ==> B

(A, B other meta level formulae)

24

Syntax: A— B (A, B other meta level formulae)
in ASCIl: A ==> B

Binds to the right:

A—B=—C = A— (B= ()

Abbreviation:

[A; Bl =C = A=—B=C

[1 read: A and B implies C

[1 used to write down rules, theorems, and proof states

24-A

mathematics:

fr<O0Oandy < 0,thenxz+y <0

EXAMPLE: A THEOREM

25

mathematics: ifz<0Oandy <O0,thenz+y <0

formal logic: Frz<0ANy<0—z4+y<0
variation: r<0iy<0F x4+y<0

EXAMPLE: A THEOREM 25-A

mathematics:

formal logic:

variation:

Isabelle:

variation:

fr<O0Oandy < 0,thenxz+y <0

Fr<0NANy<0—x+y<0
r<0iy<0F x4+y<0

lemma" s < 0Ny <0—ax+y<0
lemma |z < 0;y < 0] = z+y <0”

EXAMPLE: A THEOREM

25-B

mathematics:

formal logic:

variation:

Isabelle:
variation:

variation:

fr<O0Oandy < 0,thenxz+y <0

Fr<0NANy<0—x+y<0
r<0iy<0F x4+y<0

lemma’z < 0Ny <0 —zx+y <0
lemma |z < 0;y < 0] = z+y <0”
lemma

assumes "r < 0" and "y < 0” shows "z + y < 0"

EXAMPLE: A THEOREM

25-C

logic:

EXAMPLE: A RULE

26

logic: XANY
SFX SHY
variation: SFXAY

EXAMPLE: A RULE 26-A

logic:

variation:

Isabelle:

SEFX SEY

SEFXAY

[X:Y] = XAY

EXAMPLE: A RULE

26-B

EXAMPLE. A RULE WITH NESTED IMPLICATION

X v

XVY Z Z
logic: A

EXAMPLE: A RULE WITH NESTED IMPLICATION

27

EXAMPLE: A RULE WITH NESTED IMPLICATION

A Y

XVY Z Z
logic: A

SU{X}+FZ Sui{YirZ
variation: SU{XVY}+Z

EXAMPLE: A RULE WITH NESTED IMPLICATION 27-A

EXAMPLE: A RULE WITH NESTED IMPLICATION

X v

XVY Z Z
logic: A

SU{X}+FZ Sui{YirZ
variation: SU{XVY}+Z

Isabelle: IXVY: X = 2Z;)Y = 7| = 7

EXAMPLE: A RULE WITH NESTED IMPLICATION

27-B

Syntax:
iIn ASCII:

. F
. F

(F' another meta level formula)

28

Syntax: Az. F (F another meta level formula)
In ASCIl: %. F

lambda abstraction
used to for functions in object logics

used to encode bound variables in object logics

N N R N B I

more about this in the next lecture

28-A

ENOUGH THEORY!
GETTING STARTED WITH ISABELLE

29

Isabelle — generic, interactive theorem prover

SYSTEM ARCHITECTURE

30

Isabelle — generic, interactive theorem prover

Standard ML — logic implemented as ADT

SYSTEM ARCHITECTURE

30-A

HOL, ZF — object-logics

Isabelle — generic, interactive theorem prover

Standard ML — logic implemented as ADT

SYSTEM ARCHITECTURE

30-B

Proof General — user interface

HOL, ZF — object-logics

Isabelle — generic, interactive theorem prover

Standard ML — logic implemented as ADT

SYSTEM ARCHITECTURE 30-C

Proof General — user interface

HOL, ZF — object-logics

Isabelle — generic, interactive theorem prover

Standard ML — logic implemented as ADT

User can access all layers!

SYSTEM ARCHITECTURE

30-D

[Linux, MacOS X or Solaris

[1 Standard ML
(PolyML fastest, SML/NJ supports more platforms)

[1 XEmacs or Emacs
(for ProofGeneral)

If you do not have Linux, MacOS X or Solaris, try IsaMorph:
http://ww. brucker. ch/ projects/isanorph/

SYSTEM REQUIREMENTS

31

Available fromhttp://isabelle.in.tumde

[1 Learning Isabelle
e Tutorial on Isabelle/HOL (LNCS 2283)
e Tutorial on Isar

e Tutorial on Locales

[1 Reference Manuals
e Isabelle/Isar Reference Manual
e Isabelle Reference Manual

e |sabelle System Manual

[1 Reference Manuals for Object-Logics

DOCUMENTATION

32

PROOFGENERAL

[1 User interface for Isabelle
[1 Runs under XEmacs or Emacs

[1 Isabelle process in background

Interaction via
[1 Basic editing in XEmacs (with highlighting etc)
[1 Buttons (tool bar)
[1 Key bindings
[l

ProofGeneral Menu (lots of options, try them)

PROOFGENERAL

33

Input of funny symbols in ProofGeneral

[0 via menu (“X-Symbol”)

via ASCII encoding (similar to ITEX): \<and>, \<or>, ...

[
[1 via abbreviation: /\, \/, -——>, ...
[]

via rotate: I C-. =)\ (cycles through variations of letter)
\v4 - A — YA\ \V — =
\<forall> | \<exists> | \<lanbda> | \<not> | /\ | \/ | ——> | =>

ALL EX % - & |

[1 converted to X-Symbol
[stays ASCII

X-SymBOL CHEAT SHEET

34

35

Download and install Isabelle from
http://i1sabelle.in._tum.de or
http://mirror.cse.unsw.edu.au/pub/Zisabelle/

Switch on X-Symbol in ProofGeneral
Step through the demo file from the lecture web page

Write an own theory file, look at some theorems, try 'find theorem’

EXERCISES

36

