(* Title: HOL/MicroJava/BV/Kildall.thy
ID: $Id: Kildall.html 1910 2004-05-19 04:46:04Z kleing $
Author: Tobias Nipkow, Gerwin Klein
Copyright 2000 TUM
Kildall's algorithm
*)
header {* \isaheader{Kildall's Algorithm}\label{sec:Kildall} *}
theory Kildall = SemilatAlg:
consts
iter :: "'s binop => 's step_type =>
's list => nat set => 's list × nat set"
propa :: "'s binop => (nat × 's) list => 's list => nat set => 's list * nat set"
primrec
"propa f [] τs w = (τs,w)"
"propa f (q'#qs) τs w = (let (q,τ) = q';
u = τ \<squnion>f τs!q;
w' = (if u = τs!q then w else insert q w)
in propa f qs (τs[q := u]) w')"
defs iter_def:
"iter f step τs w ≡
while (λ(τs,w). w ≠ {})
(λ(τs,w). let p = SOME p. p ∈ w
in propa f (step p (τs!p)) τs (w-{p}))
(τs,w)"
constdefs
unstables :: "'s ord => 's step_type => 's list => nat set"
"unstables r step τs ≡ {p. p < size τs ∧ ¬stable r step τs p}"
kildall :: "'s ord => 's binop => 's step_type => 's list => 's list"
"kildall r f step τs ≡ fst(iter f step τs (unstables r step τs))"
consts merges :: "'s binop => (nat × 's) list => 's list => 's list"
primrec
"merges f [] τs = τs"
"merges f (p'#ps) τs = (let (p,τ) = p' in merges f ps (τs[p := τ \<squnion>f τs!p]))"
lemmas [simp] = Let_def semilat.le_iff_plus_unchanged [symmetric]
lemma (in semilat) nth_merges:
"!!ss. [|p < length ss; ss ∈ list n A; ∀(p,t)∈set ps. p<n ∧ t∈A |] ==>
(merges f ps ss)!p = map snd [(p',t') ∈ ps. p'=p] \<Squnion>f ss!p"
(is "!!ss. [|_; _; ?steptype ps|] ==> ?P ss ps")
(*<*)
proof (induct ps)
show "!!ss. ?P ss []" by simp
fix ss p' ps'
assume ss: "ss ∈ list n A"
assume l: "p < length ss"
assume "?steptype (p'#ps')"
then obtain a b where
p': "p'=(a,b)" and ab: "a<n" "b∈A" and "?steptype ps'"
by (cases p', auto)
assume "!!ss. p< length ss ==> ss ∈ list n A ==> ?steptype ps' ==> ?P ss ps'"
hence IH: "!!ss. ss ∈ list n A ==> p < length ss ==> ?P ss ps'" .
from ss ab
have "ss[a := b \<squnion>f ss!a] ∈ list n A" by (simp add: closedD)
moreover
then have "p < length (ss[a := b \<squnion>f ss!a])" by simp
ultimately
have "?P (ss[a := b \<squnion>f ss!a]) ps'" by (rule IH)
with p' l
show "?P ss (p'#ps')" by simp
qed
(*>*)
(** merges **)
lemma length_merges [simp]:
"!!ss. size(merges f ps ss) = size ss"
(*<*) by (induct ps, auto) (*>*)
lemma (in semilat) merges_preserves_type_lemma:
shows "∀xs. xs ∈ list n A --> (∀(p,x) ∈ set ps. p<n ∧ x∈A)
--> merges f ps xs ∈ list n A"
(*<*)
apply (insert closedI)
apply (unfold closed_def)
apply (induct ps)
apply simp
apply clarsimp
done
(*>*)
lemma (in semilat) merges_preserves_type [simp]:
"[| xs ∈ list n A; ∀(p,x) ∈ set ps. p<n ∧ x∈A |]
==> merges f ps xs ∈ list n A"
by (simp add: merges_preserves_type_lemma)
lemma (in semilat) merges_incr_lemma:
"∀xs. xs ∈ list n A --> (∀(p,x)∈set ps. p<size xs ∧ x ∈ A) --> xs [\<sqsubseteq>r] merges f ps xs"
(*<*)
apply (induct ps)
apply simp
apply simp
apply clarify
apply (rule order_trans)
apply simp
apply (erule list_update_incr)
apply simp
apply simp
apply (blast intro!: listE_set intro: closedD listE_length [THEN nth_in])
done
(*>*)
lemma (in semilat) merges_incr:
"[| xs ∈ list n A; ∀(p,x)∈set ps. p<size xs ∧ x ∈ A |]
==> xs [\<sqsubseteq>r] merges f ps xs"
by (simp add: merges_incr_lemma)
lemma (in semilat) merges_same_conv [rule_format]:
"(∀xs. xs ∈ list n A --> (∀(p,x)∈set ps. p<size xs ∧ x∈A) -->
(merges f ps xs = xs) = (∀(p,x)∈set ps. x \<sqsubseteq>r xs!p))"
(*<*)
apply (induct_tac ps)
apply simp
apply clarsimp
apply (rename_tac p x ps xs)
apply (rule iffI)
apply (rule context_conjI)
apply (subgoal_tac "xs[p := x \<squnion>f xs!p] [\<sqsubseteq>r] xs")
apply (force dest!: le_listD simp add: nth_list_update)
apply (erule subst, rule merges_incr)
apply (blast intro!: listE_set intro: closedD listE_length [THEN nth_in])
apply clarify
apply (rule conjI)
apply simp
apply (blast dest: boundedD)
apply blast
apply clarify
apply (erule allE)
apply (erule impE)
apply assumption
apply (drule bspec)
apply assumption
apply (simp add: le_iff_plus_unchanged [THEN iffD1] list_update_same_conv [THEN iffD2])
apply blast
apply clarify
apply (simp add: le_iff_plus_unchanged [THEN iffD1] list_update_same_conv [THEN iffD2])
done
(*>*)
lemma (in semilat) list_update_le_listI [rule_format]:
"set xs ⊆ A --> set ys ⊆ A --> xs [\<sqsubseteq>r] ys --> p < size xs -->
x \<sqsubseteq>r ys!p --> x∈A --> xs[p := x \<squnion>f xs!p] [\<sqsubseteq>r] ys"
(*<*)
apply(insert semilat)
apply (unfold Listn.le_def lesub_def semilat_def)
apply (simp add: list_all2_conv_all_nth nth_list_update)
done
(*>*)
lemma (in semilat) merges_pres_le_ub:
shows "[| set ts ⊆ A; set ss ⊆ A;
∀(p,t)∈set ps. t \<sqsubseteq>r ts!p ∧ t ∈ A ∧ p < size ts; ss [\<sqsubseteq>r] ts |]
==> merges f ps ss [\<sqsubseteq>r] ts"
(*<*)
proof -
{ fix t ts ps
have
"!!qs. [|set ts ⊆ A; ∀(p,t)∈set ps. t \<sqsubseteq>r ts!p ∧ t ∈ A ∧ p< size ts |] ==>
set qs ⊆ set ps -->
(∀ss. set ss ⊆ A --> ss [\<sqsubseteq>r] ts --> merges f qs ss [\<sqsubseteq>r] ts)"
apply (induct_tac qs)
apply simp
apply (simp (no_asm_simp))
apply clarify
apply simp
apply (erule allE, erule impE, erule_tac [2] mp)
apply (drule bspec, assumption)
apply (simp add: closedD)
apply (drule bspec, assumption)
apply (simp add: list_update_le_listI)
done
} note this [dest]
case rule_context
thus ?thesis by blast
qed
(*>*)
(** propa **)
lemma decomp_propa:
"!!ss w. (∀(q,t)∈set qs. q < size ss) ==>
propa f qs ss w =
(merges f qs ss, {q. ∃t.(q,t)∈set qs ∧ t \<squnion>f ss!q ≠ ss!q} ∪ w)"
(*<*)
apply (induct qs)
apply simp
apply (simp (no_asm))
apply clarify
apply simp
apply (rule conjI)
apply blast
apply (simp add: nth_list_update)
apply blast
done
(*>*)
(** iter **)
lemma (in semilat) stable_pres_lemma:
shows "[|pres_type step n A; bounded step n;
ss ∈ list n A; p ∈ w; ∀q∈w. q < n;
∀q. q < n --> q ∉ w --> stable r step ss q; q < n;
∀s'. (q,s') ∈ set (step p (ss!p)) --> s' \<squnion>f ss!q = ss!q;
q ∉ w ∨ q = p |]
==> stable r step (merges f (step p (ss!p)) ss) q"
(*<*)
apply (unfold stable_def)
apply (subgoal_tac "∀s'. (q,s') ∈ set (step p (ss!p)) --> s' : A")
prefer 2
apply clarify
apply (erule pres_typeD)
prefer 3 apply assumption
apply (rule listE_nth_in)
apply assumption
apply simp
apply simp
apply simp
apply clarify
apply (subst nth_merges)
apply simp
apply (blast dest: boundedD)
apply assumption
apply clarify
apply (rule conjI)
apply (blast dest: boundedD)
apply (erule pres_typeD)
prefer 3 apply assumption
apply simp
apply simp
apply(subgoal_tac "q < length ss")
prefer 2 apply simp
apply (frule nth_merges [of q _ _ "step p (ss!p)"]) (* fixme: why does method subst not work?? *)
apply assumption
apply clarify
apply (rule conjI)
apply (blast dest: boundedD)
apply (erule pres_typeD)
prefer 3 apply assumption
apply simp
apply simp
apply (drule_tac P = "λx. (a, b) ∈ set (step q x)" in subst)
apply assumption
apply (simp add: plusplus_empty)
apply (cases "q ∈ w")
apply simp
apply (rule ub1')
apply assumption
apply clarify
apply (rule pres_typeD)
apply assumption
prefer 3 apply assumption
apply (blast intro: listE_nth_in dest: boundedD)
apply (blast intro: pres_typeD dest: boundedD)
apply (blast intro: listE_nth_in dest: boundedD)
apply assumption
apply simp
apply (erule allE, erule impE, assumption, erule impE, assumption)
apply (rule order_trans)
apply simp
defer
apply (rule pp_ub2)(*
apply assumption*)
apply simp
apply clarify
apply simp
apply (rule pres_typeD)
apply assumption
prefer 3 apply assumption
apply (blast intro: listE_nth_in dest: boundedD)
apply (blast intro: pres_typeD dest: boundedD)
apply (blast intro: listE_nth_in dest: boundedD)
apply blast
done
(*>*)
lemma (in semilat) merges_bounded_lemma:
"[| mono r step n A; bounded step n;
∀(p',s') ∈ set (step p (ss!p)). s' ∈ A; ss ∈ list n A; ts ∈ list n A; p < n;
ss [\<sqsubseteq>r] ts; ∀p. p < n --> stable r step ts p |]
==> merges f (step p (ss!p)) ss [\<sqsubseteq>r] ts"
(*<*)
apply (unfold stable_def)
apply (rule merges_pres_le_ub)
apply simp
apply simp
prefer 2 apply assumption
apply clarsimp
apply (drule boundedD, assumption+)
apply (erule allE, erule impE, assumption)
apply (drule bspec, assumption)
apply simp
apply (drule monoD [of _ _ _ _ p "ss!p" "ts!p"])
apply assumption
apply simp
apply (simp add: le_listD)
apply (drule lesub_step_typeD, assumption)
apply clarify
apply (drule bspec, assumption)
apply simp
apply (blast intro: order_trans)
done
(*>*)
lemma termination_lemma: includes semilat
shows "[| ss ∈ list n A; ∀(q,t)∈set qs. q<n ∧ t∈A; p∈w |] ==>
ss [\<sqsubset>r] merges f qs ss ∨
merges f qs ss = ss ∧ {q. ∃t. (q,t)∈set qs ∧ t \<squnion>f ss!q ≠ ss!q} ∪ (w-{p}) ⊂ w"
(*<*)
apply(insert semilat)
apply (unfold lesssub_def)
apply (simp (no_asm_simp) add: merges_incr)
apply (rule impI)
apply (rule merges_same_conv [THEN iffD1, elim_format])
apply assumption+
defer
apply (rule sym, assumption)
defer apply simp
apply (subgoal_tac "∀q t. ¬((q, t) ∈ set qs ∧ t \<squnion>f ss ! q ≠ ss ! q)")
apply (blast intro!: psubsetI elim: equalityE)
apply clarsimp
apply (drule bspec, assumption)
apply (drule bspec, assumption)
apply clarsimp
done
(*>*)
lemma iter_properties[rule_format]: includes semilat
shows "[| acc r; pres_type step n A; mono r step n A;
bounded step n; ∀p∈w0. p < n; ss0 ∈ list n A;
∀p<n. p ∉ w0 --> stable r step ss0 p |] ==>
iter f step ss0 w0 = (ss',w')
-->
ss' ∈ list n A ∧ stables r step ss' ∧ ss0 [\<sqsubseteq>r] ss' ∧
(∀ts∈list n A. ss0 [\<sqsubseteq>r] ts ∧ stables r step ts --> ss' [\<sqsubseteq>r] ts)"
(*<*)
apply(insert semilat)
apply (unfold iter_def stables_def)
apply (rule_tac P = "λ(ss,w).
ss ∈ list n A ∧ (∀p<n. p ∉ w --> stable r step ss p) ∧ ss0 [\<sqsubseteq>r] ss ∧
(∀ts∈list n A. ss0 [\<sqsubseteq>r] ts ∧ stables r step ts --> ss [\<sqsubseteq>r] ts) ∧
(∀p∈w. p < n)" and
r = "{(ss',ss) . ss [\<sqsubset>r] ss'} <*lex*> finite_psubset"
in while_rule)
-- "Invariant holds initially:"
apply (simp add:stables_def)
-- "Invariant is preserved:"
apply(simp add: stables_def split_paired_all)
apply(rename_tac ss w)
apply(subgoal_tac "(SOME p. p ∈ w) ∈ w")
prefer 2; apply (fast intro: someI)
apply(subgoal_tac "∀(q,t) ∈ set (step (SOME p. p ∈ w) (ss ! (SOME p. p ∈ w))). q < length ss ∧ t ∈ A")
prefer 2
apply clarify
apply (rule conjI)
apply(clarsimp, blast dest!: boundedD)
apply (erule pres_typeD)
prefer 3
apply assumption
apply (erule listE_nth_in)
apply blast
apply blast
apply (subst decomp_propa)
apply blast
apply simp
apply (rule conjI)
apply (rule merges_preserves_type)
apply blast
apply clarify
apply (rule conjI)
apply(clarsimp, blast dest!: boundedD)
apply (erule pres_typeD)
prefer 3
apply assumption
apply (erule listE_nth_in)
apply blast
apply blast
apply (rule conjI)
apply clarify
apply (blast intro!: stable_pres_lemma)
apply (rule conjI)
apply (blast intro!: merges_incr intro: le_list_trans)
apply (rule conjI)
apply clarsimp
apply (blast intro!: merges_bounded_lemma)
apply (blast dest!: boundedD)
-- "Postcondition holds upon termination:"
apply(clarsimp simp add: stables_def split_paired_all)
-- "Well-foundedness of the termination relation:"
apply (rule wf_lex_prod)
apply (insert orderI [THEN acc_le_listI])
apply (simp only: acc_def lesssub_def)
apply (rule wf_finite_psubset)
-- "Loop decreases along termination relation:"
apply(simp add: stables_def split_paired_all)
apply(rename_tac ss w)
apply(subgoal_tac "(SOME p. p ∈ w) ∈ w")
prefer 2; apply (fast intro: someI)
apply(subgoal_tac "∀(q,t) ∈ set (step (SOME p. p ∈ w) (ss ! (SOME p. p ∈ w))). q < length ss ∧ t ∈ A")
prefer 2
apply clarify
apply (rule conjI)
apply(clarsimp, blast dest!: boundedD)
apply (erule pres_typeD)
prefer 3
apply assumption
apply (erule listE_nth_in)
apply blast
apply blast
apply (subst decomp_propa)
apply blast
apply clarify
apply (simp del: listE_length
add: lex_prod_def finite_psubset_def
bounded_nat_set_is_finite)
apply (rule termination_lemma)
apply assumption+
defer
apply assumption
apply clarsimp
done
(*>*)
lemma kildall_properties: includes semilat
shows "[| acc r; pres_type step n A; mono r step n A;
bounded step n; ss0 ∈ list n A |] ==>
kildall r f step ss0 ∈ list n A ∧
stables r step (kildall r f step ss0) ∧
ss0 [\<sqsubseteq>r] kildall r f step ss0 ∧
(∀ts∈list n A. ss0 [\<sqsubseteq>r] ts ∧ stables r step ts -->
kildall r f step ss0 [\<sqsubseteq>r] ts)"
(*<*)
apply (unfold kildall_def)
apply(case_tac "iter f step ss0 (unstables r step ss0)")
apply(simp)
apply (rule iter_properties)
by (simp_all add: unstables_def stable_def)
lemma is_bcv_kildall: includes semilat
shows "[| acc r; top r T; pres_type step n A; bounded step n; mono r step n A |]
==> is_bcv r T step n A (kildall r f step)"
apply(unfold is_bcv_def wt_step_def)
apply(insert semilat kildall_properties[of A])
apply(simp add:stables_def)
apply clarify
apply(subgoal_tac "kildall r f step τs0 ∈ list n A")
prefer 2 apply (simp(no_asm_simp))
apply (rule iffI)
apply (rule_tac x = "kildall r f step τs0" in bexI)
apply (rule conjI)
apply (blast)
apply (simp (no_asm_simp))
apply(assumption)
apply clarify
apply(subgoal_tac "kildall r f step τs0!p <=_r τs!p")
apply simp
apply (blast intro!: le_listD less_lengthI)
done
(*>*)
end
lemmas
Let s f == f s
[| semilat (A_1, r_1, f_1); x_1 : A_1; y_1 : A_1 |] ==> (x_1 +_f_1 y_1 = y_1) = (x_1 <=_r_1 y_1)
lemma nth_merges:
[| semilat (A, r, f); p < length ss; ss : list n A; ALL (p, t):set ps. p < n & t : A |] ==> merges f ps ss ! p = map snd [(p', t'):ps. p' = p] ++_f ss ! p
lemma length_merges:
length (merges f ps ss) = length ss
lemma
semilat (A, r, f) ==> ALL xs. xs : list n A --> (ALL (p, x):set ps. p < n & x : A) --> merges f ps xs : list n A
lemma merges_preserves_type:
[| semilat (A, r, f); xs : list n A; ALL (p, x):set ps. p < n & x : A |] ==> merges f ps xs : list n A
lemma merges_incr_lemma:
semilat (A, r, f) ==> ALL xs. xs : list n A --> (ALL (p, x):set ps. p < length xs & x : A) --> xs [<=r] merges f ps xs
lemma merges_incr:
[| semilat (A, r, f); xs : list n A; ALL (p, x):set ps. p < length xs & x : A |] ==> xs [<=r] merges f ps xs
lemma merges_same_conv:
semilat (A, r, f) ==> ALL xs. xs : list n A --> (ALL (p, x):set ps. p < length xs & x : A) --> (merges f ps xs = xs) = (ALL (p, x):set ps. x <=_r xs ! p)
lemma list_update_le_listI:
semilat (A, r, f) ==> set xs <= A --> set ys <= A --> xs [<=r] ys --> p < length xs --> x <=_r ys ! p --> x : A --> xs[p := x +_f xs ! p] [<=r] ys
lemma
[| semilat (A, r, f); set ts <= A; set ss <= A; ALL (p, t):set ps. t <=_r ts ! p & t : A & p < length ts; ss [<=r] ts |] ==> merges f ps ss [<=r] ts
lemma decomp_propa:
ALL (q, t):set qs. q < length ss ==> propa f qs ss w = (merges f qs ss, {q. EX t. (q, t) : set qs & t +_f ss ! q ~= ss ! q} Un w)
lemma
[| semilat (A, r, f); pres_type step n A; bounded step n; ss : list n A; p : w; ALL q:w. q < n; ALL q<n. q ~: w --> stable r step ss q; q < n; ALL s'. (q, s') : set (step p (ss ! p)) --> s' +_f ss ! q = ss ! q; q ~: w | q = p |] ==> stable r step (merges f (step p (ss ! p)) ss) q
lemma merges_bounded_lemma:
[| semilat (A, r, f); SemilatAlg.mono r step n A; bounded step n; ALL (p', s'):set (step p (ss ! p)). s' : A; ss : list n A; ts : list n A; p < n; ss [<=r] ts; ALL p<n. stable r step ts p |] ==> merges f (step p (ss ! p)) ss [<=r] ts
lemma
[| semilat (A, r, f); ss : list n A; ALL (q, t):set qs. q < n & t : A; p : w |] ==> ss [<r] merges f qs ss | merges f qs ss = ss & {q. EX t. (q, t) : set qs & t +_f ss ! q ~= ss ! q} Un (w - {p}) < w
lemma
[| semilat (A, r, f); acc r; pres_type step n A; SemilatAlg.mono r step n A; bounded step n; ALL p:w0. p < n; ss0 : list n A; ALL p<n. p ~: w0 --> stable r step ss0 p |] ==> iter f step ss0 w0 = (ss', w') --> ss' : list n A & stables r step ss' & ss0 [<=r] ss' & (ALL ts:list n A. ss0 [<=r] ts & stables r step ts --> ss' [<=r] ts)
lemma
[| semilat (A, r, f); acc r; pres_type step n A; SemilatAlg.mono r step n A; bounded step n; ss0 : list n A |] ==> kildall r f step ss0 : list n A & stables r step (kildall r f step ss0) & ss0 [<=r] kildall r f step ss0 & (ALL ts:list n A. ss0 [<=r] ts & stables r step ts --> kildall r f step ss0 [<=r] ts)
lemma
[| semilat (A, r, f); acc r; top r T; pres_type step n A; bounded step n; SemilatAlg.mono r step n A |] ==> is_bcv r T step n A (kildall r f step)