
NICTA Advanced Course

Theorem Proving
Principles, Techniques, Applications

Gerwin Klein
Formal Methods

1

ORGANISATORIALS

When Mon 14:00 – 15:30

Wed 10:30 – 12:00

7 weeks ends Mon, 20.9.2004

Exceptions Mon 6.9., 13.9., 20.9. at 15:00 – 16:30

Web page:
http://www.cse.unsw.edu.au/˜kleing/teaching/thprv-04/

free – no credits – no assigments

ORGANISATORIALS 2

WHAT YOU WILL LEARN

➜ how to use a theorem prover

➜ background, how it works

➜ how to prove and specify

Health Warning

Theorem Proving is addictive

WHAT YOU WILL LEARN 3

WHAT YOU WILL LEARN

➜ how to use a theorem prover

➜ background, how it works

➜ how to prove and specify

Health Warning

Theorem Proving is addictive

WHAT YOU WILL LEARN 3-A

WHAT YOU WILL LEARN

➜ how to use a theorem prover

➜ background, how it works

➜ how to prove and specify

Health Warning

Theorem Proving is addictive

WHAT YOU WILL LEARN 3-B

WHAT YOU WILL LEARN

➜ how to use a theorem prover

➜ background, how it works

➜ how to prove and specify

Health Warning

Theorem Proving is addictive

WHAT YOU WILL LEARN 3-C

WHAT YOU WILL NOT LEARN

➜ semantics / model theory

➜ soundness / completeness proofs

➜ decision procedures

WHAT YOU WILL NOT LEARN 4

WHAT YOU WILL NOT LEARN

➜ semantics / model theory

➜ soundness / completeness proofs

➜ decision procedures

WHAT YOU WILL NOT LEARN 4-A

WHAT YOU WILL NOT LEARN

➜ semantics / model theory

➜ soundness / completeness proofs

➜ decision procedures

WHAT YOU WILL NOT LEARN 4-B

CONTENT

➜ Intro & motivation, getting started with Isabelle (today)

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Datatypes, recursion, induction

• Inductively defined sets, rule induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs

CONTENT 5

CONTENT

➜ Intro & motivation, getting started with Isabelle (today)

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Datatypes, recursion, induction

• Inductively defined sets, rule induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs

CONTENT 5-A

CONTENT

➜ Intro & motivation, getting started with Isabelle (today)

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Datatypes, recursion, induction

• Inductively defined sets, rule induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs

CONTENT 5-B

CREDITS

material (in part) shamelessly stolen from

Tobias Nipkow, Larry Paulson, Markus Wenzel

David Basin, Burkhardt Wolff

Don’t blame them, errors are mine

CREDITS 6

WHAT IS A PROOF?

to prove

(Marriam-Webster)

➜ from Latin probare (test, approve, prove)

➜ to learn or find out by experience (archaic)

➜ to establish the existence, truth, or validity of
(by evidence or logic)
prove a theorem, the charges were never proved in court

pops up everywhere

➜ politics (weapons of mass destruction)

➜ courts (beyond reasonable doubt)

➜ religion (god exists)

➜ science (cold fusion works)

WHAT IS A PROOF? 7

WHAT IS A PROOF?

to prove (Marriam-Webster)

➜ from Latin probare (test, approve, prove)

➜ to learn or find out by experience (archaic)

➜ to establish the existence, truth, or validity of
(by evidence or logic)
prove a theorem, the charges were never proved in court

pops up everywhere

➜ politics (weapons of mass destruction)

➜ courts (beyond reasonable doubt)

➜ religion (god exists)

➜ science (cold fusion works)

WHAT IS A PROOF? 7-A

WHAT IS A PROOF?

to prove (Marriam-Webster)

➜ from Latin probare (test, approve, prove)

➜ to learn or find out by experience (archaic)

➜ to establish the existence, truth, or validity of
(by evidence or logic)
prove a theorem, the charges were never proved in court

pops up everywhere

➜ politics (weapons of mass destruction)

➜ courts (beyond reasonable doubt)

➜ religion (god exists)

➜ science (cold fusion works)

WHAT IS A PROOF? 7-B

WHAT IS A PROOF?

to prove (Marriam-Webster)

➜ from Latin probare (test, approve, prove)

➜ to learn or find out by experience (archaic)

➜ to establish the existence, truth, or validity of
(by evidence or logic)
prove a theorem, the charges were never proved in court

pops up everywhere

➜ politics (weapons of mass destruction)

➜ courts (beyond reasonable doubt)

➜ religion (god exists)

➜ science (cold fusion works)

WHAT IS A PROOF? 7-C

WHAT IS A PROOF?

to prove (Marriam-Webster)

➜ from Latin probare (test, approve, prove)

➜ to learn or find out by experience (archaic)

➜ to establish the existence, truth, or validity of
(by evidence or logic)
prove a theorem, the charges were never proved in court

pops up everywhere

➜ politics (weapons of mass destruction)

➜ courts (beyond reasonable doubt)

➜ religion (god exists)

➜ science (cold fusion works)

WHAT IS A PROOF? 7-D

WHAT IS A MATHEMATICAL PROOF?

In mathematics, a proof is a demonstration that, given certain
axioms, some statement of interest is necessarily true.
(Wikipedia)

Example:
√

2 is not rational.

Proof:

assume there is r ∈ Q such that r2 = 2.

Hence there are mutually prime p and q with r = p

q
.

Thus 2q2 = p2, i.e. p2 is divisible by 2.

2 is prime, hence it also divides p, i.e. p = 2s.

Substituting this into 2q2 = p2 and dividing by 2 gives q2 = 2s2.
Hence, q is also divisible by 2. Contradiction. Qed.

WHAT IS A MATHEMATICAL PROOF? 8

WHAT IS A MATHEMATICAL PROOF?

In mathematics, a proof is a demonstration that, given certain
axioms, some statement of interest is necessarily true.
(Wikipedia)

Example:
√

2 is not rational.

Proof: assume there is r ∈ Q such that r2 = 2.

Hence there are mutually prime p and q with r = p

q
.

Thus 2q2 = p2, i.e. p2 is divisible by 2.

2 is prime, hence it also divides p, i.e. p = 2s.

Substituting this into 2q2 = p2 and dividing by 2 gives q2 = 2s2.
Hence, q is also divisible by 2. Contradiction. Qed.

WHAT IS A MATHEMATICAL PROOF? 8-A

NICE, BUT..

➜ still not rigorous enough for some

• what are the rules?

• what are the axioms?

• how big can the steps be?

• what is obvious or trivial?

➜ informal language, easy to get wrong

➜ easy to miss something, easy to cheat

Theorem. A cat has nine tails.
Proof. No cat has eight tails. Since one cat has one more tail than
no cat, it must have nine tails.

NICE, BUT.. 9

NICE, BUT..

➜ still not rigorous enough for some

• what are the rules?

• what are the axioms?

• how big can the steps be?

• what is obvious or trivial?

➜ informal language, easy to get wrong

➜ easy to miss something, easy to cheat

Theorem. A cat has nine tails.
Proof. No cat has eight tails. Since one cat has one more tail than
no cat, it must have nine tails.

NICE, BUT.. 9-A

WHAT IS A FORMAL PROOF?

A derivation in a formal calculus

Example: A ∧ B −→ B ∧ A derivable in the following system

Rules:
X ∈ S

S ` X
(assumption)

S ∪ {X} ` Y

S ` X −→ Y
(impI)

S ` X S ` Y
S ` X ∧ Y

(conjI)
S ∪ {X, Y } ` Z

S ∪ {X ∧ Y } ` Z
(conjE)

Proof:

1. {A, B} ` B (by assumption)

2. {A, B} ` A (by assumption)

3. {A, B} ` B ∧ A (by conjI with 1 and 2)

4. {A ∧ B} ` B ∧ A (by conjE with 3)

5. {} ` A ∧ B −→ B ∧ A (by impI with 4)

WHAT IS A FORMAL PROOF? 10

WHAT IS A FORMAL PROOF?

A derivation in a formal calculus

Example: A ∧ B −→ B ∧ A derivable in the following system

Rules:
X ∈ S

S ` X
(assumption)

S ∪ {X} ` Y

S ` X −→ Y
(impI)

S ` X S ` Y
S ` X ∧ Y

(conjI)
S ∪ {X, Y } ` Z

S ∪ {X ∧ Y } ` Z
(conjE)

Proof:

1. {A, B} ` B (by assumption)

2. {A, B} ` A (by assumption)

3. {A, B} ` B ∧ A (by conjI with 1 and 2)

4. {A ∧ B} ` B ∧ A (by conjE with 3)

5. {} ` A ∧ B −→ B ∧ A (by impI with 4)

WHAT IS A FORMAL PROOF? 10-A

WHAT IS A FORMAL PROOF?

A derivation in a formal calculus

Example: A ∧ B −→ B ∧ A derivable in the following system

Rules:
X ∈ S

S ` X
(assumption)

S ∪ {X} ` Y

S ` X −→ Y
(impI)

S ` X S ` Y
S ` X ∧ Y

(conjI)
S ∪ {X, Y } ` Z

S ∪ {X ∧ Y } ` Z
(conjE)

Proof:

1. {A, B} ` B (by assumption)

2. {A, B} ` A (by assumption)

3. {A, B} ` B ∧ A (by conjI with 1 and 2)

4. {A ∧ B} ` B ∧ A (by conjE with 3)

5. {} ` A ∧ B −→ B ∧ A (by impI with 4)

WHAT IS A FORMAL PROOF? 10-B

WHAT IS A THEOREM PROVER?

Implementation of a formal logic on a computer.

➜ fully automated (propositional logic)

➜ automated, but not necessarily terminating (first order logic)

➜ with automation, but mainly interactive (higher order logic)

➜ based on rules and axioms

➜ can deliver proofs

There are other (algorithmic) verification tools:

➜ model checking, static analysis, ...

➜ usually do not deliver proofs

WHAT IS A THEOREM PROVER? 11

WHAT IS A THEOREM PROVER?

Implementation of a formal logic on a computer.

➜ fully automated (propositional logic)

➜ automated, but not necessarily terminating (first order logic)

➜ with automation, but mainly interactive (higher order logic)

➜ based on rules and axioms

➜ can deliver proofs

There are other (algorithmic) verification tools:

➜ model checking, static analysis, ...

➜ usually do not deliver proofs

WHAT IS A THEOREM PROVER? 11-A

WHAT IS A THEOREM PROVER?

Implementation of a formal logic on a computer.

➜ fully automated (propositional logic)

➜ automated, but not necessarily terminating (first order logic)

➜ with automation, but mainly interactive (higher order logic)

➜ based on rules and axioms

➜ can deliver proofs

There are other (algorithmic) verification tools:

➜ model checking, static analysis, ...

➜ usually do not deliver proofs

WHAT IS A THEOREM PROVER? 11-B

WHY THEOREM PROVING?

➜ Analysing systems/programs thoroughly

➜ Finding design and specification errors early

➜ High assurance (mathematical, machine checked proof)

➜ it’s not always easy

➜ it’s fun

WHY THEOREM PROVING? 12

WHY THEOREM PROVING?

➜ Analysing systems/programs thoroughly

➜ Finding design and specification errors early

➜ High assurance (mathematical, machine checked proof)

➜ it’s not always easy

➜ it’s fun

WHY THEOREM PROVING? 12-A

WHY THEOREM PROVING?

➜ Analysing systems/programs thoroughly

➜ Finding design and specification errors early

➜ High assurance (mathematical, machine checked proof)

➜ it’s not always easy

➜ it’s fun

WHY THEOREM PROVING? 12-B

WHY THEOREM PROVING?

➜ Analysing systems/programs thoroughly

➜ Finding design and specification errors early

➜ High assurance (mathematical, machine checked proof)

➜ it’s not always easy

➜ it’s fun

WHY THEOREM PROVING? 12-C

Main theorem proving system for this course:

λ →

∀
=Isa

be
lle

β
α

13

WHAT IS ISABELLE?

A generic interactive proof assistant

➜ generic:
not specialised to one particular logic

(two large developments: HOL and ZF, will mainly use HOL)

➜ interactive:
more than just yes/no, you can interactively guide the system

➜ proof assistant:
helps to explore, find, and maintain proofs

WHAT IS ISABELLE? 14

WHAT IS ISABELLE?

A generic interactive proof assistant

➜ generic:
not specialised to one particular logic

(two large developments: HOL and ZF, will mainly use HOL)

➜ interactive:
more than just yes/no, you can interactively guide the system

➜ proof assistant:
helps to explore, find, and maintain proofs

WHAT IS ISABELLE? 14-A

WHAT IS ISABELLE?

A generic interactive proof assistant

➜ generic:
not specialised to one particular logic

(two large developments: HOL and ZF, will mainly use HOL)

➜ interactive:
more than just yes/no, you can interactively guide the system

➜ proof assistant:
helps to explore, find, and maintain proofs

WHAT IS ISABELLE? 14-B

WHAT IS ISABELLE?

A generic interactive proof assistant

➜ generic:
not specialised to one particular logic

(two large developments: HOL and ZF, will mainly use HOL)

➜ interactive:
more than just yes/no, you can interactively guide the system

➜ proof assistant:
helps to explore, find, and maintain proofs

WHAT IS ISABELLE? 14-C

WHY ISABELLE?

➜ free

➜ widely used system

➜ active development

➜ high expressiveness and automation

➜ reasonably easy to use

➜ (and because I know it best ;-))

We will see other systems, too: HOL4, Coq, Waldmeister

WHY ISABELLE? 15

WHY ISABELLE?

➜ free

➜ widely used system

➜ active development

➜ high expressiveness and automation

➜ reasonably easy to use

➜ (and because I know it best ;-))

We will see other systems, too: HOL4, Coq, Waldmeister

WHY ISABELLE? 15-A

WHY ISABELLE?

➜ free

➜ widely used system

➜ active development

➜ high expressiveness and automation

➜ reasonably easy to use

➜ (and because I know it best ;-))

We will see other systems, too: HOL4, Coq, Waldmeister

WHY ISABELLE? 15-B

If I prove it on the computer, it is correct, right?

16

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, because:

➀ hardware could be faulty

➁ operating system could be faulty

➂ implementation runtime system could be faulty

➃ compiler could be faulty

➄ implementation could be faulty

➅ logic could be inconsistent

➆ theorem could mean something else

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 17

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, because:

➀ hardware could be faulty

➁ operating system could be faulty

➂ implementation runtime system could be faulty

➃ compiler could be faulty

➄ implementation could be faulty

➅ logic could be inconsistent

➆ theorem could mean something else

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 17-A

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, because:

➀ hardware could be faulty

➁ operating system could be faulty

➂ implementation runtime system could be faulty

➃ compiler could be faulty

➄ implementation could be faulty

➅ logic could be inconsistent

➆ theorem could mean something else

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 17-B

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, because:

➀ hardware could be faulty

➁ operating system could be faulty

➂ implementation runtime system could be faulty

➃ compiler could be faulty

➄ implementation could be faulty

➅ logic could be inconsistent

➆ theorem could mean something else

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 17-C

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, because:

➀ hardware could be faulty

➁ operating system could be faulty

➂ implementation runtime system could be faulty

➃ compiler could be faulty

➄ implementation could be faulty

➅ logic could be inconsistent

➆ theorem could mean something else

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 17-D

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, because:

➀ hardware could be faulty

➁ operating system could be faulty

➂ implementation runtime system could be faulty

➃ compiler could be faulty

➄ implementation could be faulty

➅ logic could be inconsistent

➆ theorem could mean something else

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 17-E

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, because:

➀ hardware could be faulty

➁ operating system could be faulty

➂ implementation runtime system could be faulty

➃ compiler could be faulty

➄ implementation could be faulty

➅ logic could be inconsistent

➆ theorem could mean something else

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 17-F

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, because:

➀ hardware could be faulty

➁ operating system could be faulty

➂ implementation runtime system could be faulty

➃ compiler could be faulty

➄ implementation could be faulty

➅ logic could be inconsistent

➆ theorem could mean something else

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 17-G

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, but:

probability for

➜ 1 and 2 reduced by using different systems

➜ 3 and 4 reduced by using different compilers

➜ faulty implementation reduced by right architecture

➜ inconsistent logic reduced by implementing and analysing it

➜ wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance way higher than manual proof

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 18

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, but:

probability for

➜ 1 and 2 reduced by using different systems

➜ 3 and 4 reduced by using different compilers

➜ faulty implementation reduced by right architecture

➜ inconsistent logic reduced by implementing and analysing it

➜ wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance way higher than manual proof

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 18-A

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, but:

probability for

➜ 1 and 2 reduced by using different systems

➜ 3 and 4 reduced by using different compilers

➜ faulty implementation reduced by right architecture

➜ inconsistent logic reduced by implementing and analysing it

➜ wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance way higher than manual proof

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 18-B

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, but:

probability for

➜ 1 and 2 reduced by using different systems

➜ 3 and 4 reduced by using different compilers

➜ faulty implementation reduced by right architecture

➜ inconsistent logic reduced by implementing and analysing it

➜ wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance way higher than manual proof

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 18-C

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, but:

probability for

➜ 1 and 2 reduced by using different systems

➜ 3 and 4 reduced by using different compilers

➜ faulty implementation reduced by right architecture

➜ inconsistent logic reduced by implementing and analysing it

➜ wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance way higher than manual proof

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 18-D

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, but:

probability for

➜ 1 and 2 reduced by using different systems

➜ 3 and 4 reduced by using different compilers

➜ faulty implementation reduced by right architecture

➜ inconsistent logic reduced by implementing and analysing it

➜ wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance way higher than manual proof

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 18-E

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

No, but:

probability for

➜ 1 and 2 reduced by using different systems

➜ 3 and 4 reduced by using different compilers

➜ faulty implementation reduced by right architecture

➜ inconsistent logic reduced by implementing and analysing it

➜ wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance way higher than manual proof

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 18-F

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

Soundness architectures

careful implementation PVS

LCF approach, small proof kernel HOL4

Isabelle

explicit proofs + proof checker Coq

Twelf

Isabelle

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 19

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

Soundness architectures

careful implementation PVS

LCF approach, small proof kernel HOL4

Isabelle

explicit proofs + proof checker Coq

Twelf

Isabelle

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 19-A

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT?

Soundness architectures

careful implementation PVS

LCF approach, small proof kernel HOL4

Isabelle

explicit proofs + proof checker Coq

Twelf

Isabelle

IF I PROVE IT ON THE COMPUTER, IT IS CORRECT, RIGHT? 19-B

META LOGIC

Meta language:
The language used to talk about another language.

Examples:
English in a Spanish class, English in an English class

Meta logic:
The logic used to formalize another logic

Example:
Mathematics used to formalize derivations in formal logic

META LOGIC 20

META LOGIC

Meta language:
The language used to talk about another language.

Examples:
English in a Spanish class, English in an English class

Meta logic:
The logic used to formalize another logic

Example:
Mathematics used to formalize derivations in formal logic

META LOGIC 20-A

META LOGIC

Meta language:
The language used to talk about another language.

Examples:
English in a Spanish class, English in an English class

Meta logic:
The logic used to formalize another logic

Example:
Mathematics used to formalize derivations in formal logic

META LOGIC 20-B

META LOGIC – EXAMPLE

Syntax:

Formulae: F ::= V | F −→ F | F ∧ F | False

V ::= [A − Z]

Derivable: S ` X X a formula, S a set of formulae

logic / meta logic

X ∈ S

S ` X

S ∪ {X} ` Y

S ` X −→ Y

S ` X S ` Y
S ` X ∧ Y

S ∪ {X, Y } ` Z

S ∪ {X ∧ Y } ` Z

META LOGIC – EXAMPLE 21

META LOGIC – EXAMPLE

Syntax:

Formulae: F ::= V | F −→ F | F ∧ F | False

V ::= [A − Z]

Derivable: S ` X X a formula, S a set of formulae

logic / meta logic

X ∈ S

S ` X

S ∪ {X} ` Y

S ` X −→ Y

S ` X S ` Y
S ` X ∧ Y

S ∪ {X, Y } ` Z

S ∪ {X ∧ Y } ` Z

META LOGIC – EXAMPLE 21-A

ISABELLE’S META LOGIC

∧
=⇒ λ

ISABELLE’S META LOGIC 22

∧

Syntax:
∧

x. F (F another meta level formula)

in ASCII: !!x. F

➜ universial quantifier on the meta level

➜ used to denote parameters

➜ example and more later

∧
23

∧

Syntax:
∧

x. F (F another meta level formula)

in ASCII: !!x. F

➜ universial quantifier on the meta level

➜ used to denote parameters

➜ example and more later

∧
23-A

=⇒

Syntax: A =⇒ B (A, B other meta level formulae)

in ASCII: A ==> B

Binds to the right:

A =⇒ B =⇒ C = A =⇒ (B =⇒ C)

Abbreviation:

[[A; B]] =⇒ C = A =⇒ B =⇒ C

➜ read: A and B implies C

➜ used to write down rules, theorems, and proof states

=⇒ 24

=⇒

Syntax: A =⇒ B (A, B other meta level formulae)

in ASCII: A ==> B

Binds to the right:

A =⇒ B =⇒ C = A =⇒ (B =⇒ C)

Abbreviation:

[[A; B]] =⇒ C = A =⇒ B =⇒ C

➜ read: A and B implies C

➜ used to write down rules, theorems, and proof states

=⇒ 24-A

EXAMPLE: A THEOREM

mathematics: if x < 0 and y < 0, then x + y < 0

formal logic: ` x < 0 ∧ y < 0 −→ x + y < 0

variation: x < 0; y < 0 ` x + y < 0

Isabelle: lemma ”x < 0 ∧ y < 0 −→ x + y < 0”

variation: lemma ”[[x < 0; y < 0]] =⇒ x + y < 0”

variation: lemma

assumes ”x < 0” and ”y < 0” shows ”x + y < 0”

EXAMPLE: A THEOREM 25

EXAMPLE: A THEOREM

mathematics: if x < 0 and y < 0, then x + y < 0

formal logic: ` x < 0 ∧ y < 0 −→ x + y < 0

variation: x < 0; y < 0 ` x + y < 0

Isabelle: lemma ”x < 0 ∧ y < 0 −→ x + y < 0”

variation: lemma ”[[x < 0; y < 0]] =⇒ x + y < 0”

variation: lemma

assumes ”x < 0” and ”y < 0” shows ”x + y < 0”

EXAMPLE: A THEOREM 25-A

EXAMPLE: A THEOREM

mathematics: if x < 0 and y < 0, then x + y < 0

formal logic: ` x < 0 ∧ y < 0 −→ x + y < 0

variation: x < 0; y < 0 ` x + y < 0

Isabelle: lemma ”x < 0 ∧ y < 0 −→ x + y < 0”

variation: lemma ”[[x < 0; y < 0]] =⇒ x + y < 0”

variation: lemma

assumes ”x < 0” and ”y < 0” shows ”x + y < 0”

EXAMPLE: A THEOREM 25-B

EXAMPLE: A THEOREM

mathematics: if x < 0 and y < 0, then x + y < 0

formal logic: ` x < 0 ∧ y < 0 −→ x + y < 0

variation: x < 0; y < 0 ` x + y < 0

Isabelle: lemma ”x < 0 ∧ y < 0 −→ x + y < 0”

variation: lemma ”[[x < 0; y < 0]] =⇒ x + y < 0”

variation: lemma

assumes ”x < 0” and ”y < 0” shows ”x + y < 0”

EXAMPLE: A THEOREM 25-C

EXAMPLE: A RULE

logic:
X Y
X ∧ Y

variation:
S ` X S ` Y

S ` X ∧ Y

Isabelle: [[X; Y]] =⇒ X ∧ Y

EXAMPLE: A RULE 26

EXAMPLE: A RULE

logic:
X Y
X ∧ Y

variation:
S ` X S ` Y

S ` X ∧ Y

Isabelle: [[X; Y]] =⇒ X ∧ Y

EXAMPLE: A RULE 26-A

EXAMPLE: A RULE

logic:
X Y
X ∧ Y

variation:
S ` X S ` Y

S ` X ∧ Y

Isabelle: [[X; Y]] =⇒ X ∧ Y

EXAMPLE: A RULE 26-B

EXAMPLE: A RULE WITH NESTED IMPLICATION

logic:
X ∨ Y

X....
Z

Y....
Z

Z

variation:
S ∪ {X} ` Z S ∪ {Y } ` Z

S ∪ {X ∨ Y } ` Z

Isabelle: [[X ∨ Y ; X =⇒ Z; Y =⇒ Z]] =⇒ Z

EXAMPLE: A RULE WITH NESTED IMPLICATION 27

EXAMPLE: A RULE WITH NESTED IMPLICATION

logic:
X ∨ Y

X....
Z

Y....
Z

Z

variation:
S ∪ {X} ` Z S ∪ {Y } ` Z

S ∪ {X ∨ Y } ` Z

Isabelle: [[X ∨ Y ; X =⇒ Z; Y =⇒ Z]] =⇒ Z

EXAMPLE: A RULE WITH NESTED IMPLICATION 27-A

EXAMPLE: A RULE WITH NESTED IMPLICATION

logic:
X ∨ Y

X....
Z

Y....
Z

Z

variation:
S ∪ {X} ` Z S ∪ {Y } ` Z

S ∪ {X ∨ Y } ` Z

Isabelle: [[X ∨ Y ; X =⇒ Z; Y =⇒ Z]] =⇒ Z

EXAMPLE: A RULE WITH NESTED IMPLICATION 27-B

λ

Syntax: λx. F (F another meta level formula)

in ASCII: %x. F

➜ lambda abstraction

➜ used to for functions in object logics

➜ used to encode bound variables in object logics

➜ more about this in the next lecture

λ 28

λ

Syntax: λx. F (F another meta level formula)

in ASCII: %x. F

➜ lambda abstraction

➜ used to for functions in object logics

➜ used to encode bound variables in object logics

➜ more about this in the next lecture

λ 28-A

ENOUGH THEORY!

GETTING STARTED WITH ISABELLE

29

SYSTEM ARCHITECTURE

Proof General – user interface

HOL, ZF – object-logics

Isabelle – generic, interactive theorem prover

Standard ML – logic implemented as ADT

User can access all layers!

SYSTEM ARCHITECTURE 30

SYSTEM ARCHITECTURE

Proof General – user interface

HOL, ZF – object-logics

Isabelle – generic, interactive theorem prover

Standard ML – logic implemented as ADT

User can access all layers!

SYSTEM ARCHITECTURE 30-A

SYSTEM ARCHITECTURE

Proof General – user interface

HOL, ZF – object-logics

Isabelle – generic, interactive theorem prover

Standard ML – logic implemented as ADT

User can access all layers!

SYSTEM ARCHITECTURE 30-B

SYSTEM ARCHITECTURE

Proof General – user interface

HOL, ZF – object-logics

Isabelle – generic, interactive theorem prover

Standard ML – logic implemented as ADT

User can access all layers!

SYSTEM ARCHITECTURE 30-C

SYSTEM ARCHITECTURE

Proof General – user interface

HOL, ZF – object-logics

Isabelle – generic, interactive theorem prover

Standard ML – logic implemented as ADT

User can access all layers!

SYSTEM ARCHITECTURE 30-D

SYSTEM REQUIREMENTS

➜ Linux, MacOS X or Solaris

➜ Standard ML
(PolyML fastest, SML/NJ supports more platforms)

➜ XEmacs or Emacs
(for ProofGeneral)

If you do not have Linux, MacOS X or Solaris, try IsaMorph:
http://www.brucker.ch/projects/isamorph/

SYSTEM REQUIREMENTS 31

DOCUMENTATION

Available from http://isabelle.in.tum.de

➜ Learning Isabelle

• Tutorial on Isabelle/HOL (LNCS 2283)

• Tutorial on Isar

• Tutorial on Locales

➜ Reference Manuals

• Isabelle/Isar Reference Manual

• Isabelle Reference Manual

• Isabelle System Manual

➜ Reference Manuals for Object-Logics

DOCUMENTATION 32

PROOFGENERAL

➜ User interface for Isabelle

➜ Runs under XEmacs or Emacs

➜ Isabelle process in background

Interaction via

➜ Basic editing in XEmacs (with highlighting etc)

➜ Buttons (tool bar)

➜ Key bindings

➜ ProofGeneral Menu (lots of options, try them)

PROOFGENERAL 33

X-SYMBOL CHEAT SHEET

Input of funny symbols in ProofGeneral

➜ via menu (“X-Symbol”)

➜ via ASCII encoding (similar to LATEX): \<and>, \<or>, . . .

➜ via abbreviation: /\, \/, -->, . . .

➜ via rotate: l C-. = λ (cycles through variations of letter)

∀ ∃ λ ¬ ∧ ∨ −→ ⇒

➀ \<forall> \<exists> \<lambda> \<not> /\ \/ --> =>

➁ ALL EX % ˜ & |

➀ converted to X-Symbol

➁ stays ASCII

X-SYMBOL CHEAT SHEET 34

DEMO

35

EXERCISES

➜ Download and install Isabelle from
http://isabelle.in.tum.de or

http://mirror.cse.unsw.edu.au/pub/isabelle/

➜ Switch on X-Symbol in ProofGeneral

➜ Step through the demo file from the lecture web page

➜ Write an own theory file, look at some theorems, try ’find theorem’

EXERCISES 36

