(* Title: Jinja/Compiler/Correctness1.thy
ID: $Id: Correctness1.html 1910 2004-05-19 04:46:04Z kleing $
Author: Tobias Nipkow
Copyright TUM 2003
*)
header {* \isaheader{Correctness of Stage 1} *}
theory Correctness1 = J1WellForm + Compiler1:
section{*Correctness of program compilation *}
consts
unmod :: "expr1 => nat => bool"
unmods :: "expr1 list => nat => bool"
primrec
"unmod (new C) i = True"
"unmod (Cast C e) i = unmod e i"
"unmod (Val v) i = True"
"unmod (e1 «bop» e2) i = (unmod e1 i ∧ unmod e2 i)"
"unmod (Var i) j = True"
"unmod (i:=e) j = (i ≠ j ∧ unmod e j)"
"unmod (e\<bullet>F{D}) i = unmod e i"
"unmod (e1\<bullet>F{D}:=e2) i = (unmod e1 i ∧ unmod e2 i)"
"unmod (e\<bullet>M(es)) i = (unmod e i ∧ unmods es i)"
"unmod {j:T; e} i = unmod e i"
"unmod (e1;;e2) i = (unmod e1 i ∧ unmod e2 i)"
"unmod (if (e) e1 else e2) i = (unmod e i ∧ unmod e1 i ∧ unmod e2 i)"
"unmod (while (e) c) i = (unmod e i ∧ unmod c i)"
"unmod (throw e) i = unmod e i"
"unmod (try e1 catch(C i) e2) j = (unmod e1 j ∧ (if i=j then False else unmod e2 j))"
"unmods ([]) i = True"
"unmods (e#es) i = (unmod e i ∧ unmods es i)"
lemma hidden_unmod: "!!Vs. hidden Vs i ==> unmod (compE1 Vs e) i" and
"!!Vs. hidden Vs i ==> unmods (compEs1 Vs es) i"
(*<*)
apply(induct e and es)
apply (simp_all add:hidden_inacc)
apply(auto simp add:hidden_def)
done
(*>*)
lemma eval1_preserves_unmod:
"[| P \<turnstile>1 〈e,(h,ls)〉 => 〈e',(h',ls')〉; unmod e i; i < size ls |]
==> ls ! i = ls' ! i"
and "[| P \<turnstile>1 〈es,(h,ls)〉 [=>] 〈es',(h',ls')〉; unmods es i; i < size ls |]
==> ls ! i = ls' ! i"
(*<*)
apply(induct rule:eval1_evals1_induct)
apply(auto dest!:eval1_preserves_len split:split_if_asm)
done
(*>*)
lemma LAss_lem:
"[|x ∈ set xs; size xs ≤ size ys |]
==> m1 ⊆m m2(xs[\<mapsto>]ys) ==> m1(x\<mapsto>y) ⊆m m2(xs[\<mapsto>]ys[index xs x := y])"
(*<*)
apply(simp add:map_le_def);
apply(simp add:fun_upds_apply index_less_aux eq_sym_conv)
done
(*>*)
lemma Block_lem:
assumes 0: "l ⊆m [Vs [\<mapsto>] ls]"
and 1: "l' ⊆m [Vs [\<mapsto>] ls', V\<mapsto>v]"
and hidden: "V ∈ set Vs ==> ls ! index Vs V = ls' ! index Vs V"
and size: "size ls = size ls'" "size Vs < size ls'"
shows "l'(V := l V) ⊆m [Vs [\<mapsto>] ls']"
(*<*)
proof -
have "l'(V := l V) ⊆m [Vs [\<mapsto>] ls', V\<mapsto>v](V := l V)"
using 1 by(rule map_le_upd)
also have "… = [Vs [\<mapsto>] ls'](V := l V)" by simp
also have "… ⊆m [Vs [\<mapsto>] ls']"
proof (cases "l V")
case None thus ?thesis by simp
next
case (Some w)
hence "[Vs [\<mapsto>] ls] V = Some w"
using 0 by(force simp add: map_le_def split:if_splits)
hence VinVs: "V ∈ set Vs" and w: "w = ls ! index Vs V"
using size by(auto simp add:fun_upds_apply split:if_splits)
hence "w = ls' ! index Vs V" using hidden[OF VinVs] by simp
hence "[Vs [\<mapsto>] ls'](V := l V) = [Vs [\<mapsto>] ls']"
using Some size VinVs by(simp add:index_less_aux map_upds_upd_conv_index)
thus ?thesis by simp
qed
finally show ?thesis .
qed
(*>*)
(*<*)
declare fun_upd_apply[simp del]
(*>*)
text{*\noindent The main theorem: *}
theorem assumes wf: "wwf_J_prog P"
shows eval1_eval: "P \<turnstile> 〈e,(h,l)〉 => 〈e',(h',l')〉
==> (!!Vs ls. [| fv e ⊆ set Vs; l ⊆m [Vs[\<mapsto>]ls]; size Vs + max_vars e ≤ size ls |]
==> ∃ls'. compP1 P \<turnstile>1 〈compE1 Vs e,(h,ls)〉 => 〈fin1 e',(h',ls')〉 ∧ l' ⊆m [Vs[\<mapsto>]ls'])"
(*<*)
(is "_ ==> (!!Vs ls. PROP ?P e h l e' h' l' Vs ls)"
is "_ ==> (!!Vs ls. [| _; _; _ |] ==> ∃ls'. ?Post e h l e' h' l' Vs ls ls')")
(*>*)
and evals1_evals: "P \<turnstile> 〈es,(h,l)〉 [=>] 〈es',(h',l')〉
==> (!!Vs ls. [| fvs es ⊆ set Vs; l ⊆m [Vs[\<mapsto>]ls]; size Vs + max_varss es ≤ size ls |]
==> ∃ls'. compP1 P \<turnstile>1 〈compEs1 Vs es,(h,ls)〉 [=>] 〈compEs1 Vs es',(h',ls')〉 ∧
l' ⊆m [Vs[\<mapsto>]ls'])"
(*<*)
(is "_ ==> (!!Vs ls. PROP ?Ps es h l es' h' l' Vs ls)"
is "_ ==> (!!Vs ls. [| _; _; _|] ==> ∃ls'. ?Posts es h l es' h' l' Vs ls ls')")
proof (induct rule:eval_evals_induct)
case Nil thus ?case by(fastsimp intro!:Nil1)
next
case (Cons e es es' h l h' l' h2 l2 v)
have "PROP ?P e h l (Val v) h' l' Vs ls".
with Cons.prems
obtain ls' where 1: "?Post e h l (Val v) h' l' Vs ls ls'"
"size ls = size ls'" by(auto intro!:eval1_preserves_len)
have "PROP ?Ps es h' l' es' h2 l2 Vs ls'".
with 1 Cons.prems
obtain ls2 where 2: "?Posts es h' l' es' h2 l2 Vs ls' ls2" by(auto)
from 1 2 Cons show ?case by(auto intro!:Cons1)
next
case (ConsThrow e e' es h l h' l') thus ?case
by(fastsimp intro!:ConsThrow1 dest: eval_final)
next
case (Block T V e e' h h' l l')
let ?Vs = "Vs @ [V]"
have IH:
"[|fv e ⊆ set ?Vs; l(V := None) ⊆m [?Vs [\<mapsto>] ls];
size ?Vs + max_vars e ≤ size ls|]
==> ∃ls'. compP1 P \<turnstile>1 〈compE1 ?Vs e,(h,ls)〉 => 〈fin1 e',(h', ls')〉 ∧
l' ⊆m [?Vs [\<mapsto>] ls']" and
fv: "fv {V:T; e} ⊆ set Vs" and rel: "l ⊆m [Vs [\<mapsto>] ls]" and
len: "length Vs + max_vars {V:T; e} ≤ length ls" .
have len': "length Vs < length ls" using len by(auto)
have "fv e ⊆ set ?Vs" using fv by auto
moreover have "l(V := None) ⊆m [?Vs [\<mapsto>] ls]" using rel len' by simp
moreover have "size ?Vs + max_vars e ≤ size ls" using len by simp
ultimately obtain ls' where
1: "compP1 P \<turnstile>1 〈compE1 ?Vs e,(h,ls)〉 => 〈fin1 e',(h',ls')〉"
and rel': "l' ⊆m [?Vs [\<mapsto>] ls']" using IH by blast
have [simp]: "length ls = length ls'" by(rule eval1_preserves_len[OF 1])
show "∃ls'. compP1 P \<turnstile>1 〈compE1 Vs {V:T; e},(h,ls)〉 => 〈fin1 e',(h',ls')〉
∧ l'(V := l V) ⊆m [Vs [\<mapsto>] ls']" (is "∃ls'. ?R ls'")
proof
show "?R ls'"
proof
show "compP1 P \<turnstile>1 〈compE1 Vs {V:T; e},(h,ls)〉 => 〈fin1 e',(h',ls')〉"
using 1 by(simp add:Block1)
next
show "l'(V := l V) ⊆m [Vs [\<mapsto>] ls']"
proof -
have "l' ⊆m [Vs [\<mapsto>] ls', V \<mapsto> ls' ! length Vs]"
using len' rel' by simp
moreover
{ assume VinVs: "V ∈ set Vs"
hence "hidden (Vs @ [V]) (index Vs V)" by(rule hidden_index)
hence "unmod (compE1 (Vs @ [V]) e) (index Vs V)"
by(rule hidden_unmod)
moreover have "index Vs V < length ls"
using len' VinVs by(simp add:index_less_aux)
ultimately have "ls ! index Vs V = ls' ! index Vs V"
by(rule eval1_preserves_unmod[OF 1])
}
ultimately show ?thesis using Block_lem[OF rel] len' by auto
qed
qed
qed
next
case (TryThrow C D V a e' e2 fs h' l' h l)
have "PROP ?P e' h l (Throw a) h' l' Vs ls".
with TryThrow.prems
obtain ls' where 1: "?Post e' h l (Throw a) h' l' Vs ls ls'" by(auto)
show ?case using 1 TryThrow.hyps by(auto intro!:eval1_evals1.TryThrow1)
next
case (TryCatch C D V a e1 e2 e' fs h1 h2 l1 l2 h l)
let ?e = "try e1 catch(C V) e2"
have IH1: "[|fv e1 ⊆ set Vs; l ⊆m [Vs [\<mapsto>] ls];
size Vs + max_vars e1 ≤ length ls|]
==> ∃ls1. compP1 P \<turnstile>1 〈compE1 Vs e1,(h,ls)〉 =>
〈fin1 (Throw a),(h1,ls1)〉 ∧
l1 ⊆m [Vs [\<mapsto>] ls1]" and
fv: "fv ?e ⊆ set Vs" and
rel: "l ⊆m [Vs [\<mapsto>] ls]" and
len: "length Vs + max_vars ?e ≤ length ls".
have "fv e1 ⊆ set Vs" using fv by auto
moreover have "length Vs + max_vars e1 ≤ length ls" using len by(auto)
ultimately obtain ls1 where
1: "compP1 P \<turnstile>1 〈compE1 Vs e1,(h,ls)〉 => 〈Throw a,(h1,ls1)〉"
and rel1: "l1 ⊆m [Vs [\<mapsto>] ls1]" using IH1 rel by fastsimp
from 1 have [simp]: "size ls = size ls1" by(rule eval1_preserves_len)
let ?Vs = "Vs @ [V]" let ?ls = "(ls1[size Vs:=Addr a])"
have IH2: "[|fv e2 ⊆ set ?Vs; l1(V \<mapsto> Addr a) ⊆m [?Vs [\<mapsto>] ?ls];
length ?Vs + max_vars e2 ≤ length ?ls|] ==> ∃ls2.
compP1 P \<turnstile>1 〈compE1 ?Vs e2,(h1,?ls)〉 => 〈fin1 e',(h2, ls2)〉 ∧
l2 ⊆m [?Vs [\<mapsto>] ls2]".
have len1: "size Vs < size ls1" using len by(auto)
have "fv e2 ⊆ set ?Vs" using fv by auto
moreover have "l1(V \<mapsto> Addr a) ⊆m [?Vs [\<mapsto>] ?ls]" using rel1 len1 by simp
moreover have "length ?Vs + max_vars e2 ≤ length ?ls" using len by(auto)
ultimately obtain ls2 where
2: "compP1 P \<turnstile>1 〈compE1 ?Vs e2,(h1,?ls)〉 => 〈fin1 e',(h2, ls2)〉"
and rel2: "l2 ⊆m [?Vs [\<mapsto>] ls2]" using IH2 by blast
from 2 have [simp]: "size ls1 = size ls2"
by(fastsimp dest: eval1_preserves_len)
show "∃ls2. compP1 P \<turnstile>1 〈compE1 Vs ?e,(h,ls)〉 => 〈fin1 e',(h2,ls2)〉 ∧
l2(V := l1 V) ⊆m [Vs [\<mapsto>] ls2]" (is "∃ls2. ?R ls2")
proof
show "?R ls2"
proof
have hp: "h1 a = Some (D, fs)".
have "P \<turnstile> D \<preceq>* C". hence caught: "compP1 P \<turnstile> D \<preceq>* C" by simp
from TryCatch1[OF 1 _ caught len1 2, OF hp]
show "compP1 P \<turnstile>1 〈compE1 Vs ?e,(h,ls)〉 => 〈fin1 e',(h2,ls2)〉" by simp
next
show "l2(V := l1 V) ⊆m [Vs [\<mapsto>] ls2]"
proof -
have "l2 ⊆m [Vs [\<mapsto>] ls2, V \<mapsto> ls2 ! length Vs]"
using len1 rel2 by simp
moreover
{ assume VinVs: "V ∈ set Vs"
hence "hidden (Vs @ [V]) (index Vs V)" by(rule hidden_index)
hence "unmod (compE1 (Vs @ [V]) e2) (index Vs V)"
by(rule hidden_unmod)
moreover have "index Vs V < length ?ls"
using len1 VinVs by(simp add:index_less_aux)
ultimately have "?ls ! index Vs V = ls2 ! index Vs V"
by(rule eval1_preserves_unmod[OF 2])
moreover have "index Vs V < size Vs" using VinVs by simp
ultimately have "ls1 ! index Vs V = ls2 ! index Vs V"
using len1 by(simp del:size_index_conv)
}
ultimately show ?thesis using Block_lem[OF rel1] len1 by simp
qed
qed
qed
next
case Try thus ?case by(fastsimp intro!:Try1)
next
case Throw thus ?case by(fastsimp intro!:Throw1)
next
case ThrowNull thus ?case by(fastsimp intro!:ThrowNull1)
next
case ThrowThrow thus ?case by(fastsimp intro!:ThrowThrow1)
next
case (CondT e e' e1 e2 h l h1 l1 h2 l2)
have "PROP ?P e h l true h1 l1 Vs ls".
with CondT.prems
obtain ls1 where 1: "?Post e h l true h1 l1 Vs ls ls1"
"size ls = size ls1" by(auto intro!:eval1_preserves_len)
have "PROP ?P e1 h1 l1 e' h2 l2 Vs ls1".
with 1 CondT.prems
obtain ls2 where 2: "?Post e1 h1 l1 e' h2 l2 Vs ls1 ls2" by(auto)
from 1 2 show ?case by(auto intro!:CondT1)
next
case (CondF e e' e1 e2 h l h1 l1 h2 l2 Vs ls)
have "PROP ?P e h l false h1 l1 Vs ls".
with CondF.prems
obtain ls1 where 1: "?Post e h l false h1 l1 Vs ls ls1"
"size ls = size ls1" by(auto intro!:eval1_preserves_len)
have "PROP ?P e2 h1 l1 e' h2 l2 Vs ls1".
with 1 CondF.prems
obtain ls2 where 2: "?Post e2 h1 l1 e' h2 l2 Vs ls1 ls2" by(auto)
from 1 2 show ?case by(auto intro!:CondF1)
next
case CondThrow thus ?case by(fastsimp intro!:CondThrow1)
next
case (Seq e e1 e' h l h1 l1 h2 l2 v)
have "PROP ?P e h l (Val v) h1 l1 Vs ls".
with Seq.prems
obtain ls1 where 1: "?Post e h l (Val v) h1 l1 Vs ls ls1"
"size ls = size ls1" by(auto intro!:eval1_preserves_len)
have "PROP ?P e1 h1 l1 e' h2 l2 Vs ls1".
with 1 Seq.prems
obtain ls2 where 2: "?Post e1 h1 l1 e' h2 l2 Vs ls1 ls2" by(auto)
from 1 2 Seq show ?case by(auto intro!:Seq1)
next
case SeqThrow thus ?case by(fastsimp intro!:SeqThrow1)
next
case WhileF thus ?case by(fastsimp intro!:eval1_evals1.intros)
next
case (WhileT c e e' h l h1 l1 h2 l2 h3 l3 v)
have "PROP ?P e h l true h1 l1 Vs ls".
with WhileT.prems
obtain ls1 where 1: "?Post e h l true h1 l1 Vs ls ls1"
"size ls = size ls1" by(auto intro!:eval1_preserves_len)
have "PROP ?P c h1 l1 (Val v) h2 l2 Vs ls1".
with 1 WhileT.prems
obtain ls2 where 2: "?Post c h1 l1 (Val v) h2 l2 Vs ls1 ls2"
"size ls1 = size ls2" by(auto intro!:eval1_preserves_len)
have "PROP ?P (While (e) c) h2 l2 e' h3 l3 Vs ls2".
with 1 2 WhileT.prems
obtain ls3 where 3: "?Post (While (e) c) h2 l2 e' h3 l3 Vs ls2 ls3" by(auto)
from 1 2 3 show ?case by(auto intro!:WhileT1)
next
case (WhileBodyThrow c e e' h l h1 l1 h2 l2)
have "PROP ?P e h l true h1 l1 Vs ls".
with WhileBodyThrow.prems
obtain ls1 where 1: "?Post e h l true h1 l1 Vs ls ls1"
"size ls = size ls1" by(auto intro!:eval1_preserves_len)
have "PROP ?P c h1 l1 (throw e') h2 l2 Vs ls1".
with 1 WhileBodyThrow.prems
obtain ls2 where 2: "?Post c h1 l1 (throw e') h2 l2 Vs ls1 ls2" by(auto)
from 1 2 show ?case by(auto intro!:WhileBodyThrow1)
next
case WhileCondThrow thus ?case by(fastsimp intro!:WhileCondThrow1)
next
case New thus ?case by(fastsimp intro:eval1_evals1.intros)
next
case NewFail thus ?case by(fastsimp intro:eval1_evals1.intros)
next
case Cast thus ?case by(fastsimp intro:eval1_evals1.intros)
next
case CastNull thus ?case by(fastsimp intro:eval1_evals1.intros)
next
case CastThrow thus ?case by(fastsimp intro:eval1_evals1.intros)
next
case (CastFail C D a e fs h1 l1 h l)
have "PROP ?P e h l (addr a) h1 l1 Vs ls".
with CastFail.prems
obtain ls1 where 1: "?Post e h l (addr a) h1 l1 Vs ls ls1" by auto
show ?case using 1 CastFail.hyps
by(auto intro!:CastFail1[where D=D])
next
case Val thus ?case by(fastsimp intro:eval1_evals1.intros)
next
case (BinOp bop e e1 h l h1 l1 h2 l2 v v1 v2)
have "PROP ?P e h l (Val v1) h1 l1 Vs ls".
with BinOp.prems
obtain ls1 where 1: "?Post e h l (Val v1) h1 l1 Vs ls ls1"
"size ls = size ls1" by(auto intro!:eval1_preserves_len)
have "PROP ?P e1 h1 l1 (Val v2) h2 l2 Vs ls1".
with 1 BinOp.prems
obtain ls2 where 2: "?Post e1 h1 l1 (Val v2) h2 l2 Vs ls1 ls2" by(auto)
from 1 2 BinOp show ?case by(auto intro!:BinOp1)
next
case (BinOpThrow2 bop e e0 e1 h l h1 l1 h2 l2 v1)
have "PROP ?P e0 h l (Val v1) h1 l1 Vs ls".
with BinOpThrow2.prems
obtain ls1 where 1: "?Post e0 h l (Val v1) h1 l1 Vs ls ls1"
"size ls = size ls1" by(auto intro!:eval1_preserves_len)
have "PROP ?P e1 h1 l1 (throw e) h2 l2 Vs ls1".
with 1 BinOpThrow2.prems
obtain ls2 where 2: "?Post e1 h1 l1 (throw e) h2 l2 Vs ls1 ls2" by(auto)
from 1 2 BinOpThrow2 show ?case by(auto intro!:BinOpThrow21)
next
case BinOpThrow1 thus ?case by(fastsimp intro!:eval1_evals1.intros)
next
case Var thus ?case
by(force intro!:Var1 simp add:index_less_aux map_le_def fun_upds_apply)
next
case LAss thus ?case
by(fastsimp simp add: index_less_aux LAss_lem intro:eval1_evals1.intros
dest:eval1_preserves_len)
next
case LAssThrow thus ?case by(fastsimp intro:eval1_evals1.intros)
next
case FAcc thus ?case by(fastsimp intro:eval1_evals1.intros)
next
case FAccNull thus ?case by(fastsimp intro:eval1_evals1.intros)
next
case FAccThrow thus ?case by(fastsimp intro:eval1_evals1.intros)
next
case (FAss C D F a e1 e2 fs fs' h2 h2' l2 h l h1 l1 v)
have "PROP ?P e1 h l (addr a) h1 l1 Vs ls".
with FAss.prems
obtain ls1 where 1: "?Post e1 h l (addr a) h1 l1 Vs ls ls1"
"size ls = size ls1" by(auto intro!:eval1_preserves_len)
have "PROP ?P e2 h1 l1 (Val v) h2 l2 Vs ls1".
with 1 FAss.prems
obtain ls2 where 2: "?Post e2 h1 l1 (Val v) h2 l2 Vs ls1 ls2" by(auto)
from 1 2 FAss show ?case by(auto intro!:FAss1)
next
case (FAssNull D F e1 e2 h l h1 l1 h2 l2 v)
have "PROP ?P e1 h l null h1 l1 Vs ls".
with FAssNull.prems
obtain ls1 where 1: "?Post e1 h l null h1 l1 Vs ls ls1"
"size ls = size ls1" by(auto intro!:eval1_preserves_len)
have "PROP ?P e2 h1 l1 (Val v) h2 l2 Vs ls1".
with 1 FAssNull.prems
obtain ls2 where 2: "?Post e2 h1 l1 (Val v) h2 l2 Vs ls1 ls2" by(auto)
from 1 2 FAssNull show ?case by(auto intro!:FAssNull1)
next
case FAssThrow1 thus ?case by(fastsimp intro:eval1_evals1.intros)
next
case (FAssThrow2 D F e e1 e2 h l h1 l1 h2 l2 v)
have "PROP ?P e1 h l (Val v) h1 l1 Vs ls".
with FAssThrow2.prems
obtain ls1 where 1: "?Post e1 h l (Val v) h1 l1 Vs ls ls1"
"size ls = size ls1" by(auto intro!:eval1_preserves_len)
have "PROP ?P e2 h1 l1 (throw e) h2 l2 Vs ls1".
with 1 FAssThrow2.prems
obtain ls2 where 2: "?Post e2 h1 l1 (throw e) h2 l2 Vs ls1 ls2" by(auto)
from 1 2 FAssThrow2 show ?case by(auto intro!:FAssThrow21)
next
case (CallNull M e es h l h1 l1 h2 l2 vs)
have "PROP ?P e h l null h1 l1 Vs ls".
with CallNull.prems
obtain ls1 where 1: "?Post e h l null h1 l1 Vs ls ls1"
"size ls = size ls1" by(auto intro!:eval1_preserves_len)
have "PROP ?Ps es h1 l1 (map Val vs) h2 l2 Vs ls1".
with 1 CallNull.prems
obtain ls2 where 2: "?Posts es h1 l1 (map Val vs) h2 l2 Vs ls1 ls2" by(auto)
from 1 2 CallNull show ?case
by (auto simp add: map_compose[symmetric] comp_def elim!: CallNull1)
next
case CallObjThrow thus ?case by(fastsimp intro:eval1_evals1.intros)
next
case (CallParamsThrow M e es es' ex h l h1 l1 h2 l2 v vs)
have "PROP ?P e h l (Val v) h1 l1 Vs ls".
with CallParamsThrow.prems
obtain ls1 where 1: "?Post e h l (Val v) h1 l1 Vs ls ls1"
"size ls = size ls1" by(auto intro!:eval1_preserves_len)
have "PROP ?Ps es h1 l1 (map Val vs @ throw ex # es') h2 l2 Vs ls1".
with 1 CallParamsThrow.prems
obtain ls2 where 2: "?Posts es h1 l1 (map Val vs @ throw ex # es') h2 l2 Vs ls1 ls2" by(auto)
from 1 2 CallParamsThrow show ?case
by (auto simp add: map_compose[symmetric] comp_def
elim!: CallParamsThrow1 dest!:evals_final)
next
case (Call C D M T Ts a body e b' fs h2 h3 l2 l2' l3 pns es h l h1 l1 vs)
have "PROP ?P e h l (addr a) h1 l1 Vs ls".
with Call.prems
obtain ls1 where 1: "?Post e h l (addr a) h1 l1 Vs ls ls1"
"size ls = size ls1" by(auto intro!:eval1_preserves_len)
have "PROP ?Ps es h1 l1 (map Val vs) h2 l2 Vs ls1".
with 1 Call.prems
obtain ls2 where 2: "?Posts es h1 l1 (map Val vs) h2 l2 Vs ls1 ls2"
"size ls1 = size ls2" by(auto intro!:evals1_preserves_len)
let ?Vs = "this#pns"
let ?ls = "Addr a # vs @ replicate (max_vars body) arbitrary"
have mdecl: "P \<turnstile> C sees M: Ts->T = (pns, body) in D".
have fv_body: "fv body ⊆ set ?Vs" and wf_size: "size Ts = size pns"
using wf mdecl by(auto dest!:sees_wf_mdecl simp:wf_mdecl_def)
have mdecl1: "compP1 P \<turnstile> C sees M: Ts->T = (compE1 ?Vs body) in D"
using sees_method_compP[OF mdecl, of "λ(pns,e). compE1 (this#pns) e"]
by(simp)
have [simp]: "l2' = [this \<mapsto> Addr a, pns [\<mapsto>] vs]".
have Call_size: "size vs = size pns".
have "PROP ?P body h2 l2' b' h3 l3 ?Vs ?ls".
with 1 2 fv_body Call_size Call.prems
obtain ls3 where 3: "?Post body h2 l2' b' h3 l3 ?Vs ?ls ls3" by(auto)
have hp: "h2 a = Some (C, fs)".
from 1 2 3 hp mdecl1 wf_size Call_size show ?case
by(fastsimp simp add: map_compose[symmetric] comp_def
intro!: Call1 dest!:evals_final)
qed
(*>*)
subsection{*Preservation of well-formedness*}
text{* The compiler preserves well-formedness. Is less trivial than it
may appear. We start with two simple properties: preservation of
well-typedness *}
lemma compE1_pres_wt: "!!Vs Ts U.
[| P,[Vs[\<mapsto>]Ts] \<turnstile> e :: U; size Ts = size Vs |]
==> compP f P,Ts \<turnstile>1 compE1 Vs e :: U"
and "!!Vs Ts Us.
[| P,[Vs[\<mapsto>]Ts] \<turnstile> es [::] Us; size Ts = size Vs |]
==> compP f P,Ts \<turnstile>1 compEs1 Vs es [::] Us"
(*<*)
apply(induct e and es)
apply clarsimp
apply(fastsimp)
apply clarsimp
apply(fastsimp split:bop.splits)
apply (fastsimp simp:map_upds_apply_eq_Some split:split_if_asm)
apply (fastsimp simp:map_upds_apply_eq_Some split:split_if_asm)
apply (fastsimp)
apply (fastsimp)
apply (fastsimp dest!: sees_method_compP[where f = f])
apply (fastsimp simp:nth_append)
apply (fastsimp)
apply (fastsimp)
apply (fastsimp)
apply (fastsimp)
apply (fastsimp simp:nth_append)
apply simp
apply (fastsimp)
done
(*>*)
text{*\noindent and the correct block numbering: *}
lemma \<B>: "!!Vs n. size Vs = n ==> \<B> (compE1 Vs e) n"
and \<B>s: "!!Vs n. size Vs = n ==> \<B>s (compEs1 Vs es) n"
(*<*)by(induct e and es) simp_all(*>*)
text{* The main complication is preservation of definite assignment
@{term"\<D>"}. *}
lemma image_index: "A ⊆ set(xs@[x]) ==> index (xs @ [x]) ` A =
(if x ∈ A then insert (size xs) (index xs ` (A-{x})) else index xs ` A)"
(*<*)
apply(auto simp:image_def)
apply(rule bexI)
prefer 2 apply blast
apply simp
apply(rule ccontr)
apply(erule_tac x=xa in ballE)
prefer 2 apply blast
apply(fastsimp simp add:neq_commute)
apply(subgoal_tac "x ≠ xa")
prefer 2 apply blast
apply(fastsimp simp add:neq_commute)
apply(subgoal_tac "x ≠ xa")
prefer 2 apply blast
apply(force)
done
(*>*)
lemma A_compE1_None[simp]:
"!!Vs. \<A> e = None ==> \<A> (compE1 Vs e) = None"
and "!!Vs. \<A>s es = None ==> \<A>s (compEs1 Vs es) = None"
(*<*)by(induct e and es)(auto simp:hyperset_defs)(*>*)
lemma A_compE1:
"!!A Vs. [| \<A> e = ⌊A⌋; fv e ⊆ set Vs |] ==> \<A> (compE1 Vs e) = ⌊index Vs ` A⌋"
and "!!A Vs. [| \<A>s es = ⌊A⌋; fvs es ⊆ set Vs |] ==> \<A>s (compEs1 Vs es) = ⌊index Vs ` A⌋"
(*<*)
proof(induct e and es)
case (Block V' T e)
hence "fv e ⊆ set (Vs@[V'])" by fastsimp
moreover obtain B where "\<A> e = ⌊B⌋"
using Block.prems by(simp add: hyperset_defs)
moreover from calculation have "B ⊆ set (Vs@[V'])" by(auto dest!:A_fv)
ultimately show ?case using Block
by(auto simp add: hyperset_defs image_index)
next
case (TryCatch e1 C V' e2)
hence fve2: "fv e2 ⊆ set (Vs@[V'])" by auto
show ?case
proof (cases "\<A> e1")
assume A1: "\<A> e1 = None"
then obtain A2 where A2: "\<A> e2 = ⌊A2⌋" using TryCatch
by(simp add:hyperset_defs)
hence "A2 ⊆ set (Vs@[V'])" using TryCatch.prems A_fv[OF A2] by simp blast
thus ?thesis using TryCatch fve2 A1 A2
by(auto simp add:hyperset_defs image_index)
next
fix A1 assume A1: "\<A> e1 = ⌊A1⌋"
show ?thesis
proof (cases "\<A> e2")
assume A2: "\<A> e2 = None"
then show ?case using TryCatch A1 by(simp add:hyperset_defs)
next
fix A2 assume A2: "\<A> e2 = ⌊A2⌋"
have "A1 ⊆ set Vs" using TryCatch.prems A_fv[OF A1] by simp blast
moreover
have "A2 ⊆ set (Vs@[V'])" using TryCatch.prems A_fv[OF A2] by simp blast
ultimately show ?thesis using TryCatch A1 A2
by(fastsimp simp add: hyperset_defs image_index
Diff_subset_conv inj_on_image_Int[OF inj_on_index])
qed
qed
next
case (Cond e e1 e2)
{ assume "\<A> e = None ∨ \<A> e1 = None ∨ \<A> e2 = None"
hence ?case using Cond by(auto simp add:hyperset_defs image_Un)
}
moreover
{ fix A A1 A2
assume "\<A> e = ⌊A⌋" and A1: "\<A> e1 = ⌊A1⌋" and A2: "\<A> e2 = ⌊A2⌋"
moreover
have "A1 ⊆ set Vs" using Cond.prems A_fv[OF A1] by simp blast
moreover
have "A2 ⊆ set Vs" using Cond.prems A_fv[OF A2] by simp blast
ultimately have ?case using Cond
by(auto simp add:hyperset_defs image_Un
inj_on_image_Int[OF inj_on_index])
}
ultimately show ?case by fastsimp
qed (auto simp add:hyperset_defs)
(*>*)
lemma D_None[iff]: "\<D> (e::'a exp) None" and [iff]: "\<D>s (es::'a exp list) None"
(*<*)by(induct e and es)(simp_all)(*>*)
lemma D_index_compE1:
"!!A Vs. [| A ⊆ set Vs; fv e ⊆ set Vs |] ==>
\<D> e ⌊A⌋ ==> \<D> (compE1 Vs e) ⌊index Vs ` A⌋"
and "!!A Vs. [| A ⊆ set Vs; fvs es ⊆ set Vs |] ==>
\<D>s es ⌊A⌋ ==> \<D>s (compEs1 Vs es) ⌊index Vs ` A⌋"
(*<*)
proof(induct e and es)
case (BinOp e1 bop e2)
hence IH1: "\<D> (compE1 Vs e1) ⌊index Vs ` A⌋" by simp
show ?case
proof (cases "\<A> e1")
case None thus ?thesis using BinOp by simp
next
case (Some A1)
have indexA1: "\<A> (compE1 Vs e1) = ⌊index Vs ` A1⌋"
using A_compE1[OF Some] BinOp.prems by auto
have "A ∪ A1 ⊆ set Vs" using BinOp.prems A_fv[OF Some] by auto
hence "\<D> (compE1 Vs e2) ⌊index Vs ` (A ∪ A1)⌋" using BinOp Some by auto
hence "\<D> (compE1 Vs e2) ⌊index Vs ` A ∪ index Vs ` A1⌋"
by(simp add: image_Un)
thus ?thesis using IH1 indexA1 by auto
qed
next
case (FAss e1 F D e2)
hence IH1: "\<D> (compE1 Vs e1) ⌊index Vs ` A⌋" by simp
show ?case
proof (cases "\<A> e1")
case None thus ?thesis using FAss by simp
next
case (Some A1)
have indexA1: "\<A> (compE1 Vs e1) = ⌊index Vs ` A1⌋"
using A_compE1[OF Some] FAss.prems by auto
have "A ∪ A1 ⊆ set Vs" using FAss.prems A_fv[OF Some] by auto
hence "\<D> (compE1 Vs e2) ⌊index Vs ` (A ∪ A1)⌋" using FAss Some by auto
hence "\<D> (compE1 Vs e2) ⌊index Vs ` A ∪ index Vs ` A1⌋"
by(simp add: image_Un)
thus ?thesis using IH1 indexA1 by auto
qed
next
case (Call e1 M es)
hence IH1: "\<D> (compE1 Vs e1) ⌊index Vs ` A⌋" by simp
show ?case
proof (cases "\<A> e1")
case None thus ?thesis using Call by simp
next
case (Some A1)
have indexA1: "\<A> (compE1 Vs e1) = ⌊index Vs ` A1⌋"
using A_compE1[OF Some] Call.prems by auto
have "A ∪ A1 ⊆ set Vs" using Call.prems A_fv[OF Some] by auto
hence "\<D>s (compEs1 Vs es) ⌊index Vs ` (A ∪ A1)⌋" using Call Some by auto
hence "\<D>s (compEs1 Vs es) ⌊index Vs ` A ∪ index Vs ` A1⌋"
by(simp add: image_Un)
thus ?thesis using IH1 indexA1 by auto
qed
next
case (TryCatch e1 C V e2)
have "[| A∪{V} ⊆ set(Vs@[V]); fv e2 ⊆ set(Vs@[V]); \<D> e2 ⌊A∪{V}⌋|] ==>
\<D> (compE1 (Vs@[V]) e2) ⌊index (Vs@[V]) ` (A∪{V})⌋".
hence "\<D> (compE1 (Vs@[V]) e2) ⌊index (Vs@[V]) ` (A∪{V})⌋"
using TryCatch.prems by(simp add:Diff_subset_conv)
moreover have "index (Vs@[V]) ` A ⊆ index Vs ` A ∪ {size Vs}"
using TryCatch.prems by(auto simp add: image_index split:split_if_asm)
ultimately show ?case using TryCatch by(auto simp:hyperset_defs elim!:D_mono')
next
case (Seq e1 e2)
hence IH1: "\<D> (compE1 Vs e1) ⌊index Vs ` A⌋" by simp
show ?case
proof (cases "\<A> e1")
case None thus ?thesis using Seq by simp
next
case (Some A1)
have indexA1: "\<A> (compE1 Vs e1) = ⌊index Vs ` A1⌋"
using A_compE1[OF Some] Seq.prems by auto
have "A ∪ A1 ⊆ set Vs" using Seq.prems A_fv[OF Some] by auto
hence "\<D> (compE1 Vs e2) ⌊index Vs ` (A ∪ A1)⌋" using Seq Some by auto
hence "\<D> (compE1 Vs e2) ⌊index Vs ` A ∪ index Vs ` A1⌋"
by(simp add: image_Un)
thus ?thesis using IH1 indexA1 by auto
qed
next
case (Cond e e1 e2)
hence IH1: "\<D> (compE1 Vs e) ⌊index Vs ` A⌋" by simp
show ?case
proof (cases "\<A> e")
case None thus ?thesis using Cond by simp
next
case (Some B)
have indexB: "\<A> (compE1 Vs e) = ⌊index Vs ` B⌋"
using A_compE1[OF Some] Cond.prems by auto
have "A ∪ B ⊆ set Vs" using Cond.prems A_fv[OF Some] by auto
hence "\<D> (compE1 Vs e1) ⌊index Vs ` (A ∪ B)⌋"
and "\<D> (compE1 Vs e2) ⌊index Vs ` (A ∪ B)⌋"
using Cond Some by auto
hence "\<D> (compE1 Vs e1) ⌊index Vs ` A ∪ index Vs ` B⌋"
and "\<D> (compE1 Vs e2) ⌊index Vs ` A ∪ index Vs ` B⌋"
by(simp add: image_Un)+
thus ?thesis using IH1 indexB by auto
qed
next
case (While e1 e2)
hence IH1: "\<D> (compE1 Vs e1) ⌊index Vs ` A⌋" by simp
show ?case
proof (cases "\<A> e1")
case None thus ?thesis using While by simp
next
case (Some A1)
have indexA1: "\<A> (compE1 Vs e1) = ⌊index Vs ` A1⌋"
using A_compE1[OF Some] While.prems by auto
have "A ∪ A1 ⊆ set Vs" using While.prems A_fv[OF Some] by auto
hence "\<D> (compE1 Vs e2) ⌊index Vs ` (A ∪ A1)⌋" using While Some by auto
hence "\<D> (compE1 Vs e2) ⌊index Vs ` A ∪ index Vs ` A1⌋"
by(simp add: image_Un)
thus ?thesis using IH1 indexA1 by auto
qed
next
case (Block V T e)
have "[| fv e ⊆ set(Vs@[V]); A-{V} ⊆ set(Vs@[V]); \<D> e ⌊A-{V}⌋ |] ==>
\<D> (compE1 (Vs@[V]) e) ⌊index (Vs@[V]) ` (A-{V})⌋".
hence "\<D> (compE1 (Vs@[V]) e) ⌊index (Vs@[V]) ` (A-{V})⌋"
using Block.prems by(simp add:Diff_subset_conv)
moreover have "size Vs ∉ index Vs ` A"
using Block.prems by(auto simp add:image_def)
ultimately show ?case using Block
by(auto simp add: image_index Diff_subset_conv hyperset_defs elim!: D_mono')
next
case (Cons_exp e1 es)
hence IH1: "\<D> (compE1 Vs e1) ⌊index Vs ` A⌋" by simp
show ?case
proof (cases "\<A> e1")
case None thus ?thesis using Cons_exp by simp
next
case (Some A1)
have indexA1: "\<A> (compE1 Vs e1) = ⌊index Vs ` A1⌋"
using A_compE1[OF Some] Cons_exp.prems by auto
have "A ∪ A1 ⊆ set Vs" using Cons_exp.prems A_fv[OF Some] by auto
hence "\<D>s (compEs1 Vs es) ⌊index Vs ` (A ∪ A1)⌋" using Cons_exp Some by auto
hence "\<D>s (compEs1 Vs es) ⌊index Vs ` A ∪ index Vs ` A1⌋"
by(simp add: image_Un)
thus ?thesis using IH1 indexA1 by auto
qed
qed (simp_all add:hyperset_defs)
(*>*)
lemma index_image_set: "distinct xs ==> index xs ` set xs = {..size xs(}"
(*<*)by(induct xs rule:rev_induct) (auto simp add: image_index)(*>*)
lemma D_compE1:
"[| \<D> e ⌊set Vs⌋; fv e ⊆ set Vs; distinct Vs |] ==> \<D> (compE1 Vs e) ⌊{..length Vs(}⌋"
(*<*)by(fastsimp dest!: D_index_compE1[OF subset_refl] simp add:index_image_set)(*>*)
lemma D_compE1':
assumes "\<D> e ⌊set(V#Vs)⌋" and "fv e ⊆ set(V#Vs)" and "distinct(V#Vs)"
shows "\<D> (compE1 (V#Vs) e) ⌊{..length Vs}⌋"
(*<*)
proof -
have "{..size Vs} = {..size(V#Vs)(}" by auto
thus ?thesis using prems by (simp only:)(rule D_compE1)
qed
(*>*)
lemma compP1_pres_wf: "wf_J_prog P ==> wf_J1_prog (compP1 P)"
(*<*)
apply simp
apply(rule wf_prog_compPI)
prefer 2 apply assumption
apply(case_tac m)
apply(simp add:wf_mdecl_def wf_J1_mdecl_def wf_J_mdecl)
apply(clarify)
apply(frule WT_fv)
apply(fastsimp intro!: compE1_pres_wt D_compE1' \<B>)
done
(*>*)
end
lemma hidden_unmod:
hidden Vs i ==> unmod (compE1 Vs e) i
and
hidden Vs i ==> unmods (compEs1 Vs es) i
lemma eval1_preserves_unmod:
[| eval1 P e (h, ls) e' (h', ls'); unmod e i; i < length ls |] ==> ls ! i = ls' ! i
and
[| evals1 P es (h, ls) es' (h', ls'); unmods es i; i < length ls |] ==> ls ! i = ls' ! i
lemma LAss_lem:
[| x : set xs; length xs <= length ys; m1 ⊆m m2(xs [|->] ys) |] ==> m1(x |-> y) ⊆m m2(xs [|->] ys[index xs x := y])
lemma
[| l ⊆m [Vs [|->] ls]; l' ⊆m [Vs [|->] ls', V |-> v]; V : set Vs ==> ls ! index Vs V = ls' ! index Vs V; length ls = length ls'; length Vs < length ls' |] ==> l'(V := l V) ⊆m [Vs [|->] ls']
theorem eval1_eval:
[| wwf_J_prog P; eval P e (h, l) e' (h', l'); fv e <= set Vs; l ⊆m [Vs [|->] ls]; length Vs + max_vars e <= length ls |] ==> EX ls'. eval1 (compP1 P) (compE1 Vs e) (h, ls) (fin1 e') (h', ls') & l' ⊆m [Vs [|->] ls']
and evals1_evals:
[| wwf_J_prog P; evals P es (h, l) es' (h', l'); fvs es <= set Vs; l ⊆m [Vs [|->] ls]; length Vs + max_varss es <= length ls |] ==> EX ls'. evals1 (compP1 P) (compEs1 Vs es) (h, ls) (compEs1 Vs es') (h', ls') & l' ⊆m [Vs [|->] ls']
lemma compE1_pres_wt:
[| WT P [Vs [|->] Ts] e U; length Ts = length Vs |] ==> WT1 (compP f P) Ts (compE1 Vs e) U
and
[| WTs P [Vs [|->] Ts] es Us; length Ts = length Vs |] ==> WTs1 (compP f P) Ts (compEs1 Vs es) Us
lemma \<B>:
length Vs = n ==> \<B> (compE1 Vs e) n
and \<B>s:
length Vs = n ==> \<B>s (compEs1 Vs es) n
lemma image_index:
A <= set (xs @ [x]) ==> index (xs @ [x]) ` A = (if x : A then insert (length xs) (index xs ` (A - {x})) else index xs ` A)
lemma A_compE1_None:
\<A> e = None ==> \<A> (compE1 Vs e) = None
and
\<A>s es = None ==> \<A>s (compEs1 Vs es) = None
lemma A_compE1:
[| \<A> e = ⌊A⌋; fv e <= set Vs |] ==> \<A> (compE1 Vs e) = ⌊index Vs ` A⌋
and
[| \<A>s es = ⌊A⌋; fvs es <= set Vs |] ==> \<A>s (compEs1 Vs es) = ⌊index Vs ` A⌋
lemma D_None:
\<D> e None
and
\<D>s es None
lemma D_index_compE1:
[| A <= set Vs; fv e <= set Vs; \<D> e ⌊A⌋ |] ==> \<D> (compE1 Vs e) ⌊index Vs ` A⌋
and
[| A <= set Vs; fvs es <= set Vs; \<D>s es ⌊A⌋ |] ==> \<D>s (compEs1 Vs es) ⌊index Vs ` A⌋
lemma index_image_set:
distinct xs ==> index xs ` set xs = {..length xs(}
lemma D_compE1:
[| \<D> e ⌊set Vs⌋; fv e <= set Vs; distinct Vs |] ==> \<D> (compE1 Vs e) ⌊{..length Vs(}⌋
lemma
[| \<D> e ⌊set (V # Vs)⌋; fv e <= set (V # Vs); distinct (V # Vs) |] ==> \<D> (compE1 (V # Vs) e) ⌊{..length Vs}⌋
lemma compP1_pres_wf:
wf_J_prog P ==> wf_J1_prog (compP1 P)