(* Title: HOL/MicroJava/J/Decl.thy
ID: $Id: Decl.html 1910 2004-05-19 04:46:04Z kleing $
Author: David von Oheimb
Copyright 1999 Technische Universitaet Muenchen
*)
header {* \isaheader{Class Declarations and Programs} *}
theory Decl = Type:
types
fdecl = "vname × ty" -- "field declaration"
'm mdecl = "mname × ty list × ty × 'm" -- "method = name, arg.\ types, return type, body"
'm class = "cname × fdecl list × 'm mdecl list" -- "class = superclass, fields, methods"
'm cdecl = "cname × 'm class" -- "class declaration"
'm prog = "'m cdecl list" -- "program"
(*<*)
translations
"fdecl" <= (type) "vname × ty"
"mdecl c" <= (type) "mname × ty list × ty × c"
"class c" <= (type) "cname × fdecl list × (c mdecl) list"
"cdecl c" <= (type) "cname × (c class)"
"prog c" <= (type) "(c cdecl) list"
(*>*)
constdefs
class :: "'m prog => cname => 'm class"
"class ≡ map_of"
is_class :: "'m prog => cname => bool"
"is_class P C ≡ class P C ≠ None"
lemma finite_is_class: "finite {C. is_class P C}"
(*<*)
apply (unfold is_class_def class_def)
apply (fold dom_def)
apply (rule finite_dom_map_of)
done
(*>*)
constdefs
is_type :: "'m prog => ty => bool"
"is_type P T ≡
(case T of Void => True | Boolean => True | Integer => True | NT => True
| Class C => is_class P C)"
lemma is_type_simps [simp]:
"is_type P Void ∧ is_type P Boolean ∧ is_type P Integer ∧
is_type P NT ∧ is_type P (Class C) = is_class P C"
(*<*)by(simp add:is_type_def)(*>*)
translations
"types P" == "Collect (is_type P)"
end
lemma finite_is_class:
finite {C. is_class P C}
lemma is_type_simps:
is_type P Void & is_type P Boolean & is_type P Integer & is_type P NT & is_type P (Class C) = is_class P C