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Abstract

In the paper we examine one of the issues in designing,
specifying, implementing and formally verifying a small
operating system kernel — how to provide a productive
and iterative development methodology for both operating
system developers and formal methods practitioners.

We espouse the use of functional programming lan-
guages as a medium for prototyping that is readily
amenable to formalisation with a low barrier to entry for
kernel developers, and report early experience in the pro-
cess of designing and building seL4: a new, practical, and
formally verified microkernel.

1 Introduction

We describe our approach to constructing seL4 — a useful
yet formally verified operating system kernel, by means of
a novel development process which aims to reconcile the
conflicting methodologies of kernel developers and for-
mal methods practitioners.

Despite vigorous debate on the topic of microkernels
versus virtual machine monitors [5, 6, 12], there is an
emerging consensus on smaller and more trustworthy ker-
nels (whether hypervisors or microkernels) at the core of
larger software systems. We have argued that the small
size of current kernels, and the increased power of inter-
active theorem proving environments, means that the time
is right to attempt formal verification by proof of a real-
world microkernel [14].

The end goal of such a project is to show that a working
kernel implementation behaves as it is formally specified
in an abstract model. Additionally, we would like prop-
erties such as spatial partitioning of processes to hold in
both the model and implementation, together with useful
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properties such as guaranteed termination of system calls,
and the kernel never throwing an internal exception.

Successful OS kernels have generally been the result of
careful attention to performance issues, and repeatedly it-
erating bottom-up implementations of low-level function-
ality, in some cases changing high-level interfaces and
functionality to accommodate implementation constraints
and performance goals. This is, unfortunately, in conflict
with formal methods, which typically work by top-down
refining models of system properties, and rarely deal with
low-level implementation features.

This paper describes our approach to resolving this ten-
sion, and reports on our experience so far in applying it to
seL4. We use a high-level language (Literate Haskell) to
simultaneously develop a specification of the kernel and a
reference implementation for evaluation and testing. The
implementation can be used in conjunction with a sim-
ulator such as QEMU for running real application bina-
ries, while the specification generates input to an interac-
tive theorem prover (Isabelle) for formal proof of proper-
ties. The use of a clean, high-level language allows rapid
iterative prototyping of both the specification and refer-
ence implementation. Finally, a deployable kernel is con-
structed as a refinement of the reference implementation
in a high-performance low-level language.

The rest of this paper is structured as follows. In the
next section we look in more detail at the issues in achiev-
ing a verified kernel, based in part on our experience try-
ing to formally verify L4. Section 3 describes our prag-
matic approach to tackling the issues identified, and Sec-
tion 4 reports on our experience so far with seL4. Sec-
tion 5 concludes.

2 Background and Issues

There are many challenges in designing, specifying, im-
plementing, and formally verifying a high-performance
microkernel. In our view, the most significant of these
(and our focus in this paper) is reconciling the approach
taken by kernel developers when system building with
that taken by formal methods practitioners in developing



and verifying properties of a system.
Kernel developers tend to adopt a bottom-up approach.

Required functionality is provided by iteratively develop-
ing a high-performance low-level implementation, and it
is not unusual to modify the delivered functionality or its
interface to facilitate efficient implementation.

In contrast, formal methods practitioners take a top-
down approach, iteratively developing potential models
of the system to possess the properties required, with sec-
ondary regard (if any) to low-level implementation details.

This characterization simplifies a rather complex prob-
lem, but it illustrates the need for a methodology that has a
low barrier to entry for both teams, facilitates both work-
ing together, and enables both to efficiently iterate through
the design, specification, implementation, and verification
of the system.

Creating an assured and useful general-purpose OS ker-
nel has been a goal for some time [1, 16]. Recently, a
number of approaches have been adopted.

A strawman approach is to create a natural-language
specification and then iterate through the design of the
system. Such a specification is easily written and read, but
is prone to ambiguity and incompleteness. It often fails to
expose design issues that may have a significant impact
on performance, usability, and ease of implementation.

The VFiasco project [7] aims to verify an existing ker-
nel (L4/Fiasco) directly by developing a formal semantics
for the subset of C++ used to build it, in particular with
a novel treatment of memory access. However, a formal
semantics for a sufficiently rich subset of C++ is a large
task, and it is unclear how much progress has been made
since the project’s inception in 2001.

The Coyotos team [13] take the different approach of
defining a new low-level implementation language (BitC)
with precise formal semantics, and hope to subsequently
verify properties of the kernel they are building.

Although with less emphasis on high-level verification,
the Singularity project also uses a type-safe imperative
language (C#), but with additional compiler extensions to
allow programmers and system architects to specify low-
level checkable properties of the code, for example IPC
contracts [3].

All these approaches iteratively develop a kernel in an
imperative systems programming language (with varying
degrees of safety), and then attempt to reason at a some
level about the system as a whole. The challenge here
is that it may be extremely difficult to extract an abstract
model from the finished artifact, as the expected behavior
is not made clear by the low-level code (especially since
this code may contain bugs).

Furthermore, since it must be extracted from the imple-
mentation, such an abstract model cannot be used during
the design process and is unlikely to be useful as a read-
able specification for developing a formal model of the

system.
A final, and rarely acknowledged drawback with a

bottom-up approach to verified kernel development is that
many low-level details such as hardware interfacing must
be implemented before any experience can be gained with
the new design. The approach in section 3 allows a new
design to be tried with real applications at an early stage.

In contrast, using formal specification at an abstract
level to specify the design avoids ambiguity, but may not
expose issues affecting performance and ease of imple-
mentation of the design until a much later stage. This
is a particular problem for systems software, which is
performance-critical and must operate in a relatively con-
strained environment. To a formal model, it makes little
difference if a data type is implementable in four or five
bytes, but to a kernel developer this can be critical to per-
formance of an important code path in the system.

Also, it is difficult to evaluate the usability of a micro-
kernel interface for building complete systems based on
that interface, until such a system has actually been built.

Finally, the tools and techniques used for developing
formal specifications are quite different to those typically
used for systems software, so there is a high cost of entry
for many kernel developers.

Implementation in a high-level language with well-
defined and safe semantics is a good compromise between
the previous two approaches. For example, the Osker ker-
nel [4] is written in Haskell. The resulting implementation
is easier to reason about than one in a low-level language
but is typically limited by a high-level language’s depen-
dency on a complex runtime ill-suited to use in a stand-
alone kernel. This may impose restrictions on the system
that are not present when using low-level languages, such
as a need for garbage collection of kernel memory.

In summary, there is a need for a development method-
ology that enables kernel developers to rapidly iterate
through prototype kernels with sufficient access to low-
level details to explore performance aspects of the design,
while providing formal verification teams with the pre-
cise semantics of the system in a form suitable as input to
a theorem proving environment.

We now describe our approach, which has produced a
precisely specified kernel API, together with a usable ref-
erence implementation, and a formal model for the imple-
mentation in the Isabelle theorem prover.

3 Our Approach

In this section we describe the pragmatic approach we
took to address the issues we identified earlier and unify
our team of formal verification experts with our team of
kernel developers. Referring to Figure 1, our approach
revolves around “running the manual”: We use Literate



Haskell to develop both a specification document of the
kernel, and at the same time, a reference implementation
that can be used for evaluation and testing. The Haskell
specification serves as the medium for iterative prototyp-
ing of the implementation as well as the system model
for both the kernel and formal modelling teams, i.e. the
Haskell specification forms a bridge between the teams
improving the flow of ideas, with a low barrier of entry
for both. In addition, the reference implementation, when
coupled with a simulator, can be used to run native bina-
ries.
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Figure 1: Graphical representation of our approach using
Literate Haskell (.lhs) as a basis for specification, imple-
mentation, and formalisation

3.1 Kernel Development

From the kernel development perspective, various designs
and their implementation can be explored at a high level
without the initial need to deal with the complexity of
low-level hardware. However, given thatthe specifica-
tion is an implementation, kernel developers are forced to
think about implementation details that would be neces-
sary for efficient implementation on real hardware. While
the Haskell implementation is not suitable for quantifying
the kernel’s performance, it does provide valuable insights
into the approximate performance of data structures and
algorithms.

To explore the utility of the design from a user-level
perspective, we have several approaches. From the ker-
nel perspective, the hardware is an event generator (in-
terrupts, exceptions, system calls). The Haskell proto-
type is set up as the recipient of an event stream, upon
which it can process the events and return the results as
if it were a real kernel. Early, simplistic, versions of the
kernel used a simple event generator function which took
embedded pseudo-assembly to exercise the kernel model.
For more mature versions of the design, we coupled the
kernel model with a simulator for the unprivileged part
of a real processor’s ISA. This enables running compiled

native code just as on real hardware. We currently can
link our kernel model with the M5 Alpha simulator [8], a
home-grown ARM simulator, and the QEMU ARM sim-
ulator complete with emulated devices. In each case, the
kernel model processes the incoming event stream, return-
ing the results such that it appears to application code that
it is running on raw hardware. Thus we have an environ-
ment that allows kernel developers to explore design and
implementation of both the kernel itself and the applica-
tions intended to be supported.

3.2 Formal Modelling

One of the tasks of the formal verification team is to ex-
tract a formal model of the prototype in order to reason
about it in the theorem proving environment.

Given the precise semantics of the Haskell language,
and the lack of side-effects of functional languages in gen-
eral, it is a much simpler task to extract a formal model
of the kernel compared to typical low-level systems lan-
guages likeC.

The translation from Haskell to a model in the theorem
prover Isabelle/HOL [11] is mostly syntactic and can be
automated. The exceptions worth noting are lazy evalua-
tion and monadic computations (an example being com-
putation that modifies global state). While Isabelle/HOL
is not suitable for expressing the semantics of lazy evalu-
ation as provided by Haskell, our goal is not to translate
faithfully every language construct in Haskell to Isabelle.
Instead, we only seek an accurate representation of the se-
mantics of each function that occurs in the prototype, and
thus we can avoid the issue by not making essential use
of laziness in our Haskell specification. The type system
of Isabelle/HOL is also not strong enough to express mon-
ads in the traditional abstract way, but it can express all the
particular concrete monads that are used in the prototype.
For more detailed coverage of the issues we encountered
in the translation process, see [2].

Since Isabelle/HOL is a logic of total functions, we had
to prove during the translation that all functions terminate.
The translation of our Haskell kernel model into Isabelle
thus already establishes one useful property of the kernel
— system calls always terminate.

In our ongoing work on formally verifying the kernel
we are currently showing that the Isabelle/HOL transla-
tion of the Haskell prototype conforms to a simplified,
more abstract formal model of the kernel. This model
is used to facilitate proofs of more complex safety and
invariant properties of the kernel without going into im-
plementation detail.

The process of formal refinement already requires us
to show certain invariants of the kernel. The main part
of these invariants resemble a strong typing system: ca-
pabilities always point to kernel objects of the right type



(i.e. a thread capability always points to a valid TCB), ca-
pability tables are always of the correct size, references
in kernel objects point to valid other kernel objects of the
right type, etc. Note that the usual programming-language
type systems are not strong enough to ensure these prop-
erties statically, even Haskell’s very strong type system is
insufficient.

Isabelle is an interactive theorem prover. This means
that proof scripts are written manually with considerable
creative input. The tool mechanically checks the proofs
and assists in finding them by dealing with symbolic cal-
culations, automatated proof tactics for certain classes of
formulae etc, but it is not fully automatic.

The abstract specification is ca. 3.5k lines of Isabelle
code, the translated Haskell prototype comes to about 7k
lines of Isabelle code (this number is somewhat inflated
due to the automated translation process), and the proof
scripts to date to about 48k lines. The verification process
so far lead to 109 changes in the abstract specification and
37 changes in the Haskell code. This supports the con-
clusion that executing the specification finds many small
problems with relatively little effort early in the process.

Examples of the bugs we found range from cut
& paste errors (e.g. using the wrong function on the
AsyncEndpoint data type where the line directly
above has the same pattern forEndpoint), over forgot-
ten cases, to more conceptual issues like a complex, recur-
sive delete function that was misbehaving in the case of
circular pointer structures, or simply functions that were
less general than believed and required more checks on
user-supplied parameters (e.g. a capability move function
that took the same arguments as the corresponding copy
function, but would lead to security violations in some of
the cases that worked for copy).

The next step in the verification will be connecting this
prototype with a high performanceC implementation of
the seL4 API. Tuch et al [15] have demonstrated the tech-
nology for this step and have shown its feasibility for low-
level C code in a case study on the L4 kernel memory
allocator.

3.3 Overall

It should be clear that our approach makes some progress
towards resolving the issues we have identified, but what
might not be clear is how our approach relates to our
original goal of producing a formally verified, high-
performance microkernel — i.e. a kernel implemented in
a more traditional systems language such asC.

Figure 2 illustrates the end game. We are using the ma-
ture Haskell specification as a basis for both a formal ab-
stract model of the system, and a high-performanceC im-
plementation. To achieve our original goal, we expect to
then show that theC implementation is a refinement of
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Figure 2: Overall approach to eventual verification of a
high performance kernel.

the formal model. Details on our method for reasoning
abstractly about low-levelC code can be found in [15].
Together with the proof described here, this automatically
gives us a proof that the abstract invariants also hold for
theC implementation, and that the production kernel for-
mally implements the abstract seL4 API as described pre-
viously [14]. As in the first verification step, we expect
this second refinement to lead to a number of changes in
the implementation — be they for performance or correct-
ness reasons. For the final theorem to hold, these will be
propagated back to the higher specifation levels and the
proofs adjusted accordingly. Since the proofs are machine
checked, we still get guaranteed consistency between all
layers.

In principle, for the production kernel and its formal
proof, the Haskell prototype could be thrown away; in the
correctness sense it is redundant. For investigating new
features and further developing the API, we expect it to
be still useful, though, even when the production kernel
exists. In any case, the Haskell kernel has already had an
immense impact on overall productivity.

4 Experience

Despite the inevitable culture clash, experience with de-
veloping an OS kernel in this way has so far been positive.
We describe our key learnings to date below.

4.1 Parallel Development

For us the most positive outcome of developing a kernel in
a functional language has been having a medium in com-
mon for both kernel developers and formal modellers to
cooperatively and iteratively develop a formally verified
design and implementation of a small kernel.

The translation to Isabelle/HOL started relatively early,
when the seL4 API was nearing a first stable point and
first user-level binaries could be run through the machine
simulator. The formal verification team, in translating the



Haskell specification, found and fixed a number of prob-
lems. An illustrative example is an obscure corner case,
where the execution time of the IPC send operation was
unbounded. This was discovered when Isabelle demanded
termination proofs for operations that were supposed to
execute in constant time.

This shows that formalisation and the use of theorem
proving tools is beneficial even if full verification is not
yet performed. Thus far, the cost involved in formalisation
has been significantly less than the design, implementa-
tion, and testing input by the kernel team, while the kernel
team did not have to switch to completely new methods or
notations. Additionally, the common medium has enabled
the formal modellers to have input on the structure of the
reference implementation in order to reduce the complex-
ity of formalisation, with minimal effect on the kernel be-
haviour and performance.

The user-level simulation environment has enabled the
porting of existing software to the new kernel design prior
to its existence on bare metal. The experience gained by
actual use of the new design has also led to the identifi-
cation of issues requiring attention. For example, when
attempting to implement a higher-level system upon the
microkernel, we found that an atomic swap operation on
a particular kernel object greatly simplified the implemen-
tation of higher-level system software. The missing oper-
ation was added in a matter of hours, and formalised soon
afterwards.

Summarising, we have found our methodology has en-
abled the kernel developers, the formal modellers, and the
higher-level system programmers to work more closely
together, leading to faster and better results than we would
expect if the phases had been sequential.

4.2 Precise Specification

Our choice of Literate Haskell as our modelling language
has enabled us to produce a reference manual and imple-
mentation that is one and the same thing, providing rare
but highly-welcome assurance that our reference manual
and reference implementation are consistent. Our catch
phrase is “we run the manual”. While our hope is to pro-
duce a readily understandable reference manual describ-
ing each operation with the reference Haskell implemen-
tation as the definitive definition of each operation, struc-
turing our code to avoid too much implementation detail
(that would obscure the relevant details of the specifica-
tion) has proved challenging. However, the document is
improving with each iteration.

4.3 Hardware and Prototyping

We found that iteratively prototyping the system in a high-
level language away from the pitfalls and traps of real

hardware helped in maturing the design of a new system.
Rather than spend time debugging low-level code from
the beginning of prototyping, we could initially focus on
design and implementation issues of the basic concepts
behind the system. As the design evolves, we are bring-
ing in hardware-related issues (such as dealing with pages
table or TLBs) when we choose to tackle each particular
aspect of the design.

However, we could still gain experience in using the
new design as soon as it was mature enough to be cou-
pled with various user-level simulators. We have ported
the Iguana OS (an embedded OS personality for the L4
microkernel [10]) to our design and could understand the
interaction between Iguana and our new design prior to
any prototype existing on bare metal.

5 Conclusions

We found that using a very high-level language as a
medium for concurrently prototyping the specification
and design of a high-performance microkernel not only
provided a convenient and highly productive fast proto-
typing environment. More importantly, it allowed us to
design a high-performance kernel for formal verification,
producing a model that can be translated automatically
into the theorem prover, and that is suitable for proving
system invariants as well as formal refinement. Specif-
ically it provided the bridge that makes it feasible, even
easy, for kernel developers and formal methods people to
collaborate on the specification, design, implementation
and formal verification of the kernel.

Overall, this has allowed us to take a new approach to-
wards building an OS kernel that can be proven to operate
correctly. Almost forty years ago, Needham and Hartley
remarked [9]:

In designing an operating system one needs
both theoretical insight and horse sense. With-
out the former, one designs an ad hoc mess;
without the latter one designs an elephant in
best Carrara marble (white, perfect, and immo-
bile).

We believe that we have developed an approach to OS
design that results in a highly productive synthesis of the-
oretical insight and horse sense.
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