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Abstract properties such as guaranteed termination of system calls,
and the kernel never throwing an internal exception.
In the paper we examine one of the issues in designingSuccessful OS kernels have generally been the result of
specifying, implementing and formally verifying a smaltareful attention to performance issues, and repeatedly it
operating system kernel — how to provide a productiegating bottom-up implementations of low-level function-
and iterative development methodology for both operatiadity, in some cases changing high-level interfaces and
system developers and formal methods practitioners. functionality to accommodate implementation constraints
We espouse the use of functional programming laand performance goals. This is, unfortunately, in conflict
guages as a medium for prototyping that is readilith formal methods, which typically work by top-down
amenable to formalisation with a low barrier to entry faiefining models of system properties, and rarely deal with
kernel developers, and report early experience in the plaw-level implementation features.
cess of designing and building seL4: a new, practical, andThis paper describes our approach to resolving this ten-
formally verified microkernel. sion, and reports on our experience so far in applying it to
seL4. We use a high-level language (Literate Haskell) to
simultaneously develop a specification of the kernel and a
1 Introduction reference implementation for evaluation and testing. The
implementation can be used in conjunction with a sim-

We describe our approach to constructing seL4 — a usefitor such as QEMU for running real application bina-
yet formally verified operating system kernel, by means 8€s, while the specification generates input to an interac-
a novel development process which aims to reconcile e theorem prover (Isabelle) for formal proof of proper-
conflicting methodologies of kernel developers and fdies. The use of a clean, high-level language allows rapid
mal methods practitioners. iterative prototyping of both the specification and refer-

Despite vigorous debate on the topic of microkerne#§1ce implementation. Finally, a deployable kernel is con-
versus virtual machine monitors [5, 6, 12], there is Siructed as a refinement of the reference implementation
emerging consensus on smaller and more trustworthy K&r& hlgh-performance Iow-level language.
nels (whether hypervisors or microkernels) at the core of The rest of this paper is structured as follows. In the
|a|’ge|’ software Systems_ We have argued that the snﬁ@}(t section we look in more detail at the issues in achiev-
size of current kernels, and the increased power of inté’rg a verified kern(_al, based in part on our_experience try-
active theorem proving environments, means that the ti#fi§ to formally verify L4. Section 3 describes our prag-
is right to attempt formal verification by proof of a realmatic approach to tackling the issues identified, and Sec-
world microkernel [14]. tion 4 reports on our experience so far with seL4. Sec-

The end goal of such a project is to show that a workikign 5 concludes.
kernel implementation behaves as it is formally specified
in an abstract model. Additionally, we would like prop-

erties such as spatial partitioning of processes to holdan Background and Issues

both the model and implementation, together with useful

There are many challenges in designing, specifying, im-
*Also at the University of New South Wales plementing, and formally verifying a high-performance
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and verifying properties of a system. system.

Kernel developers tend to adopt a bottom-up approachA final, and rarely acknowledged drawback with a
Required functionality is provided by iteratively developbottom-up approach to verified kernel development is that
ing a high-performance low-level implementation, and ihany low-level details such as hardware interfacing must
is not unusual to modify the delivered functionality or itbe implemented before any experience can be gained with
interface to facilitate efficient implementation. the new design. The approach in section 3 allows a new

In contrast, formal methods practitioners take a togesign to be tried with real applications at an early stage.
down approach, iteratively developing potential modelsin contrast, using formal specification at an abstract
of the system to possess the properties required, with degel to specify the design avoids ambiguity, but may not
ondary regard (if any) to low-level implementation detailexpose issues affecting performance and ease of imple-

This characterization simplifies a rather complex probientation of the design until a much later stage. This
lem, butit illustrates the need for a methodology that hassaa particular problem for systems software, which is
low barrier to entry for both teams, facilitates both workperformance-critical and must operate in a relatively con-
ing together, and enables both to efficiently iterate thhougtrained environment. To a formal model, it makes little
the design, specification, implementation, and verificatidifference if a data type is implementable in four or five
of the system. bytes, but to a kernel developer this can be critical to per-

Creating an assured and useful general-purpose OS ketmance of an important code path in the system.
nel has been a goal for some time [1, 16]. Recently, aAlso, it is difficult to evaluate the usability of a micro-
number of approaches have been adopted. kernel interface for building complete systems based on

A strawman approach is to create a natural-languafat interface, until such a system has actually been built.
specification and then iterate through the design of theFinally, the tools and techniques used for developing
system. Such a specification is easily written and read, botmal specifications are quite different to those typigall
is prone to ambiguity and incompleteness. It often fails tsed for systems software, so there is a high cost of entry
expose design issues that may have a significant imp@aetmany kernel developers.
on performance, usability, and ease of implementation. Implementation in a high-level language with well-

The VFiasco project [7] aims to verify an existing kerdefined and safe semantics is a good compromise between
nel (L4/Fiasco) directly by developing a formal semanti¢he previous two approaches. For example, the Osker ker-
for the subset of C++ used to build it, in particular witimel [4] is written in Haskell. The resulting implementation
a novel treatment of memory access. However, a fornigieasier to reason about than one in a low-level language
semantics for a sufficiently rich subset of C++ is a lardrit is typically limited by a high-level language’s depen-
task, and it is unclear how much progress has been mddacy on a complex runtime ill-suited to use in a stand-
since the project’s inception in 2001. alone kernel. This may impose restrictions on the system

The Coyotos team [13] take the different approach tfat are not present when using low-level languages, such
defining a new low-level implementation language (BitG)s a need for garbage collection of kernel memory.
with precise formal semantics, and hope to subsequentlyn summary, there is a need for a development method-
verify properties of the kernel they are building. ology that enables kernel developers to rapidly iterate

Although with less emphasis on high-level verificatiorthrough prototype kernels with sufficient access to low-
the Singularity project also uses a type-safe imperatievel details to explore performance aspects of the design,
language (C#), but with additional compiler extensions wehile providing formal verification teams with the pre-
allow programmers and system architects to specify losise semantics of the system in a form suitable as input to
level checkable properties of the code, for example IRGheorem proving environment.
contracts [3]. We now describe our approach, which has produced a

All these approaches iteratively develop a kernel in @necisely specified kernel API, together with a usable ref-
imperative systems programming language (with varyiegence implementation, and a formal model for the imple-
degrees of safety), and then attempt to reason at a sen@ntation in the Isabelle theorem prover.
level about the system as a whole. The challenge here
is that it may be extremely difficult to extract an abstract
model from the finished artifact, as the expected behav@dr  Our Approach
is not made clear by the low-level code (especially since
this code may contain bugs). In this section we describe the pragmatic approach we

Furthermore, since it must be extracted from the implaok to address the issues we identified earlier and unify
mentation, such an abstract model cannot be used duiding team of formal verification experts with our team of
the design process and is unlikely to be useful as a redrnel developers. Referring to Figure 1, our approach
able specification for developing a formal model of theevolves around “running the manual™: We use Literate



Haskell to develop both a specification document of timative code just as on real hardware. We currently can
kernel, and at the same time, a reference implementatiiofk our kernel model with the M5 Alpha simulator [8], a
that can be used for evaluation and testing. The Haskalime-grown ARM simulator, and the QEMU ARM sim-
specification serves as the medium for iterative prototyylator complete with emulated devices. In each case, the
ing of the implementation as well as the system modetrnel model processes the incoming event stream, return-
for both the kernel and formal modelling teams, i.e. theg the results such that it appears to application code that
Haskell specification forms a bridge between the teaiitss running on raw hardware. Thus we have an environ-
improving the flow of ideas, with a low barrier of entryment that allows kernel developers to explore design and
for both. In addition, the reference implementation, whémplementation of both the kernel itself and the applica-
coupled with a simulator, can be used to run native bintgens intended to be supported.

ries.

e 3.2 Formal Modelling
One of the tasks of the formal verification team is to ex-
1sabelle/ tract a formal model of the prototype in order to reason
HOL rarex ene about it in the theorem proving environment.
l l l User-evel Given the precise semantics of the Haskell language,
Simulator and the lack of side-effects of functional languagesin gen-
i;;;:g - pfof:;;;e <> eral, it is a much simpler task to extract a formal model
L:\Zf; of the kernel compared to typical low-level systems lan-
2 guages likeC.
The translation from Haskell to a model in the theorem
ece prover Isabelle/HOL [11] is mostly syntactic and can be

automated. The exceptions worth noting are lazy evalua-
Figure 1: Graphical representation of our approach usitig) and monadic computations (an example being com-
Literate Haskell (.Ihs) as a basis for specification, impleutation that modifies global state). While Isabelle/HOL
mentation, and formalisation is not suitable for expressing the semantics of lazy evalu-
ation as provided by Haskell, our goal is not to translate
faithfully every language construct in Haskell to Isabelle
Instead, we only seek an accurate representation of the se-
mantics of each function that occurs in the prototype, and
From the kernel development perspective, various desidigs we can avoid the issue by not making essential use
and their implementation can be explored at a high levalaziness in our Haskell specification. The type system
without the initial need to deal with the complexity opfIsabelle/HOL is also not strong enough to express mon-
low-level hardware. However, given thtite specifica- ads in the traditional abstract way, but it can expressall th
tion is an implementatiagrkernel developers are forced t@articular concrete monads that are used in the prototype.
think about implementation details that would be necédsor more detailed coverage of the issues we encountered
sary for efficient implementation on real hardware. Whila the translation process, see [2].
the Haskell implementation is not suitable for quantifying Since Isabelle/HOL is a logic of total functions, we had
the kernel's performance, it does provide valuable insigho prove during the translation that all functions terménat
into the approximate performance of data structures ahige translation of our Haskell kernel model into Isabelle
algorithms. thus already establishes one useful property of the kernel

To explore the utility of the design from a user-level— system calls always terminate.

perspective, we have several approaches. From the keth our ongoing work on formally verifying the kernel
nel perspective, the hardware is an event generator (ive are currently showing that the Isabelle/HOL transla-
terrupts, exceptions, system calls). The Haskell protien of the Haskell prototype conforms to a simplified,
type is set up as the recipient of an event stream, upoore abstract formal model of the kernel. This model
which it can process the events and return the resultssasised to facilitate proofs of more complex safety and
if it were a real kernel. Early, simplistic, versions of théwvariant properties of the kernel without going into im-
kernel used a simple event generator function which topkementation detail.
embedded pseudo-assembly to exercise the kernel moderhe process of formal refinement already requires us
For more mature versions of the design, we coupled ttteshow certain invariants of the kernel. The main part
kernel model with a simulator for the unprivileged pauf these invariants resemble a strong typing system: ca-
of a real processor’s ISA. This enables running compilgabilities always point to kernel objects of the right type

3.1 Kernel Development



(i.e. a thread capability always points to a valid TCB), ca- Design & Specify

pability tables are always of the correct size, references in Haskell >  FomalModl

in kernel objects point to valid other kernel objects of the o

right type, etc. Note that the usual programming-language ——— inement 1

type systems are not strong enough to ensure these prop- Real Execution

erties statically, even Haskell's very strong type system i

insufficient. l safey Theorem
Isabelle is an interactive theorem prover. This means

that proof scripts are written manually with considerable o

creative input. The tool mechanically checks the proofs

and assists in finding them by dealing with symbolic cal-
culations, automatated proof tactics for certain clas$esrigure 2: Overall approach to eventual verification of a
formulae etc, but it is not fully automatic. high performance kernel.

The abstract specification is ca. 3.5k lines of Isabelle
code, the translated Haskell prototype comes to about 7k , )
lines of Isabelle code (this number is somewhat inflatddf formal model. Details on our method for reasoning
due to the automated translation process), and the prgBftractly about low-leveC code can be found in [15].
scripts to date to about 48k lines. The verification proce5gether with the proof described here, this automatically

so far lead to 109 changes in the abstract specification S¢fS US a proof that the abstract invariants also hold for
37 changes in the Haskell code. This supports the cdhe C implementation, and that the production kernel for-

clusion that executing the specification finds many smgj@!ly implements the abstract seL4 API as described pre-
problems with relatively little effort early in the process Viously [14]. As in the first verification step, we expect.
Examples of the bugs we found range from CLt]l’lns_second refln_ement to lead to a number of changes in
& paste errors (e.g. using the wrong function on thtge|mplementat|on—b_e theyforperformanceorcorr_ect-
AsyncEndpoi nt data type where the line directlyness reasons. For the flngl theorem lto hold, these will be
above has the same pattern Esrdpoi nt ), over forgot- propagat(_ad back to tht_a h|ghe_r specifation levels and t.he
ten cases, to more conceptual issues like a complex, re@iPCfs adjusted accordingly. Since the proofs are machine
sive delete function that was misbehaving in the case $fEcked. we still get guaranteed consistency between all
circular pointer structures, or simply functions that wer@Y®s: _ _
less general than believed and required more checks ofl? Principle, for the production kernel and its fo_rmal
user-supplied parameters (e.g. a capability move functipof. the Haskell prototype could be thrown away; in the

that took the same arguments as the corresponding c§ gectness sense it is redundant. For investigating new
Jeat

function, but would lead to security violations in some dfatures and further developing the API, we expect it to
the cases that worked for copy). be still useful, though, even when the production kernel

The next step in the verification will be connecting thi§XiStS‘ In any case, the H‘ﬁSkel(ljkem?I has already had an
prototype with a high performand® implementation of Immense Impact on overall productivity.
the seL4 API. Tuch et al [15] have demonstrated the tech-

nology for this step and have shown its feasibility for IOW4 Experience
level C code in a case study on the L4 kernel memory

allocator. Despite the inevitable culture clash, experience with de-
veloping an OS kernel in this way has so far been positive.
3.3 Overall We describe our key learnings to date below.

It should be clear that our approach makes some progrgsg
towards resolving the issues we have identified, but what
might not be clear is how our approach relates to oBor us the most positive outcome of developing a kernel in
original goal of producing a formally verified, high-a functional language has been having a medium in com-
performance microkernel — i.e. a kernel implemented mon for both kernel developers and formal modellers to
a more traditional systems language sucas cooperatively and iteratively develop a formally verified
Figure 2 illustrates the end game. We are using the ntkesign and implementation of a small kernel.
ture Haskell specification as a basis for both a formal ab-The translation to Isabelle/HOL started relatively early,
stract model of the system, and a high-performa@ae- when the seL4 API was nearing a first stable point and
plementation. To achieve our original goal, we expect finst user-level binaries could be run through the machine
then show that th€ implementation is a refinement ofsimulator. The formal verification team, in translating the

Parallel Development



Haskell specification, found and fixed a number of probardware helped in maturing the design of a new system.
lems. An illustrative example is an obscure corner castgther than spend time debugging low-level code from
where the execution time of the IPC send operation wiie beginning of prototyping, we could initially focus on
unbounded. This was discovered when Isabelle demandedign and implementation issues of the basic concepts
termination proofs for operations that were supposedliehind the system. As the design evolves, we are bring-
execute in constant time. ing in hardware-related issues (such as dealing with pages

This shows that formalisation and the use of theoreable or TLBs) when we choose to tackle each particular
proving tools is beneficial even if full verification is nospect of the design.
yet performed. Thus far, the cost involved in formalisation However, we could still gain experience in using the
has been significantly less than the design, implememaw design as soon as it was mature enough to be cou-
tion, and testing input by the kernel team, while the kerngled with various user-level simulators. We have ported
team did not have to switch to completely new methodsitne Iguana OS (an embedded OS personality for the L4
notations. Additionally, the common medium has enabledicrokernel [10]) to our design and could understand the
the formal modellers to have input on the structure of theteraction between Iguana and our new design prior to
reference implementation in order to reduce the compleay prototype existing on bare metal.
ity of formalisation, with minimal effect on the kernel be-
haviour and performance.

The user-level simulation environment has enabled the
porting of existing software to the new kernel design pri
to its existence on bare metal. The experience gained
actual use of the new design has also led to the identi]
cation of issues requiring attention. For example, wh
attempting to implement a higher-level system upon t
microkernel, we found that an atomic swap operation

a particular kernel object greatly simplified the impleme duci del that be t lated aut ticall
tation of higher-level system software. The missing op roducing a model that can be transiated automatically

ation was added in a matter of hours, and formalised sdgﬁo the _theorem prover, and that is sm.table for proving
system invariants as well as formal refinement. Specif-
afterwards. ) : . : . .

L ically it provided the bridge that makes it feasible, even
Summarising, we have found our methodology has eni-
asy, for kernel developers and formal methods people to

abled the kernel developers, the formal modellers, and o . . )
ollaborate on the specification, design, implementation

higher-level system programmers to work more closel formal verification of the kernel
together, leading to faster and better results than we wom ) ‘
verall, this has allowed us to take a new approach to-

expectif the phases had been sequential wards building an OS kernel that can be proven to operate
_ o correctly. Almost forty years ago, Needham and Hartley
4.2 Precise Specification remarked [9]:

Conclusions

e found that using a very high-level language as a
_gdium for concurrently prototyping the specification
d design of a high-performance microkernel not only
I%ovided a convenient and highly productive fast proto-
ing environment. More importantly, it allowed us to
Q_Lef)sign a high-performance kernel for formal verification

Our choice of Literate Haskell as our modelling language In designing an operating system one needs
has enabled us to produce a reference manual and imple- Poth theoretical insight and horse sense. With-
mentation that is one and the same thing, providing rare out the former, one designs an ad hoc mess;
but highly-welcome assurance that our reference manual Without the latter one designs an elephant in
and reference implementation are consistent. Our catch best Carrara marble (white, perfect, and immo-
phrase is “we run the manual”. While our hope is to pro- bile).

duce a readily understandable reference manual desojg- believe that we have developed an approach to OS

ing each operation with the reference Haskell implemegiesign that results in a highly productive synthesis of the-
tation as the definitive definition of each operation, strugretical insight and horse sense.
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(that would obscure the relevant details of the specific&- f
tion) has proved challenging. However, the document'i ererences

improving with each iteration. [1] William R. Bevier. Kit: A study in operating system vegition.
IEEE Transactions on Software Engineer;irip(11):1382—-1396,
) 1989.
4.3 Hardware and PrOtOtyplng [2] Philip Derrin, Kevin Elphinstone, Gerwin Klein, Davidd€k, and

. . . . . Manuel M. T. Chakravarty. Running the manual: An approach
We found that iteratively prototypl_ng the systeminahigh- high-assurance microkernel development. ABGM SIGPLAN
level language away from the pitfalls and traps of real Haskell WSPortland, OR, USA, Sep 2006.



(3]

(4]

(5]

(6]

(7]

(8]

El

[20]

[11]

[12]

(23]
[14]

[15]

[16]

Manuel Fahndrich, Mark Aiken, Chris Hawblitzel, Ori¢todson,
Galen C. Hunt, James R. Larus, and Steven Levi. Language sup-
port for fast and reliable message-based communicatiomgus
larity OS. InProc. of EuroSys20Q@\pril 2006.

Thomas Hallgren, Mark P. Jones, Rebekah Leslie, and éwdr
Tolmach. A principled approach to operating system conton

in Haskell. InProc. 10th ACM Int. Conf. on Functional Program-
ming 2005.

Steven Hand, Andrew Warfield, Keir Fraser, Evangelostsai-
nos, and Dan Magenheimer. Are virtual machine monitorsanicr
kernels done right? 180th HotOS Sante Fe, NM, USA, Jun 2005.
USENIX.

Gernot Heiser, Volkmar Uhlig, and Joshua LeVasseur. \Arteial-
machine monitors microkernels done right®perat. Syst. Rev.
40(1):95-99, Jan 2006.

Michael Hohmuth and Hendrik Tews. The VFiasco approamh f
a verified operating system. Rroc. 2nd ECOOP Workshop on
Programm Languages and Operating Syste@lasgow, UK, Oct
2005.

The M5 simulator systemht t p: / / nb. eecs. uni ch. edu/,
2006.

R. M. Needham and D. F. Hartley. Theory and practice irrajieg
system design. 18nd SOSP1969.

Iguana. http://ww. ertos. ni cta.com au/i guana/,
2007.

Tobias Nipkow, Lawrence Paulson, and Markus Wenzdk-
abelle/HOL — A Proof Assistant for Higher-Order Logiolume
2283 of Lecture Notes in Computer ScienceSpringer Verlag,
2002.

Timothy Roscoe, Kevin Elphinstone, and Gernot Heiblgpe and
virtue. In11th HotOS$ San Diego, CA, USA, May 2007.

Jonathan Shapiro. Coyotosww. coyot 0s. or g, 2006.

Harvey Tuch, Gerwin Klein, and Gernot Heiser. OS vesificn
— now! In 10th HotOS pages 7-12, Santa Fe, NM, USA, Jun
2005. USENIX.

Harvey Tuch, Gerwin Klein, and Michael Norrish. Typéstes,
and separation logic. In Martin Hofmann and Matthias Fedlai
editors,34th POPL pages 97-108, Nice, France, Jan 2007.

Bruce Walker, Richard Kemmerer, and Gerald Popek. @pac
tion and verification of the UCLA Unix security kernelCACM,
23(2):118-131, 1980.



