
PROTOTYPING PROOF CARRYING CODE

Martin Wildmoser, Tobias Nipkow
Institut für Informatik, Technische Universität München

wildmosm@in.tum.de, nipkow@in.tum.de

Gerwin Klein
National ICT Australia, Sydney

gerwin.klein@nicta.com.au

Sebastian Nanz∗
Yale University, Department of Computer Science

nanz@cs.yale.edu

Abstract We introduce a generic framework for proof carrying code, developed and me-
chanically verified in Isabelle/HOL. The framework defines and proves sound
a verification condition generator with minimal assumptions on the underlying
programming language, safety policy, and safety logic. We demonstrate its us-
ability for prototyping proof carrying code systems by instantiating it to a simple
assembly language with procedures and a safety policy for arithmetic overflow.

1 Introduction
Proof Carrying Code (PCC), first proposed by Necula and Lee [11] [12], is a scheme
for executing untrusted code safely. Fig.1 shows the architecture of a PCC system.
The code producer is on the left, the code receiver on the right. Both use a verification
condition generator (VCG) that relies on annotations in the program to reduce the
program to a logic formula. The logic used in annotations and proof is thesafety
logic, the property that is shown about the program is thesafety policy.

Verification Condition

Proof Object

VC
Generator

VC
Generator

Theorem
Prover

Proof
Checker

Annotated Program
Compiler Interpreter

Figure 1. PCC Architecture

∗supported in part by NSF grant CCR-0208618.

2

It is the responsibility of the producer to generate the annotations and a proof for the
formula the VCG constructs. They are then transmitted to the code receiver who again
runs the VCG and uses a proof checker to verify that the proof indeed fits the formula
produced by the VCG. Proof checking is much simpler and more efficient than proof
searching. The framework for PCC systems we present in this paper concentrates on
the safety critical receiver side. It has the following two main purposes and contribu-
tions: safety of the system and prototyping new safety logics. Proof checker, VCG,
and safety logic constitute the trusted code base of the PCC system. Proof checkers
are relatively small standard components of many logical frameworks. The VCG on
the other hand is large (several thousand lines of C code in current PCC systems [6]
[13]) and complex (it handles annotations, produces complex formulae, and contains
parts of the safety policy). Our framework contains a VCG with a formal proof of
safety, mechanically checked in the theorem prover Isabelle/HOL [16]. The VCG is
not restricted to any particular machine language, safety policy, or safety logic. Addi-
tionally to the correctness of VCG and proof checker, we need the safety logic to be
sound. As a recent bug [9] in the SpecialJ system [6] shows, this is not trivial. It is
not even immediately clear, what exactly a safety logic must satisfy to be sound. Our
framework makes the underlying assumptions on machine, policy, and logic explicit.
It also makes a simple, formally clear statement what it means for a safety logic to be
sound: if the formula produced by the VCG is derivable in the safety logic, the pro-
gram must be safe according to the safety policy. The framework reduces the workload
for showing soundness of a safety logic by giving sufficient conditions. Since the VCG
is directly executable and the framework reasonably easy to instantiate, it provides a
good platform for trying out, tuning, and analysing different safety policies and logics
for different target platforms.
Our approach is different from other work in the formal foundation of PCC by Appel
et al. [1] [2] or Hamid et al. [7] in that it works with an explicit, executable, and
verified VCG and not directly on the machine semantics or a type system. The focus
of the framework is on aiding logical foundations of PCC as the one started by Necula
and Schneck [14] and on encouraging the analysis of safety properties other than the
much researched type and memory safety. Necula and Schneck [15] also present a
framework for VCGs. They work with a small, trusted core VCG that can be extended
by optimised plugins. We see our work as complementary to this development: the
core VCG could be proven sound within our framework, the technique of using safe,
optimised extensions can then be applied to that sound core. On a broader scale, our
approach is related to other techniques that impose safety policies on machine code
statically: Typed Assembly Language [10], Mobile Ressource Guarantees [3] or Java
Bytecode Verification [8].
There are four levels in our PCC systems. The first level, the PCC framework (§2),
provides generic features and minimal assumptions. The second level is the platform
(§3). Platform designers can provide a concrete instantiation of the framework with
respect to a specific programming language, safety policy, and safety logic. The third
level is the code producer who can now write and certify programs based on the in-
stantiated framework. We show this by certifying a concrete program in §4. Finally,
also in §4, we show how code receivers can check certified code within the framework.
The formalization in this paper was carried out in Isabelle/HOL, so we inherit some of
Isabelle’s syntax. Most of the notation is familiar from functional programming and
standard mathematics, we only mention a few peculiarities. Consing an elementx to
a list xs is written asx#xs. Infix @ is the append operator, andxs ! n selects then-th

Prototyping Proof Carrying Code 3

element from the listxs. The typeT1⇒ T2 is the space of total functions fromT1 to
T2, and we frequently use the polymorphic option typedatatype ′a option= None|
Some′a to simulate partiality in HOL, a logic of total functions:Nonestands for an
undefined value,Some xfor a defined valuex.

2 Framework Definition
The components of a PCC system shown in Fig.1 depend on three factors: program-
ming language, safety policy, and safety logic. The programming language defines
syntax and semantics for programs, the safety policy specifies the safety conditions
programs must satisfy, and the safety logic provides a formal notation and a deriva-
tion calculus for proving these conditions. Our framework consists of skeletons and
requirements for these three components and uses them to define and verify a generic
VCG.

2.1 Program Semantics
Our framework expects the semantics of the underlying programming language in
form of a functioneffS:: ′prog⇒ ((′pos× ′mem) × (′pos× ′mem)) setwhich relates
runtime states of a program to their immediate successor states. States are tuples(p,m)
of type ′pos× ′mem, wherep denotes the current position in the control flow graph
andm is the machine’s memory, e.g., heap, stack and registers. Since′prog, ′posand
′memare type variables the representation of programs, positions and memory can be
instantiated as one likes.

2.2 Safety Logic
To specify and prove properties about programs we use a safety logic.

xTruey:: ′form
x

∧
y
:: ′form list⇒ ′form

xFalsey:: ′form x=⇒y:: ′form⇒ ′form⇒ ′form
|= :: ′prog⇒ (′pos× ′mem)⇒ ′form⇒ bool
` :: ′prog⇒ ′form⇒ bool

Every structure having constants for the truth valuesxTruey andxFalsey, operators for
conjunction

x

∧
y

and implicationx=⇒y, judgements for validity|= and provability`
of formulae can be employed as a safety logic as long as it respects the assumptions
below. These assumptions only concern the semantics of the logical connectives. How
formulae or their proofs look like and what they mean, is left open. This depends on
how ′form, ` and|= get instantiated.

assumptions
semTrueF: Π,s |= xTruey semFalseF: ¬ Π,s |= xFalsey
semConj: Π,s |=

x

∧
y

Fs = (∀ F∈set Fs. Π,s |= F)
semImpl: Π,s |= (A x=⇒y B) = (Π,s |= A−→ Π,s |= B)

2.3 Safety Policy
Our framework expects the safety policy to be defined by means of the safety logic. We
assume that for each positionp in a programΠ a safety formulasafeFΠ p expresses
the conditions we want to hold whenever we reachp at runtime.

safeF:: ′prog⇒ ′pos⇒ ′form

4

In addition we assume that a safety logic formulainitF Π characterises all states under
which a programΠ can be started.

initF :: ′prog⇒ ′form

Now we can give a generic notion of safety for programs: A program is safe, if all
states(p,m) it reaches from some initial state are safe. That is(p,m) satisfies the
safety formulasafeFΠ p, which the platform dedicates to positionp.

isSafeΠ = (∀p0 m0 p m. Π,(p0,m0) |= initF Π ∧
((p0,m0),(p,m)) ∈ (effSΠ)∗ −→ Π,(p,m) |= safeFΠ p)

2.4 The Verification Condition Generator
The VCG is the core of our PCC framework. It takes a programΠ and generates a
formulavc in the safety logic. If this formula is provable, then the program is safe at
runtime, i.e.,isSafeΠ holds. The structure of thevc is determined by the program’s
control flow graph, which is a directed graph. Nodes denote program positions and can
be marked with annotations. Edges point to successor positions and are marked with
branch conditions. Fig.2 shows a control flow graph. It can be seen as an abstraction
of the assembly programE, which compares two variablesX andY and eventually sets
X to the maximum of these two.

p0

p2 p1

B01B02

B12

A
0

B20

E:
p0: JLE X Y 2
p1: INC X
p2: JMPB 2

Figure 2. control flow graph

(To extract parts of the control flow graph and to express the semantics of programs
by means of safety logic formulae and manipulations on these, our framework requires
various parameter functions:

anF:: ′prog⇒ (′pos⇒ ′form option)
succsF:: ′prog ⇒ ′pos⇒ (′pos× ′form) list
wpF:: ′prog ⇒ ′pos⇒ ′pos⇒ (′form⇒ ′form)
domC:: ′prog⇒ ′pos list ipc:: ′prog⇒ ′pos

With anF we access the annotations;anF Π p returnsSome Aif position p in Π is
annotated withA, otherwiseNone. FunctionsuccsFyields the edges of the control
flow graph. Given a positionp in a programΠ the expressionsuccsFΠ p yields a list
of pairs(p′,B) wherep′ is a possible successor ofp andB is the branch condition for
the edge fromp to p′. The branch conditionB is a safety logic formula that charac-
terises the situations whenp′ is accessible fromp. For example ifΠ jumps fromp to
eitherp′ or p′′ depending on a conditionC, thensuccsFΠ p should return something
like [(p′,C),(p′′,¬ C)]. To reflect the semantics within the safety logic we usewpF,
a function for computing (weakest) preconditions. The formulawpF Π p p′Q is ex-
pected to characterises those states(p,m) that have successor states(p′,m′) satisfying
Q. The functiondomCis expected to yield the code domain of a program; this is a list

Prototyping Proof Carrying Code 5

of all positions with instructions. Finallyipc is used to determine the initial program
counter.

(Thevcgconstructs the verification condition out of so called inductive safety for-
mulaeisafeFΠ p, which we generate individually for each positionp in a programΠ.
We call a state(p,m) inductively safeif it satisfies the inductive safety formula forp,
i.e.,Π,(p,m) |= isafeFΠ p. Fig. 3 definesisafeFΠ p. The wellformedness constraint

wf Π −→
isafeFΠ p = if p ∈ set(domCΠ)
then

x

∧
y
[safeFΠ p] @
(case(anF Π p)
of None⇒ (map(λ(p′,B). B x=⇒y wpF Π p p′ (isafeFΠ p′))

(succsFΠ p))
| Some A⇒ [A])

elsexFalsey
Figure 3. Construction of inductive safety formulae

wf Π ensures that every loop inΠ has at least one annotation; otherwise the recursion
of isafeFwould not terminate.
Whenp lies outside the code domaindomCΠ we must never reach it at runtime. We
express this formally by returning the unsatisfiable formulaxFalsey in this case. For
positionsp within the code domain the inductive safety formula guarantees the safety
formulasafeFΠ p. In addition, if there is an annotationA at p, we conjoin the safety
formula withA. For example in programE from Fig.2, we have the annotationA0 at
p0. Hence, we obtain

x

∧
y
[safeF E p0, A0] for isafeF E p0.

If p is not annotated, we take all successor positionsp′ together with their branch con-
ditions B and recursively compute the inductive safety formulaeisafeFΠ p′. Using
thewpF operator we construct a preconditionwpF Π p p′ (isafeFΠ p′). If this pre-
condition holds for a state(p,m) with some successor(p′,m′), thenisafeFΠ p′ holds
for (p′,m′). By constructing implications of the formB x=⇒y (wpF Π p p′ (isafeFΠ
p′)), we design the inductive safety formulaisafeFΠ p such that all states satisfying
the branch conditionB for a particular successorp′ also have to satisfy the precondi-
tion above. These implications are constructed for all pairs(p′,B) we get fromsuccsF
Π p. For example the positionsp1 andp2 are not annotated inE. Below are their in-
ductive safety formulae, wheresafeF, wpF, branch conditions and annotations are not
expanded.

isafeF E p1 =
x

∧
y
[safeF E p1,

B12 x=⇒y wpF E p1 p2 (
x

∧
y
[safeF E p2, B20 x=⇒y wpF E p2 p0 (

x

∧
y
[safeF E p0, A0])])]

isafeF E p2 =
x

∧
y
[safeF E p2, B20 x=⇒y wpF E p2 p0 (

x

∧
y
[safeF E p0, A0])]

Executing a programΠ with an inductively safe state(p,m) produces a trace of in-
ductively safe states until we reach an annotated positionp′. The state(p′,m′) under
which we reach this position, is safe and satisfies the annotation. After this state the
execution could become unsafe. However, this does not happen if all successor states
of (p′,m′) are again inductively safe. This observation guides the construction of the
verification conditionvcgΠ, which we show in Fig.4. The verification conditionvcg
Π demands two things: First, all initial states must satisfy the first inductive safety for-
mula isafeFΠ (ipc Π). Second, for every annotated positionpa the inductive safety

6

vcgΠ =
x

∧
y
([initF Π x=⇒y (isafeFΠ (ipc Π))]@

map(λpa.
x

∧
y
(map(λ(p′,B).

x

∧
y
[isafeFΠ pa, B] x=⇒y

wpF Π pa p′ (isafeFΠ p′))
(succsFΠ pa)))

[pa∈ domCΠ. anF Π pa 6= None])
Figure 4. Verification Condition Generator

formula isafeFΠ pa and the branch conditionB for all successorsp′ of pa must guar-
antee the preconditionwpF Π pa p′ (isafeFΠ p′). This ensures that the transitions out
of annotated positions leads to inductively safe successor states. As discussed above,
this proves the safety ofΠ. For examplevcg Ewould have the following form:

x

∧
y
[initF E x=⇒y isafeF E p0,

x

∧
y
[isafeF E p0, B01] x=⇒y wpF E p0 p1 (isafeF E p1),

x

∧
y
[isafeF E p0, B02] x=⇒y wpF E p0 p2 (isafeF E p2)]

The first conjunct expresses that initial states are inductively safe. Note thatipc E =
p0. Sincep0 has two successorsp1 andp2, which are accessible ifB01 resp.B02 hold,
we have two further conjuncts. One requires us to show that all states satisfying the
inductive safety formula forp0 and the branch conditionB01 can only have successor
states that satisfy the inductive safety formula forp1. The other is analogous forp2.

(The VCG is sound if for every well formed programΠ a provable verification con-
dition Π ` vcgΠ guarantees program safety, i.e.,isSafeΠ.

theoremwf Π ∧ Π ` vcgΠ −→ isSafeΠ

We have proven this theorem in Isabelle based on the requirements our PCC frame-
work has on its parameter functions. In these assumptions, which we discuss in detail
in the appendix, we require thatsuccsFapproximates the control flow, thatwpF yields
proper preconditions and that the safety logic is correct.

3 Framework Instantiation
In this section we instantiate the framework with a simple assembly language (SAL).
We show how HOL can be instantiated as safety logic and demonstrate it on a safety
policy that prohibits type errors and arithmetical overflows.

3.1 A Simple Assembly Language
SAL provides instructions for arithmetics, pointers, jumps, and procedures. We

distinguish two kinds of addresses. Locations, which we model as natural numbers,
identify memory cells, whereas positions identify places in a program. We denote
positions as pairs(pn,i), where i is the relative position inside the procedure with
namepn.

types loc = nat, pname= nat, pos= pname× nat

datatype instr =SET loc nat| ADD loc loc| SUB loc loc|MOV loc loc|
JMPL loc loc nat| JMPB nat| CALL loc pname| RET loc | HALT

Prototyping Proof Carrying Code 7

The instructions manipulate states of the form(p,(m,e)), wherep denotes the pro-
gram counter and(m,e) the system memory. Since pairs associate to the right in
Isabelle/HOL we often leave out the inner brackets and write(p,m,e) to denote a state
with program counterp, main memorym and environmente.

typesSALstate= pos× (loc⇒ tval) × env

The program counter stores the position of the instruction that is executed next. The
main memorym, which maps locations to typed values, stores all the data a program
works on. We have three kinds of values: Uninitialised values having typeILLEGAL,
natural numbersNAT n, and positionsPOS(pn,i).

datatype tval = ILLEGAL | NAT nat| POS pos

The environmente tracks information about the run of a program. It contains a call
stackcs e, which lists the memory contents and times under which currently active
procedures have been called, and a historyh e, which traces the values of program
counters.

record env= cs:: (nat× (loc⇒ tval)) list
h :: pos list

To update a fieldx in a recordr with an expressionE we writer(|x:=E|), to access it we
write x r. We use the environment like a history variable in Hoare Logic; it provides
valuable information for annotations written as predicates on states. We can describe
states by relating them to former states or refer to system resources,e.g., the length of
h e is a time measure.
A SAL program is a list of procedures, which consist of a namepnameand a list of
possibly annotated instructions. Annotations are predicates on states.

typesSALform= SALstate⇒ bool
SALprocedure= pname× ((instr× (SALform option)) list)
SALprogram= SALprocedure list

To access instructions we writecmdΠ p, which gives usSome insif Π has an instruc-
tion insatp, or Noneotherwise.

3.2 SAL Semantics
SAL Instructions do the following:SET X ninitialisesX with NAT n. ADD X Y and
SUB X Yadd and subtract the values atX andY storing the result inX. MOV X Y
interprets the values ofX andY as addressesa andb; it copies the value ata to b.
JMPL X Y t jumps t positions forward if the value atX is less than the value atY;
otherwise just one.JMPB t jumps t positions backwards.CALL X pn jumps into
procedurepn leaving the return address inX. RET Xleaves a procedure and returns to
the address expected inX. Finally, HALT stops execution. In the instantiation ofeffS
we formalise these effects.

effSΠ = {(s,s′) | stepΠ s = Some s′ }
We do this with an auxiliary expressionstepΠ (p,m,e), which yieldsSome(p′,m′,e′)
if the instructioncmdΠ p exists and yields the successor state(p′,m′,e′). For example
ADD X YupdatesX with (m X)⊕(m Y), which isILLEGAL if either X or Y contains
no number orNAT (a+b) if m X = NAT aandm Y= NAT b. In addition the history
is augmented with the current program counter.

8

cmdΠ (pn,i) = Some ADD X Y−→ stepΠ ((pn,i),m,e) =
= Some((pn,i+1),m[X7→(m X)⊕(m Y)],e(|h:=(h e)@(pn,i)|))
The other instructions can be handled in a similar fashion.

3.3 SAL Safety Policy
In initial states the program counter is(0,0), the main memory only contains unini-
tialised values and the environmente has an empty history and a copy of the initial
memory on its call stack.

initF Π = λ(p,m,e). p=(0,0) ∧ ∀X. m X=ILLEGAL∧ h e=[] ∧ cs e=[(0,m)]

States are safe if the current instruction respects type safety and does not produce an
arithmetic overflow, that is numerical results are less thanMAX. Example:

cmdΠ p = Some(ADD X Y) −→
safeFΠ p = λ(p,m,e). (∃n. (m X)⊕(m Y)=NAT n∧ n≤MAX)

For the sake of brevity we skip the remaining instructions.

3.4 SAL Safety Logic
By identifying assertions with HOL predicates, we instantiate a shallow embedded
safety logic in Fig.5. The valididy judgment|= is directly defined by applying a
predicate to a state. The argumentΠ is only there to be compatible with the generic
signature of the framework. We define the provability judgment` directly by means
of the semantics. This enables us to prove verification conditions with Isabelle/HOL’s
inference rules using various tactics and decision procedures as tools. Alternatively
we could also use a deep embedding and define` with an explicit proof calculus,
possibly tailored to the programming language and its safety policy. This means more
effort, but could pay off in form of shorter proofs or higher degree of automation in
proof search. However, this paper focuses on the framework and we rather keep the
instantiation simple. According tò a formulaF is provable iff it holds for all states

xTruey = λs. True
x

∧
y

fs= λs. ∀F ∈ set fs. F s

xFalsey = λs. False Ax=⇒y B = λs. A s−→ B s
Π,s |= F = F s Π ` F = ∀ s. s∈ isafe� Π −→ Π,s |= F

Figure 5. Safety Logic for SAL.

in isafe� Π. The inductively defined setisafe� Π contains all initial states and states
that originate from a computation where all states are inductively safe.

Π,(p,m) |= initF Π −→ (p,m) ∈ isafe� Π

(p,m) ∈ isafe� Π ∧ Π,(p,m) |= isafeFΠ p∧ Π,(p′,m′) |= isafeFΠ p′∧
((p,m),(p′,m′)) ∈ effSΠ −→ (p′,m′) ∈ isafe� Π

This constraint on states simplifies proofs and shortens annotations, because one can
derive properties of a state from the fact that this state can be reached at runtime by
only traversing inductively safe intermediate states.

3.5 Instantiating VCG helper functions
The instantiations ofanF, domCandipc are straightforward. More interesting arewpF
andsuccsF. For the instantiation ofwpF we useλ-abstraction to postpone substitution
of formulae to the verification stage. Example:

Prototyping Proof Carrying Code 9

cmdΠ p = Some(ADD X Y) −→ wpF Π p p′Q =
λ(p,m,e). let m′=m[X 7→ (m X)⊕(m Y)]; e′=e(|h:=(h e)@p|) in Q (p′,m′,e′)

We compute the effect ofADD X Yon some symbolic state(p,m,e) and demand that
Q holds for the resulting state. Finally, we have a glimpse of thesuccsFinstantiation.
Here, we choseJMPL as example:

cmdΠ (pn,i) = Some(JMPL X Y t) −→ succsFΠ (pn,i) =
[((pn,i+t),λ(p,m,e). ∃n n′. m X=NAT n∧m Y=NAT n′∧ n<n′∧ p=(pn,i)),
((pn,i+1),λ(p,m,e). ∃n n′. m X=NAT n∧m Y=NAT n′∧ ¬n<n′∧ p=(pn,i))]

The constraint on the program counterp=(pn,i) in the branch conditions helps to apply
system invariants. These are properties that hold for all states inisafe� Π irrespective
of Π. For exampleλ((pn,i),m,e). cmdΠ (pn,i) = Some(RET X) −→ (∃ k m′ css. cs e
= (k,m′)#css∧ cmdΠ (h e)!k = (CALL pn X)) is a system invariant. It says that for
the call timek of the current procedure the historyh erecords the position of aCALL
instruction.

3.6 Verifying Procedures
Procedure proofs should be modular. Code with procedure calls should only depend
on these procedure’s specifications (the annotations at entry and exit positions) and
not on their code. For exampleλ(p,m,e). m X = (↼m e) X ⊕ (NAT 1) might be the
postcondition of a procedure that increments a locationX. Here we use↼m e = snd
(hd (cs e)) to reconstruct the memory at call time.This procedure could be called from
a position whereX is NAT 5. The programmer expects that after the procedureX is
NAT 6and could write this into the annotation at the return point. In the verification
condition we would have to prove that this follows from the procedure’s postcondition.
Howeverλ(p,m,e). m X = (↼m e) X ⊕ (NAT 1) x=⇒y (λ(p,m,e). m X = NAT 6) is not
provable. The information thatX has beenNAT 5 at the procedures entry point is
missing. We cannot add this information into the postcondition, otherwise we loose
modularity. A way out is to pack call context dependent information into branch
conditions, whichsuccsFcomputes individually for each successor. If a procedure
returns to(pn′,i ′+1) and (pn′,i ′) is annotated withAc we can construct the branch
conditionλ(p,m,e). Ac (↼pc e,↼m e, ↼e e), which claims that(↼pc e,↼m e,↼e e), the state at
call time, satisfies the annotationAc. Note that↼pc and↼e, the position and environment
at call time, can be defined analogously to↼m. Since branch conditions are added to
inductive safety formulas, we now obtain a provable formula:(

x

∧
y

[λ(p,m,e). m X=
(↼m e) X ⊕ (NAT 1) , λ(p,m,e). (↼m e) X = NAT 5]) x=⇒y (λ (p,m,e). m X = NAT 6).
Call context dependent branch conditions involve some technicalities for the definition
and verification ofsuccsF. However, they fit neatly into our concept of a generic VCG.
We achieve modular procedure proofs although our VCG has no notion of procedures
at all.

4 Case Study: Overflow Detection
4.1 Motivating Example for Overflow Detection
The exemplary safety policy expressed the definition ofsafeFin §3.3has two aspects:
First, type safety is needed as a general property to ensure that SAL programs never
get stuck. Second, the safety formula demands that the result of arithmetic operations
does not exceedMAX, thus preventing overflows. Consider the following program

10

fragment:[CALL P CHECK, ADD B C]

It might be part of an application that tries to add a credit stored as a natural number
in memory locationC to a balance inB—for example as part of a load transaction of
a smart card purse. Before executing the addition, a procedureCHECK is called to
ensure that the new balance inB is less thanMAX; if it does, the credit inC will be set
to zero and thus the balance remains the same as before. Special care has to be taken
in the implementation ofCHECK:

[SET M MAX, SET H 0, ADD H B, ADD H C, JMPL H M 2, SET C 0, RET P]

M represents the maximum balance considered for the application.H should contain
B + C after the secondADD statement. If the checkB + C< M fails, the credit
is set to zero; otherwise it is left unchanged. Even this simple example contains an
implementation flaw: there could be an overflow inH. And the flaw is not merely
theoretical: in the case of a silent overflow as in Java it would lead to debiting the
purse instead of crediting.

4.2 Annotated SAL Program
Fig. 6 shows the corrected and annotated version of our example. The main procedure
andCHECK are now identified with 0 and 1. For better readability we write instruc-
tion/annotation pairs of the form(ins, None) as justins and(ins, Some A) as{A} ins.

OD = [(0,[SET B b0, SET C c0,
{λ(p,m,e). m B= NAT b0 ∧ m C= NAT c0}

CALL P 1,
{λ(p,m,e). m B= NAT b0 ∧ (∃ c. m C= NAT c∧

c = (if b0 + c0 < MAX then c0 else 0))}
ADD B C, HALT])

(1,[{λ(p,m,e). m P= POS(incA (↼pc e)) ∧ (∃ b. m B= NAT b) ∧
(∃ c. m C= NAT c) ∧ (∀X. X 6= P−→ m X= ↼m e X)}

SET M MAX, SUB M C, JMPL B M 2, SET C 0,
{λ(p,m,e). (∀X. X 6= C ∧ X 6= M ∧ X 6= P−→ m X= ↼m e X) ∧

(∃ b c c′. m B= NAT b ∧ m C= NAT c∧ ↼m e C= NAT c′∧
c = (if b + c′< MAX then c′ else 0))}

RET P])]

Figure 6. Corrected and annotated program OD.

Before execution ofCALL P 1, the memory positionsB andC contain the numbers
b0 andc0. The annotation forADD B Cstates that the value ofC may have changed
according to the conditionb0 + c0 < MAX.
Inside theCHECK procedure we first set the memory locationM to the maximum
balance. The annotation states that locationP stores the proper return address for
the procedure:incA (↼pc e) represents the program counter of the calling procedure
incremented by one. Furthermore the annotation states that there are natural numbers
in bothB andC, and that all memory locations exceptP are the same as in the caller.
The following statements require no annotations, only the exit point of the procedure
RET Pdoes: it states that all values except for those inC, M, andP are unchanged,
that there are natural numbers in bothB andC, and that the new value ofC will be
changed to zero if the new balance exceeds the maximum balance.

Prototyping Proof Carrying Code 11

4.3 Verification Condition
In Fig. 7 we show the part of the verification condition that is generated for the re-
turn from procedureCHECK. In general we get as many parts (conjuncts) as there
are paths between annotated positions. That means the size of verification conditions
is linear to the number of positions if all branch positions are annotated. The exam-

x

∧
y
[

1

x

∧
y
[λ(p,m,e). ∃ pn′ i ′. m P= POS(pn′,i ′+1) ∧

(∃ k m′ cl css. cs e= (k, m′)#cl#css∧ (pn′,i ′) = (h e)!k),
2 λ(p,m,e). (∀X. X 6= C ∧ X 6= M ∧ X 6= P−→ m X= ↼m e X) ∧

(∃ b c c′. m B= NAT b∧ m C= NAT c∧ ↼m e C= NAT c′∧
c = if b + c′< MAX then c′ else 0],

3

x

∧
y
[λ(p,m,e). m P= POS(0,2) ∧ p=(1,4),

4 λ(p,m,e).((λ(p,m,e). m B= NAT b0 ∧ m C= NAT c0) (↼pc e,↼m e,↼e e))]

]
5
x=⇒y

x

∧
y
[λ(p,m,e). ∃ n. (m B)⊕(m C) = NAT n∧ n≤ MAX,

6 λ(p,m,e). m B= NAT b0 ∧ ∃ c. m C= NAT c∧
c = if b + c0 < MAX then c0 else 0]

Figure 7. Fragment of the verification condition.

ple demonstrates again how the VCG works. On the top-level the conditions for the
annotated program positions are conjoined; the fragment refers to positionp=(1,4)
of our program,1 stands for the procedureCHECK and4 for the line number with
the statementRET P. There is only one successorp′=(0,2), which is the statement
ADD B C. Therefore the conjunction over the list of all successors collapses to one
element. The verification condition fragment shown in Fig.7 results from the expres-
sion

x

∧
y
[isafeF OD(1,4), B] x=⇒y wpF OD (1,4) (0,2) (isafeF OD(0,2)) whereB is the

branch condition ofsuccsF OD(1,4). Numbers 1–4 in Fig.7 correspond to the as-
sumption of the implication, numbers 5–6 to the conclusion.isafeF OD(1,4) results

in
x

∧
y
[safeF OD(1,4), Ae] (compare Fig.3), wheresafeF OD(1,4) corresponds to 1

and the annotationAe, e.g.,anF OD(1,4) = Some Ae, corresponds to 2. The branch
conditionB for RET Pappears in 3 and 4, and consists of

x

∧
y
[λ (p,m,e). m P = POS

(0,2) ∧ p=(1,4), λ(p,m,e). Ac (↼pc e,↼m e,↼e e)] whereλ(p,m,e). Ac (↼pc e, ↼m e, ↼e e) is the
annotation of the call instruction, e.g.,anF OD (0,1) = Some Ac, applied to the re-
constructed state at the moment of the call, andP is the memory location of the return
address. This shows again how the environmente enables us to reconstruct the call
state(↼pc e, ↼m e, ↼e e) and how to transfer the informationAc of the call point to the
return point. Note that this context-specific information is encoded into the branch
conditionB, whichsuccsFcomputes individually for each successor. The annotation
at the procedure’s return point does not refer to a particular call point. Hence, the pro-
cedure and its verification are modular. The conclusion of the verification condition
consists of the safety condition forADD in 5 and its annotation in 6; together they
form isafeF OD(0,2).

4.4 Code Producer and Consumer
The code producer can write annotated programs in Isabelle. To obtain the verification
condition one can generate and execute ML code for the VCG [5] or use the simplifier

12

to evaluatevcgΠ. Proving the verification condition is supported by powerful proof
tools and a rich collection of HOL theorems. For the example in Fig.6 the simplifier
and a decision procedure for presburger arithmetic suffice to prove the verification
condition. For the client side Isabelle provides (compressed) proof terms and a proof
checker [4]. Proofs are encoded asλ terms having a type that corresponds to the
theorem they prove (Curry Howard Isomorphism). Proof Checking becomes a type
checking problem, which can be handled by a small trusted program.

5 Conclusion
Our framework can be instantiated to various programming languages, safety policies,
and safety logics. As long as the requirements of the framework are satisfied, one can
directly apply our generic VCG and rely on its machine checked soundness proof. In
our instantiation to SAL we show how HOL can be embedded as safety logic and how
this can be used to verify the absence of arithmetic overflows. Since HOL is very ex-
pressive, formulating complex assertions or safety policies is possible. Isabelle’s code
generator gives us an executable version of the VCG. Using the built in tools for proof
search, proof terms and proof checking we can simulate producer and client activities.
Before one embarks on a particular PCC implementation, one can build a prototype in
our framework and prove the soundness of the safety logic. On our web page [19] we
present more complex examples and instantiations of our framework. These include
programs with pointer arithmetic or recursive procedures and safety policies about
time and memory consumption of programs. Moreover we have instantiated a safety
logic based on first order arithmetic in form of a deep embedding [18]. There, for-
mulae are modelled as HOL datatype and can by analysed by other HOL functions.
This enables us to optimise verification conditions after/during their construction. By
now, we also have instantiated the PCC framework to a (downsized) version of the
Java Virtual Machine [17]. For this we did not have to change the framework, thus we
believe that our framework’s formalisation and its requirements are reasonable, even
for real life platforms.

Prototyping Proof Carrying Code 13

References
[1] Appel, A. W. (2001). Foundational proof-carrying code. In16th Annual IEEE Symposium

on Logic in Computer Science (LICS ’01), pages 247–258.

[2] Appel, A. W. and Felty, A. P. (2000). A semantic model of types and machine instructions
for proof-carrying code. In27th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’00), pages 243–253.

[3] Aspinall, D., Beringer, L., Hofmann, M., Loidl, H.W. (2003) A Resource-aware Program
Logic for a JVM-like Language In Trends in Functional Programming, editor: S. Gilmore,
Edinburgh

[4] Berghofer, S. and Nipkow, T. (2000). Proof terms for simply typed higher order logic. In
Theorem Proving in Higher Order Logics, Springer LNCS vol. 1869, editors: J. Harrison,
M. Aagaard

[5] Berghofer (2003). Program Extraction in simply-typed Higher Order Logic. InTypes for
Proofs and Programs, International Workshop, (TYPES 2002), Springer LNCS, editors: H.
Geuvers, F. Wiedijk

[6] Colby, C., Lee, P., Necula, G. C., Blau, F., Plesko, M., and Cline, K. (2000). A certifying
compiler for Java. InProc. ACM SIGPLAN conf. Programming Language Design and
Implementation, pages 95–107.

[7] Hamid, N., Shao, Z., Trifonov, V., Monnier, S., and Ni, Z. (2002). A syntactic approach to
foundational proof-carrying code. InProc. 17th IEEE Symp. Logic in Computer Science,
pages 89–100.

[8] Klein, G. (2003).Verified Java Bytecode Verification. PhD thesis, Institut für Informatik,
Technische Universität München.

[9] League, C., Shao, Z., and Trifonov, V. (2002). Precision in practice: A type-preserving
Java compiler. Technical Report YALEU/DCS/TR-1223, Department of Computer Sci-
ence, Yale University.

[10] Morrisett, G., Walker, D., Crary, K., and Glew, N. (1998). From system F to typed as-
sembly language. InProc. 25th ACM Symp. Principles of Programming Languages, pages
85–97. ACM Press.

[11] Necula, G. C. (1997). Proof-carrying code. InProc. 24th ACM Symp. Principles of Pro-
gramming Languages, pages 106–119. ACM Press.

[12] Necula, G. C. (1998).Compiling with Proofs. PhD thesis, Carnegie Mellon University.

[13] Necula, G. C. and Lee, P. (2000). Proof generation in the touchstone theorem prover. In
McAllester, D., editor,Automated Deduction — CADE-17, volume 1831 ofLect. Notes in
Comp. Sci., pages 25–44. Springer-Verlag.

[14] Necula, G. C. and Schneck, R. R. (2002). A gradual approach to a more trustworthy, yet
scalable, proof-carrying code. In Voronkov, A., editor,Proc.CADE-18, 18th International
Conference on Automated Deduction, Copenhagen, Denmark, volume 2392 ofLect. Notes
in Comp. Sci., pages 47–62. Springer-Verlag.

[15] Necula, G. C. and Schneck, R. R. (2003). A sound framework for untrustred verification-
condition generators. InProc. IEEE Symposium on Logic in Computer Science (LICS03),
pages 248–260.

[16] Nipkow, T., Paulson, L. C., and Wenzel, M. (2002).Isabelle/HOL – A Proof Assistant for
Higher-Order Logic, volume 2283 ofLect. Notes in Comp. Sci.Springer.

[17] Klein, G. and Nipkow, T. (2004) A Machine-Checked Model for a Java-Like Language,
Virtual Machine and CompilerTechnical Report, National ICT Australia, Sydney

[18] Wildmoser, M. and Nipkow, T. (2004) Certifying machine code safety: shallow versus
deep embedding.TPHOLs 2004

[19] VeryPCC website in Munich (2004),http://isabelle.in.tum.de/verypcc/.

http://isabelle.in.tum.de/verypcc/

14

Appendix: Requirements

Our PCC framework makes some assumptions on the functions it takes as parameters
(cf. p.4). Based on these assumptions we prove the generic VCG correct. It is the task
of the framework instantiator to make sure that the implementations of the parameter
functions satisfy the requirements listed below. We have proven in Isabelle that these
requirements hold for our instantiation to SAL. Hence, we have a PCC system for SAL
with a mechanically verified trusted code base. Note that none of the requirements in-
volves the safety policysafeF. Hence it is very easy to instantiate our framework to
different safety policies.

AssumptioncorrectWpFensures thatwpF computes proper preconditions. That is for
every state(p,m) having a successor state(p′,m′), we require thatQ holds for(p′,m′)
wheneverwpF Π p p′Q holds for(p,m). We require this property only for wellformed
programsΠ and for states inisafe� Π , a set of states we introduce in §3.4.

assumptioncorrectWpF:
wf Π ∧ (p,m) ∈ isafe� Π ∧ ((p,m),(p′,m′))∈(effSΠ) ∧
Π,(p,m) |= (wpF Π p p′Q) −→ Π,(p′,m′) |= Q

Although the setisafe� Π seems to complicate matters at a first sight, it simplifies
the instantiator’s job of proving the requirements. Only initial states and safe states
originating from a safe execution must be considered. We can conclude information
about these states from inductive safety formulae of previous states.

AssumptioncorrectIpcdemands thatipc andinitF fit together:

assumptioncorrectIpc: Π,(p,m) |= initF Π −→ p = ipc Π

In succsF−completewe assume thatsuccsFcovers all transitions ofeffSand yields
branch conditions that hold whenever a particular transition is accessible. Again, this
is only required for wellformed programs and states inisafe� Π.

assumptionsuccsF-complete:
wf Π ∧ (p,m) ∈ isafe� Π ∧ ((p,m),(p′,m′)) ∈ effSΠ
−→ (∃ B. (p′,B) ∈ set(succsFΠ p) ∧ Π,(p,m) |= B)

In correctSafetyLogicthe safety logic’s provability judgement is constrained such that
provable formulae are guaranteed to hold for states inisafe�.

assumptioncorrectSafetyLogic:
Π ` f ∧ (p,m) ∈ isafe� Π −→ Π,(p,m) |= f

Based on these assumptions we can prove that our VCG is sound. A provable verifi-
cation condition gurantess safety of a program at runtime.

theoremvcg-soundness:
[[wf Π; Π ` vcgΠ]] =⇒ isSafeΠ

To prove this theorem we have to show that all states that are reachable ineffSΠ
from an initial state are safe. This follows from lemmavc-isafeP, which says that in
a wellformed programΠ with provable verification condition all states(p,m) that are
reachable from an initial state(p0,m0) are inisafe� Π. From the definition ofisafe�

Prototyping Proof Carrying Code 15

Π we know that(p,m) is inductively safe or an initial state. In the first case we know
that (p,m) is safe, because the safety formulasafeF is part of every inductive safety
formula. In the second case the verification condition guarantees that all initial states
are inductively safe.

lemmavc-isafeP:
wf Π ∧ Π ` vcgΠ ∧ Π,(p0,m0) |= initF Π −→
∀ p m. ((p0,m0),(p,m)) ∈ (effSΠ) ^ n−→ (p,m) ∈ (isafe� Π)

To provevc-isafePwe induct onn. After a few cosmetic simplifications we obtain the
following two proof obligations:

(1) wf Π ∧ Π ` vcgΠ ∧ Π,(p0, m0) |= initF Π
−→ ((p0, m0), pc, m) ∈ effSΠ ^ 0−→ (pc, m) ∈ isafe� Π

(2) wf Π ∧ Π ` vcgΠ ∧ Π,(p0, m0) |= initF Π ∧
(∀pc m. ((p0, m0), pc, m) ∈ effSΠ ^ n−→ (pc, m) ∈ isafe� Π)
−→ ((p0, m0), pc, m) ∈ effSΠ ^ (n+1) −→ (pc, m) ∈ isafe� Π

In the first obligation the state(p,m) is equal to(p0,m0) and we get(p,m) ∈ (isafe�
Π) by applying the first introduction rule ofisafe�. In the second obligation, we
conclude that(p,m) has a predecessor(pi,mi) that is reachable from(p0,m0) in n steps.
This allows us to apply our induction hypotheses and we obtain(pi,mi) ∈ (isafe� Π).
From the introduction rules ofisafe� we know that(pi,mi) is either an initial state or
reachable from an initial state by only traversing inductively safe states. In both cases
(pi,mi) is inductively safe, i.e.Π,(pi,mi) |= isafeFΠ pi. If (pi,mi) is an initial state we
get this from the verification condition, otherwise we get it directly from the premise
of the second introduction rule ofisafe�.
We can assume thatpi is in the code domaindomCΠ. OtherwiseisafeFΠ pi would
collapses toxFalsey and could not hold because ofsemFalseF. If pi is not annotated
the goalisafeFΠ p follows directly from the design ofisafeF. Otherwise, if there is
an annotation atpi, we know that the verification condition contains a conjunct of the
form

x

∧
y

[isafeF Π pi,B] x=⇒y wpF Π pi p (isafeF Π p), where(p,B) ∈ succsFΠ
pi. To establish(p,B) ∈ (succsFΠ p) we can use the assumptionsuccsF-complete.
Since we have all conditions on the left hand side of this implication, we can conclude
Π,(pi,mi) |= wpF Π pi p (isafeFΠ p) by semImpl. ThencorrectWpFensures that our
goalΠ,(p,m) |= (p,m) holds. Q.E.D.

