Up to index of Isabelle/HOL/Jinja
theory Progress = Equivalence + WellTypeRT + DefAss + Conform:(* Title: Jinja/J/SmallProgress.thy
ID: $Id: Progress.html 1910 2004-05-19 04:46:04Z kleing $
Author: Tobias Nipkow
Copyright 2003 Technische Universitaet Muenchen
*)
header {* \isaheader{Progress of Small Step Semantics} *}
theory Progress = Equivalence + WellTypeRT + DefAss + Conform:
lemma final_addrE:
"[| P,E,h \<turnstile> e : Class C; final e;
!!a. e = addr a ==> R;
!!a. e = Throw a ==> R |] ==> R"
(*<*)by(auto simp:final_def)(*>*)
lemma finalRefE:
"[| P,E,h \<turnstile> e : T; is_refT T; final e;
e = null ==> R;
!!a C. [| e = addr a; T = Class C |] ==> R;
!!a. e = Throw a ==> R |] ==> R"
(*<*)by(auto simp:final_def is_refT_def)(*>*)
text{* Derivation of new induction scheme for well typing: *}
consts
WTrt' :: "J_prog => (env × heap × expr × ty )set"
WTrts':: "J_prog => (env × heap × expr list × ty list)set"
(*<*)
syntax (xsymbols)
WTrt' :: "[J_prog,env,heap,expr,ty] => bool"
("_,_,_ \<turnstile> _ :' _" [51,51,51]50)
WTrts':: "[J_prog,env,heap,expr list, ty list] => bool"
("_,_,_ \<turnstile> _ [:''] _" [51,51,51]50)
(*>*)
translations
"P,E,h \<turnstile> e :' T" == "(E,h,e,T) ∈ WTrt' P"
"P,E,h \<turnstile> es [:'] Ts" == "(E,h,es,Ts) ∈ WTrts' P"
inductive "WTrt' P" "WTrts' P"
intros
"is_class P C ==> P,E,h \<turnstile> new C :' Class C"
"[| P,E,h \<turnstile> e :' T; is_refT T; is_class P C |]
==> P,E,h \<turnstile> Cast C e :' Class C"
"typeofh v = Some T ==> P,E,h \<turnstile> Val v :' T"
"E v = Some T ==> P,E,h \<turnstile> Var v :' T"
"[| P,E,h \<turnstile> e1 :' T1; P,E,h \<turnstile> e2 :' T2;
case bop of Eq => T' = Boolean
| Add => T1 = Integer ∧ T2 = Integer ∧ T' = Integer |]
==> P,E,h \<turnstile> e1 «bop» e2 :' T'"
"[| P,E,h \<turnstile> Var V :' T; P,E,h \<turnstile> e :' T'; P \<turnstile> T' ≤ T (* V ≠ This*) |]
==> P,E,h \<turnstile> V:=e :' Void"
"[| P,E,h \<turnstile> e :' Class C; P \<turnstile> C has F:T in D |] ==> P,E,h \<turnstile> e\<bullet>F{D} :' T"
"P,E,h \<turnstile> e :' NT ==> P,E,h \<turnstile> e\<bullet>F{D} :' T"
"[| P,E,h \<turnstile> e1 :' Class C; P \<turnstile> C has F:T in D;
P,E,h \<turnstile> e2 :' T2; P \<turnstile> T2 ≤ T |]
==> P,E,h \<turnstile> e1\<bullet>F{D}:=e2 :' Void"
"[| P,E,h \<turnstile> e1:'NT; P,E,h \<turnstile> e2 :' T2 |] ==> P,E,h \<turnstile> e1\<bullet>F{D}:=e2 :' Void"
"[| P,E,h \<turnstile> e :' Class C; P \<turnstile> C sees M:Ts -> T = (pns,body) in D;
P,E,h \<turnstile> es [:'] Ts'; P \<turnstile> Ts' [≤] Ts |]
==> P,E,h \<turnstile> e\<bullet>M(es) :' T"
"[| P,E,h \<turnstile> e :' NT; P,E,h \<turnstile> es [:'] Ts |] ==> P,E,h \<turnstile> e\<bullet>M(es) :' T"
"P,E,h \<turnstile> [] [:'] []"
"[| P,E,h \<turnstile> e :' T; P,E,h \<turnstile> es [:'] Ts |] ==> P,E,h \<turnstile> e#es [:'] T#Ts"
"[| typeofh v = Some T1; P \<turnstile> T1 ≤ T; P,E(V\<mapsto>T),h \<turnstile> e2 :' T2 |]
==> P,E,h \<turnstile> {V:T := Val v; e2} :' T2"
"[| P,E(V\<mapsto>T),h \<turnstile> e :' T'; ¬ assigned V e |] ==> P,E,h \<turnstile> {V:T; e} :' T'"
"[| P,E,h \<turnstile> e1:' T1; P,E,h \<turnstile> e2:'T2 |] ==> P,E,h \<turnstile> e1;;e2 :' T2"
"[| P,E,h \<turnstile> e :' Boolean; P,E,h \<turnstile> e1:' T1; P,E,h \<turnstile> e2:' T2;
P \<turnstile> T1 ≤ T2 ∨ P \<turnstile> T2 ≤ T1;
P \<turnstile> T1 ≤ T2 --> T = T2; P \<turnstile> T2 ≤ T1 --> T = T1 |]
==> P,E,h \<turnstile> if (e) e1 else e2 :' T"
"[| P,E,h \<turnstile> e :' Boolean; P,E,h \<turnstile> c:' T |]
==> P,E,h \<turnstile> while(e) c :' Void"
"[| P,E,h \<turnstile> e :' Tr; is_refT Tr |] ==> P,E,h \<turnstile> throw e :' T"
"[| P,E,h \<turnstile> e1 :' T1; P,E(V \<mapsto> Class C),h \<turnstile> e2 :' T2; P \<turnstile> T1 ≤ T2 |]
==> P,E,h \<turnstile> try e1 catch(C V) e2 :' T2"
(*<*)
lemmas WTrt'_induct = WTrt'_WTrts'.induct[split_format (complete)]
inductive_cases WTrt'_elim_cases[elim!]:
"P,E,h \<turnstile> V :=e :' T"
(*>*)
lemma [iff]: "P,E,h \<turnstile> e1;;e2 :' T2 = (∃T1. P,E,h \<turnstile> e1:' T1 ∧ P,E,h \<turnstile> e2:' T2)"
(*<*)
apply(rule iffI)
apply (auto elim: WTrt'_WTrts'.elims intro!:WTrt'_WTrts'.intros)
done
(*>*)
lemma [iff]: "P,E,h \<turnstile> Val v :' T = (typeofh v = Some T)"
(*<*)
apply(rule iffI)
apply (auto elim: WTrt'_WTrts'.elims intro!:WTrt'_WTrts'.intros)
done
(*>*)
lemma [iff]: "P,E,h \<turnstile> Var v :' T = (E v = Some T)"
(*<*)
apply(rule iffI)
apply (auto elim: WTrt'_WTrts'.elims intro!:WTrt'_WTrts'.intros)
done
(*>*)
lemma wt_wt': "P,E,h \<turnstile> e : T ==> P,E,h \<turnstile> e :' T"
and wts_wts': "P,E,h \<turnstile> es [:] Ts ==> P,E,h \<turnstile> es [:'] Ts"
(*<*)
apply (induct rule:WTrt_induct)
prefer 13
apply(case_tac "assigned V e")
apply(clarsimp simp add:fun_upd_same assigned_def simp del:fun_upd_apply)
apply(erule (2) WTrt'_WTrts'.intros)
apply(erule (1) WTrt'_WTrts'.intros)
apply(blast intro:WTrt'_WTrts'.intros)+
done
(*>*)
lemma wt'_wt: "P,E,h \<turnstile> e :' T ==> P,E,h \<turnstile> e : T"
and wts'_wts: "P,E,h \<turnstile> es [:'] Ts ==> P,E,h \<turnstile> es [:] Ts"
(*<*)
apply (induct rule:WTrt'_induct)
prefer 15
apply(rule WTrt_WTrts.intros)
apply(rule WTrt_WTrts.intros)
apply(rule WTrt_WTrts.intros)
apply simp
apply(erule (2) WTrt_WTrts.intros)
apply(blast intro:WTrt_WTrts.intros)+
done
(*>*)
corollary wt'_iff_wt: "(P,E,h \<turnstile> e :' T) = (P,E,h \<turnstile> e : T)"
(*<*)by(blast intro:wt_wt' wt'_wt)(*>*)
corollary wts'_iff_wts: "(P,E,h \<turnstile> es [:'] Ts) = (P,E,h \<turnstile> es [:] Ts)"
(*<*)by(blast intro:wts_wts' wts'_wts)(*>*)
(*<*)
lemmas WTrt_induct2 = WTrt'_induct[simplified wt'_iff_wt wts'_iff_wts,
case_names WTrtNew WTrtCast WTrtVal WTrtVar WTrtBinOp WTrtLAss WTrtFAcc WTrtFAccNT WTrtFAss
WTrtFAssNT WTrtCall WTrtCallNT WTrtNil WTrtCons WTrtInitBlock WTrtBlock WTrtSeq WTrtCond
WTrtWhile WTrtThrow WTrtTry]
(*>*)
theorem assumes wf: "wwf_J_prog P"
shows progress: "P,E,h \<turnstile> e : T ==>
(!!l. [| P \<turnstile> h \<surd>; \<D> e ⌊dom l⌋; ¬ final e |] ==> ∃e' s'. P \<turnstile> 〈e,(h,l)〉 -> 〈e',s'〉)"
and "P,E,h \<turnstile> es [:] Ts ==>
(!!l. [| P \<turnstile> h \<surd>; \<D>s es ⌊dom l⌋; ¬ finals es |] ==> ∃es' s'. P \<turnstile> 〈es,(h,l)〉 [->] 〈es',s'〉)"
(*<*)
proof (induct rule:WTrt_induct2)
case (WTrtNew C E h)
show ?case
proof cases
assume "∃a. h a = None"
from prems show ?thesis
by (fastsimp del:exE intro!:RedNew simp add:new_Addr_def
elim!:wf_Fields_Ex[THEN exE])
next
assume "¬(∃a. h a = None)"
from prems show ?thesis
by(fastsimp intro:RedNewFail simp add:new_Addr_def)
qed
next
case (WTrtCast C E T e h)
have wte: "P,E,h \<turnstile> e : T" and ref: "is_refT T"
and IH: "!!l. [|P \<turnstile> h \<surd>; \<D> e ⌊dom l⌋; ¬ final e|]
==> ∃e' s'. P \<turnstile> 〈e,(h,l)〉 -> 〈e',s'〉"
and D: "\<D> (Cast C e) ⌊dom l⌋" and hconf: "P \<turnstile> h \<surd>" .
from D have De: "\<D> e ⌊dom l⌋" by auto
show ?case
proof cases
assume "final e"
with wte ref show ?thesis
proof (rule finalRefE)
assume "e = null" thus ?case by(fastsimp intro:RedCastNull)
next
fix D a assume A: "T = Class D" "e = addr a"
show ?thesis
proof cases
assume "P \<turnstile> D \<preceq>* C"
thus ?thesis using A wte by(fastsimp intro:RedCast)
next
assume "¬ P \<turnstile> D \<preceq>* C"
thus ?thesis using A wte by(force intro!:RedCastFail)
qed
next
fix a assume "e = Throw a"
thus ?thesis by(blast intro!:red_reds.CastThrow)
qed
next
assume nf: "¬ final e"
from IH[OF hconf De nf] show ?thesis by (blast intro:CastRed)
qed
next
case WTrtVal thus ?case by(simp add:final_def)
next
case WTrtVar thus ?case by(fastsimp intro:RedVar simp:hyper_isin_def)
next
case (WTrtBinOp E T' T1 T2 bop e1 e2 h)
show ?case
proof cases
assume "final e1"
thus ?thesis
proof (rule finalE)
fix v1 assume [simp]: "e1 = Val v1"
show ?thesis
proof cases
assume "final e2"
thus ?thesis
proof (rule finalE)
fix v2 assume [simp]: "e2 = Val v2"
show ?thesis
proof (cases bop)
assume "bop = Eq"
thus ?thesis using WTrtBinOp by(fastsimp intro:RedBinOp)
next
assume "bop = Add"
thus ?thesis using WTrtBinOp by(fastsimp intro:RedBinOp)
qed
next
fix a assume "e2 = Throw a"
thus ?thesis by(auto intro:red_reds.BinOpThrow2)
qed
next
assume "¬ final e2" from prems show ?thesis
by simp (fast intro!:BinOpRed2)
qed
next
fix a assume "e1 = Throw a"
thus ?thesis by simp (fast intro:red_reds.BinOpThrow1)
qed
next
assume "¬ final e1" from prems show ?thesis
by simp (fast intro:BinOpRed1)
qed
next
case (WTrtLAss E T T' V e)
show ?case
proof cases
assume "final e" from prems show ?thesis
by(auto simp:final_def intro!:RedLAss red_reds.LAssThrow)
next
assume "¬ final e" from prems show ?thesis
by simp (fast intro:LAssRed)
qed
next
case (WTrtFAcc C D E F T e h)
have wte: "P,E,h \<turnstile> e : Class C"
and field: "P \<turnstile> C has F:T in D"
and hconf: "P \<turnstile> h \<surd>" .
show ?case
proof cases
assume "final e"
with wte show ?thesis
proof (rule final_addrE)
fix a assume e: "e = addr a"
with wte obtain fs where hp: "h a = Some(C,fs)" by auto
with hconf have "P,h \<turnstile> (C,fs) \<surd>" using hconf_def by fastsimp
then obtain v where "fs(F,D) = Some v" using field
by(fastsimp dest:has_fields_fun simp:oconf_def fconf_def has_field_def)
with hp e show ?thesis by(fastsimp intro:RedFAcc)
next
fix a assume "e = Throw a"
thus ?thesis by(fastsimp intro:red_reds.FAccThrow)
qed
next
assume "¬ final e" from prems show ?thesis
by(fastsimp intro!:FAccRed)
qed
next
case (WTrtFAccNT D E F T e)
show ?case
proof cases
assume "final e" --"@{term e} is @{term null} or @{term throw}"
from prems show ?thesis
by(fastsimp simp:final_def intro: RedFAccNull red_reds.FAccThrow)
next
assume "¬ final e" --"@{term e} reduces by IH"
from prems show ?thesis by simp (fast intro:FAccRed)
qed
next
case (WTrtFAss C D E F T T2 e1 e2 h)
have wte1: "P,E,h \<turnstile> e1 : Class C" .
show ?case
proof cases
assume "final e1"
with wte1 show ?thesis
proof (rule final_addrE)
fix a assume e1: "e1 = addr a"
show ?thesis
proof cases
assume "final e2"
thus ?thesis
proof (rule finalE)
fix v assume "e2 = Val v"
thus ?thesis using e1 wte1 by(fastsimp intro:RedFAss)
next
fix a assume "e2 = Throw a"
thus ?thesis using e1 by(fastsimp intro:red_reds.FAssThrow2)
qed
next
assume "¬ final e2" from prems show ?thesis
by simp (fast intro!:FAssRed2)
qed
next
fix a assume "e1 = Throw a"
thus ?thesis by(fastsimp intro:red_reds.FAssThrow1)
qed
next
assume "¬ final e1" from prems show ?thesis
by simp (blast intro!:FAssRed1)
qed
next
case (WTrtFAssNT D E F T2 e1 e2)
show ?case
proof cases
assume "final e1" --"@{term e1} is @{term null} or @{term throw}"
show ?thesis
proof cases
assume "final e2" --"@{term e2} is @{term Val} or @{term throw}"
from prems show ?thesis
by(fastsimp simp:final_def intro: RedFAssNull red_reds.FAssThrow1 red_reds.FAssThrow2)
next
assume "¬ final e2" --"@{term e2} reduces by IH"
from prems show ?thesis
by (fastsimp simp:final_def intro!:red_reds.FAssRed2 red_reds.FAssThrow1)
qed
next
assume "¬ final e1" --"@{term e1} reduces by IH"
from prems show ?thesis by (fastsimp intro:FAssRed1)
qed
next
case (WTrtCall C D E M T Ts Ts' body e es h pns)
have wte: "P,E,h \<turnstile> e : Class C"
and method: "P \<turnstile> C sees M:Ts->T = (pns,body) in D"
and wtes: "P,E,h \<turnstile> es [:] Ts'"and sub: "P \<turnstile> Ts' [≤] Ts"
and IHes: "!!l.
[|P \<turnstile> h \<surd>; \<D>s es ⌊dom l⌋; ¬ finals es|]
==> ∃es' s'. P \<turnstile> 〈es,(h,l)〉 [->] 〈es',s'〉"
and hconf: "P \<turnstile> h \<surd>" and D: "\<D> (e\<bullet>M(es)) ⌊dom l⌋" .
show ?case
proof cases
assume "final e"
with wte show ?thesis
proof (rule final_addrE)
fix a assume e_addr: "e = addr a"
show ?thesis
proof cases
assume es: "∃vs. es = map Val vs"
from wte e_addr obtain fs where ha: "h a = Some(C,fs)" by auto
show ?thesis
using e_addr ha method WTrts_same_length[OF wtes] sub es sees_wf_mdecl[OF wf method]
by(fastsimp intro: RedCall simp:list_all2_def wf_mdecl_def)
next
assume "¬(∃vs. es = map Val vs)"
hence not_all_Val: "¬(∀e ∈ set es. ∃v. e = Val v)"
by(simp add:ex_map_conv)
let ?ves = "takeWhile (λe. ∃v. e = Val v) es"
let ?rest = "dropWhile (λe. ∃v. e = Val v) es"
let ?ex = "hd ?rest" let ?rst = "tl ?rest"
from not_all_Val have nonempty: "?rest ≠ []" by auto
hence es: "es = ?ves @ ?ex # ?rst" by simp
have "∀e ∈ set ?ves. ∃v. e = Val v" by(fastsimp dest:set_take_whileD)
then obtain vs where ves: "?ves = map Val vs"
using ex_map_conv by blast
show ?thesis
proof cases
assume "final ?ex"
moreover from nonempty have "¬(∃v. ?ex = Val v)"
by(auto simp:neq_Nil_conv simp del:dropWhile_eq_Nil_conv)
(simp add:dropWhile_eq_Cons_conv)
ultimately obtain b where ex_Throw: "?ex = Throw b"
by(fast elim!:finalE)
show ?thesis using e_addr es ex_Throw ves
by(fastsimp intro:CallThrowParams)
next
assume not_fin: "¬ final ?ex"
have "finals es = finals(?ves @ ?ex # ?rst)" using es
by(rule arg_cong)
also have "… = finals(?ex # ?rst)" using ves by simp
finally have "finals es = finals(?ex # ?rst)" .
hence "¬ finals es" using not_finals_ConsI[OF not_fin] by blast
thus ?thesis using e_addr D IHes[OF hconf]
by(fastsimp intro!:CallParams)
qed
qed
next
fix a assume "e = Throw a"
with WTrtCall.prems show ?thesis by(fast intro!:CallThrowObj)
qed
next
assume "¬ final e"
with prems show ?thesis by simp (blast intro!:CallObj)
qed
next
case (WTrtCallNT E M T Ts e es)
show ?case
proof cases
assume "final e"
moreover
{ fix v assume "e = Val v"
hence "e = null" using prems by simp
have ?case
proof cases
assume "finals es"
moreover
{ fix vs assume "es = map Val vs"
from prems have ?thesis by(fastsimp intro: RedCallNull) }
moreover
{ fix vs a es' assume "es = map Val vs @ Throw a # es'"
from prems have ?thesis by(fastsimp intro: CallThrowParams) }
ultimately show ?thesis by(fastsimp simp:finals_def)
next
assume "¬ finals es" --"@{term es} reduces by IH"
from prems show ?thesis by(fastsimp intro: CallParams)
qed
}
moreover
{ fix a assume "e = Throw a"
from prems have ?case by(fastsimp intro: CallThrowObj) }
ultimately show ?thesis by(fastsimp simp:final_def)
next
assume "¬ final e" --"@{term e} reduces by IH"
from prems show ?thesis by (fastsimp intro:CallObj)
qed
next
case WTrtNil thus ?case by simp
next
case (WTrtCons E T Ts e es h)
have IHe: "!!l. [|P \<turnstile> h \<surd>; \<D> e ⌊dom l⌋; ¬ final e|]
==> ∃e' s'. P \<turnstile> 〈e,(h,l)〉 -> 〈e',s'〉"
and IHes: "!!l. [|P \<turnstile> h \<surd>; \<D>s es ⌊dom l⌋; ¬ finals es|]
==> ∃es' s'. P \<turnstile> 〈es,(h,l)〉 [->] 〈es',s'〉"
and hconf: "P \<turnstile> h \<surd>" and D: "\<D>s (e#es) ⌊dom l⌋"
and not_fins: "¬ finals(e # es)" .
have De: "\<D> e ⌊dom l⌋" and Des: "\<D>s es (⌊dom l⌋ \<squnion> \<A> e)"
using D by auto
show ?case
proof cases
assume "final e"
thus ?thesis
proof (rule finalE)
fix v assume e: "e = Val v"
hence Des': "\<D>s es ⌊dom l⌋" using De Des by auto
have not_fins_tl: "¬ finals es" using not_fins e by simp
show ?thesis using e IHes[OF hconf Des' not_fins_tl]
by (blast intro!:ListRed2)
next
fix a assume "e = Throw a"
hence False using not_fins by simp
thus ?thesis ..
qed
next
assume "¬ final e"
with IHe[OF hconf De] show ?thesis by(fast intro!:ListRed1)
qed
next
case (WTrtInitBlock E T T1 T2 V e2 h v)
have IH2: "!!l. [|P \<turnstile> h \<surd>; \<D> e2 ⌊dom l⌋; ¬ final e2|]
==> ∃e' s'. P \<turnstile> 〈e2,(h,l)〉 -> 〈e',s'〉"
and hconf: "P \<turnstile> h \<surd>" and D: "\<D> {V:T := Val v; e2} ⌊dom l⌋" .
show ?case
proof cases
assume "final e2"
show ?thesis
proof (rule finalE)
fix v2 assume "e2 = Val v2"
thus ?thesis by(fast intro:RedInitBlock)
next
fix a assume "e2 = Throw a"
thus ?thesis by(fast intro:red_reds.InitBlockThrow)
qed
next
assume not_fin2: "¬ final e2"
from D have D2: "\<D> e2 ⌊dom(l(V\<mapsto>v))⌋" by (auto simp:hyperset_defs)
from IH2[OF hconf D2 not_fin2]
obtain h' l' e' where red2: "P \<turnstile> 〈e2,(h, l(V\<mapsto>v))〉 -> 〈e',(h', l')〉"
by auto
from red_lcl_incr[OF red2] have "V ∈ dom l'" by auto
with red2 show ?thesis by(fastsimp intro:InitBlockRed)
qed
next
case (WTrtBlock E T T' V e h)
have IH: "!!l. [|P \<turnstile> h \<surd>; \<D> e ⌊dom l⌋; ¬ final e|]
==> ∃e' s'. P \<turnstile> 〈e,(h,l)〉 -> 〈e',s'〉"
and unass: "¬ assigned V e"
and hconf: "P \<turnstile> h \<surd>" and D: "\<D> {V:T; e} ⌊dom l⌋" .
show ?case
proof cases
assume "final e"
show ?thesis
proof (rule finalE)
fix v assume "e = Val v" thus ?thesis by(fast intro:RedBlock)
next
fix a assume "e = Throw a"
thus ?thesis by(fast intro:red_reds.BlockThrow)
qed
next
assume not_fin: "¬ final e"
from D have De: "\<D> e ⌊dom(l(V:=None))⌋" by(simp add:hyperset_defs)
from IH[OF hconf De not_fin]
obtain h' l' e' where red: "P \<turnstile> 〈e,(h,l(V:=None))〉 -> 〈e',(h',l')〉"
by auto
show ?thesis
proof (cases "l' V")
assume "l' V = None"
with red unass show ?thesis by(blast intro: BlockRedNone)
next
fix v assume "l' V = Some v"
with red unass show ?thesis by(blast intro: BlockRedSome)
qed
qed
next
case (WTrtSeq E T1 T2 e1 e2)
show ?case
proof cases
assume "final e1"
thus ?thesis
by(fast elim:finalE intro:intro:RedSeq red_reds.SeqThrow)
next
assume "¬ final e1" from prems show ?thesis
by simp (blast intro:SeqRed)
qed
next
case (WTrtCond E T T1 T2 e e1 e2 h)
have wt: "P,E,h \<turnstile> e : Boolean" .
show ?case
proof cases
assume "final e"
thus ?thesis
proof (rule finalE)
fix v assume val: "e = Val v"
then obtain b where v: "v = Bool b" using wt by auto
show ?thesis
proof (cases b)
case True with val v show ?thesis by(auto intro:RedCondT)
next
case False with val v show ?thesis by(auto intro:RedCondF)
qed
next
fix a assume "e = Throw a"
thus ?thesis by(fast intro:red_reds.CondThrow)
qed
next
assume "¬ final e" from prems show ?thesis
by simp (fast intro:CondRed)
qed
next
case WTrtWhile show ?case by(fast intro:RedWhile)
next
case (WTrtThrow C E T e)
show ?case
proof cases
assume "final e" -- {*Then @{term e} must be @{term throw} or @{term null}*}
from prems show ?thesis
by(fastsimp simp:final_def is_refT_def
intro:red_reds.ThrowThrow red_reds.RedThrowNull)
next
assume "¬ final e" -- {*Then @{term e} must reduce*}
from prems show ?thesis by simp (blast intro:ThrowRed)
qed
next
case (WTrtTry C E T1 T2 V e1 e2 h)
have wt1: "P,E,h \<turnstile> e1 : T1" .
show ?case
proof cases
assume "final e1"
thus ?thesis
proof (rule finalE)
fix v assume "e1 = Val v"
thus ?thesis by(fast intro:RedTry)
next
fix a assume e1_Throw: "e1 = Throw a"
with wt1 obtain D fs where ha: "h a = Some(D,fs)" by fastsimp
show ?thesis
proof cases
assume "P \<turnstile> D \<preceq>* C"
with e1_Throw ha show ?thesis by(fastsimp intro!:RedTryCatch)
next
assume "¬ P \<turnstile> D \<preceq>* C"
with e1_Throw ha show ?thesis by(force intro!:RedTryFail)
qed
qed
next
assume "¬ final e1"
show ?thesis using prems by simp (fast intro:TryRed)
qed
qed
(*>*)
end
lemma final_addrE:
[| WTrt P E h e (Class C); final e; !!a. e = addr a ==> R; !!a. e = Throw a ==> R |] ==> R
lemma finalRefE:
[| WTrt P E h e T; is_refT T; final e; e = null ==> R; !!a C. [| e = addr a; T = Class C |] ==> R; !!a. e = Throw a ==> R |] ==> R
lemmas WTrt'_induct:
[| !!C E h. is_class P C ==> P1 E h (new C) (Class C); !!C E T e h. [| WTrt' P E h e T; P1 E h e T; is_refT T; is_class P C |] ==> P1 E h (Cast C e) (Class C); !!E T h v. typeofh v = ⌊T⌋ ==> P1 E h (Val v) T; !!E T h v. E v = ⌊T⌋ ==> P1 E h (Var v) T; !!E T' T1 T2 bop e1 e2 h. [| WTrt' P E h e1 T1; P1 E h e1 T1; WTrt' P E h e2 T2; P1 E h e2 T2; case bop of Eq => T' = Boolean | Add => T1 = Integer & T2 = Integer & T' = Integer |] ==> P1 E h (e1 «bop» e2) T'; !!E T T' V e h. [| WTrt' P E h (Var V) T; P1 E h (Var V) T; WTrt' P E h e T'; P1 E h e T'; widen P T' T |] ==> P1 E h (V:=e) Void; !!C D E F T e h. [| WTrt' P E h e (Class C); P1 E h e (Class C); P \<turnstile> C has F:T in D |] ==> P1 E h (e\<bullet>F{D}) T; !!D E F T e h. [| WTrt' P E h e NT; P1 E h e NT |] ==> P1 E h (e\<bullet>F{D}) T; !!C D E F T T2 e1 e2 h. [| WTrt' P E h e1 (Class C); P1 E h e1 (Class C); P \<turnstile> C has F:T in D; WTrt' P E h e2 T2; P1 E h e2 T2; widen P T2 T |] ==> P1 E h (e1\<bullet>F{D} := e2) Void; !!D E F T2 e1 e2 h. [| WTrt' P E h e1 NT; P1 E h e1 NT; WTrt' P E h e2 T2; P1 E h e2 T2 |] ==> P1 E h (e1\<bullet>F{D} := e2) Void; !!C D E M T Ts Ts' body e es h pns. [| WTrt' P E h e (Class C); P1 E h e (Class C); P \<turnstile> C sees M: Ts->T = (pns, body) in D; WTrts' P E h es Ts'; P2 E h es Ts'; widens P Ts' Ts |] ==> P1 E h (e\<bullet>M(es)) T; !!E M T Ts e es h. [| WTrt' P E h e NT; P1 E h e NT; WTrts' P E h es Ts; P2 E h es Ts |] ==> P1 E h (e\<bullet>M(es)) T; !!E h. P2 E h [] []; !!E T Ts e es h. [| WTrt' P E h e T; P1 E h e T; WTrts' P E h es Ts; P2 E h es Ts |] ==> P2 E h (e # es) (T # Ts); !!E T T1 T2 V e2 h v. [| typeofh v = ⌊T1⌋; widen P T1 T; WTrt' P (E(V |-> T)) h e2 T2; P1 (E(V |-> T)) h e2 T2 |] ==> P1 E h {V:T; V:=Val v;; e2} T2; !!E T T' V e h. [| WTrt' P (E(V |-> T)) h e T'; P1 (E(V |-> T)) h e T'; ¬ assigned V e |] ==> P1 E h {V:T; e} T'; !!E T1 T2 e1 e2 h. [| WTrt' P E h e1 T1; P1 E h e1 T1; WTrt' P E h e2 T2; P1 E h e2 T2 |] ==> P1 E h (e1;; e2) T2; !!E T T1 T2 e e1 e2 h. [| WTrt' P E h e Boolean; P1 E h e Boolean; WTrt' P E h e1 T1; P1 E h e1 T1; WTrt' P E h e2 T2; P1 E h e2 T2; widen P T1 T2 | widen P T2 T1; widen P T1 T2 --> T = T2; widen P T2 T1 --> T = T1 |] ==> P1 E h (if (e) e1 else e2) T; !!E T c e h. [| WTrt' P E h e Boolean; P1 E h e Boolean; WTrt' P E h c T; P1 E h c T |] ==> P1 E h (while (e) c) Void; !!E T Tr e h. [| WTrt' P E h e Tr; P1 E h e Tr; is_refT Tr |] ==> P1 E h (throw e) T; !!C E T1 T2 V e1 e2 h. [| WTrt' P E h e1 T1; P1 E h e1 T1; WTrt' P (E(V |-> Class C)) h e2 T2; P1 (E(V |-> Class C)) h e2 T2; widen P T1 T2 |] ==> P1 E h (try e1 catch(C V) e2) T2 |] ==> (WTrt' P xha xga xfa xea --> P1 xha xga xfa xea) & (WTrts' P xda xca xba xaa --> P2 xda xca xba xaa)
lemmas WTrt'_elim_cases:
[| WTrt' P E h (V:=e) T; !!Ta T'. [| WTrt' P E h (Var V) Ta; WTrt' P E h e T'; widen P T' Ta; T = Void |] ==> Pa |] ==> Pa
lemma
WTrt' P E h (e1;; e2) T2 = (EX T1. WTrt' P E h e1 T1 & WTrt' P E h e2 T2)
lemma
WTrt' P E h (Val v) T = (typeofh v = ⌊T⌋)
lemma
WTrt' P E h (Var v) T = (E v = ⌊T⌋)
lemma wt_wt':
WTrt P E h e T ==> WTrt' P E h e T
and wts_wts':
WTrts P E h es Ts ==> WTrts' P E h es Ts
lemma wt'_wt:
WTrt' P E h e T ==> WTrt P E h e T
and wts'_wts:
WTrts' P E h es Ts ==> WTrts P E h es Ts
corollary wt'_iff_wt:
WTrt' P E h e T = WTrt P E h e T
corollary wts'_iff_wts:
WTrts' P E h es Ts = WTrts P E h es Ts
lemmas WTrt_induct2:
[| !!C E h. is_class P C ==> P1 E h (new C) (Class C); !!C E T e h. [| WTrt P E h e T; P1 E h e T; is_refT T; is_class P C |] ==> P1 E h (Cast C e) (Class C); !!E T h v. typeofh v = ⌊T⌋ ==> P1 E h (Val v) T; !!E T h v. E v = ⌊T⌋ ==> P1 E h (Var v) T; !!E T' T1 T2 bop e1 e2 h. [| WTrt P E h e1 T1; P1 E h e1 T1; WTrt P E h e2 T2; P1 E h e2 T2; case bop of Eq => T' = Boolean | Add => T1 = Integer & T2 = Integer & T' = Integer |] ==> P1 E h (e1 «bop» e2) T'; !!E T T' V e h. [| WTrt P E h (Var V) T; P1 E h (Var V) T; WTrt P E h e T'; P1 E h e T'; widen P T' T |] ==> P1 E h (V:=e) Void; !!C D E F T e h. [| WTrt P E h e (Class C); P1 E h e (Class C); P \<turnstile> C has F:T in D |] ==> P1 E h (e\<bullet>F{D}) T; !!D E F T e h. [| WTrt P E h e NT; P1 E h e NT |] ==> P1 E h (e\<bullet>F{D}) T; !!C D E F T T2 e1 e2 h. [| WTrt P E h e1 (Class C); P1 E h e1 (Class C); P \<turnstile> C has F:T in D; WTrt P E h e2 T2; P1 E h e2 T2; widen P T2 T |] ==> P1 E h (e1\<bullet>F{D} := e2) Void; !!D E F T2 e1 e2 h. [| WTrt P E h e1 NT; P1 E h e1 NT; WTrt P E h e2 T2; P1 E h e2 T2 |] ==> P1 E h (e1\<bullet>F{D} := e2) Void; !!C D E M T Ts Ts' body e es h pns. [| WTrt P E h e (Class C); P1 E h e (Class C); P \<turnstile> C sees M: Ts->T = (pns, body) in D; WTrts P E h es Ts'; P2 E h es Ts'; widens P Ts' Ts |] ==> P1 E h (e\<bullet>M(es)) T; !!E M T Ts e es h. [| WTrt P E h e NT; P1 E h e NT; WTrts P E h es Ts; P2 E h es Ts |] ==> P1 E h (e\<bullet>M(es)) T; !!E h. P2 E h [] []; !!E T Ts e es h. [| WTrt P E h e T; P1 E h e T; WTrts P E h es Ts; P2 E h es Ts |] ==> P2 E h (e # es) (T # Ts); !!E T T1 T2 V e2 h v. [| typeofh v = ⌊T1⌋; widen P T1 T; WTrt P (E(V |-> T)) h e2 T2; P1 (E(V |-> T)) h e2 T2 |] ==> P1 E h {V:T; V:=Val v;; e2} T2; !!E T T' V e h. [| WTrt P (E(V |-> T)) h e T'; P1 (E(V |-> T)) h e T'; ¬ assigned V e |] ==> P1 E h {V:T; e} T'; !!E T1 T2 e1 e2 h. [| WTrt P E h e1 T1; P1 E h e1 T1; WTrt P E h e2 T2; P1 E h e2 T2 |] ==> P1 E h (e1;; e2) T2; !!E T T1 T2 e e1 e2 h. [| WTrt P E h e Boolean; P1 E h e Boolean; WTrt P E h e1 T1; P1 E h e1 T1; WTrt P E h e2 T2; P1 E h e2 T2; widen P T1 T2 | widen P T2 T1; widen P T1 T2 --> T = T2; widen P T2 T1 --> T = T1 |] ==> P1 E h (if (e) e1 else e2) T; !!E T c e h. [| WTrt P E h e Boolean; P1 E h e Boolean; WTrt P E h c T; P1 E h c T |] ==> P1 E h (while (e) c) Void; !!E T Tr e h. [| WTrt P E h e Tr; P1 E h e Tr; is_refT Tr |] ==> P1 E h (throw e) T; !!C E T1 T2 V e1 e2 h. [| WTrt P E h e1 T1; P1 E h e1 T1; WTrt P (E(V |-> Class C)) h e2 T2; P1 (E(V |-> Class C)) h e2 T2; widen P T1 T2 |] ==> P1 E h (try e1 catch(C V) e2) T2 |] ==> (WTrt P xha xga xfa xea --> P1 xha xga xfa xea) & (WTrts P xda xca xba xaa --> P2 xda xca xba xaa)
theorem progress:
[| wwf_J_prog P; WTrt P E h e T; P \<turnstile> h \<surd>; \<D> e ⌊dom l⌋; ¬ final e |] ==> EX e' s'. red P e (h, l) e' s'
and
[| wwf_J_prog P; WTrts P E h es Ts; P \<turnstile> h \<surd>; \<D>s es ⌊dom l⌋; ¬ finals es |] ==> EX es' s'. reds P es (h, l) es' s'