Theory Compiler2

Up to index of Isabelle/HOL/Jinja

theory Compiler2 = PCompiler + J1 + JVMExec:

(*  Title:      Jinja/Compiler/Compiler2.thy
    ID:         $Id: Compiler2.html 1910 2004-05-19 04:46:04Z kleing $
    Author:     Tobias Nipkow
    Copyright   TUM 2003
*)

header {* \isaheader{Compilation Stage 2} *}

theory Compiler2 =  PCompiler + J1 + JVMExec:

consts
  compE2  :: "expr1      => instr list"
  compEs2 :: "expr1 list => instr list"

primrec
"compE2 (new C) = [New C]"
"compE2 (Cast C e) = compE2 e @ [Checkcast C]"
"compE2 (Val v) = [Push v]"
"compE2 (e1 «bop» e2) = compE2 e1 @ compE2 e2 @ 
  (case bop of Eq => [CmpEq]
            | Add => [IAdd])"
"compE2 (Var i) = [Load i]"
"compE2 (i:=e) = compE2 e @ [Store i, Push Unit]"
"compE2 (e\<bullet>F{D}) = compE2 e @ [Getfield F D]"
"compE2 (e1\<bullet>F{D} := e2) =
       compE2 e1 @ compE2 e2 @ [Putfield F D, Push Unit]"
"compE2 (e\<bullet>M(es)) = compE2 e @ compEs2 es @ [Invoke M (size es)]"
"compE2 ({i:T; e}) = compE2 e"
"compE2 (e1;;e2) = compE2 e1 @ [Pop] @ compE2 e2"
"compE2 (if (e) e1 else e2) =
        (let cnd   = compE2 e;
             thn   = compE2 e1;
             els   = compE2 e2;
             test  = IfFalse (int(size thn + 2)); 
             thnex = Goto (int(size els + 1))
         in cnd @ [test] @ thn @ [thnex] @ els)"
"compE2 (while (e) c) =
        (let cnd   = compE2 e;
             bdy   = compE2 c;
             test  = IfFalse (int(size bdy + 3)); 
             loop  = Goto (-int(size bdy + size cnd + 2))
         in cnd @ [test] @ bdy @ [Pop] @ [loop] @ [Push Unit])"
"compE2 (throw e) = compE2 e @ [instr.Throw]"
"compE2 (try e1 catch(C i) e2) =
   (let catch = compE2 e2
    in compE2 e1 @ [Goto (int(size catch)+2), Store i] @ catch)"

"compEs2 []     = []"
"compEs2 (e#es) = compE2 e @ compEs2 es"

text{* Compilation of exception table. Is given start address of code
to compute absolute addresses necessary in exception table. *}

consts
  compxE2  :: "expr1      => pc => nat => ex_table"
  compxEs2 :: "expr1 list => pc => nat => ex_table"

primrec
"compxE2 (new C) pc d = []"
"compxE2 (Cast C e) pc d = compxE2 e pc d"
"compxE2 (Val v) pc d = []"
"compxE2 (e1 «bop» e2) pc d =
   compxE2 e1 pc d @ compxE2 e2 (pc + size(compE2 e1)) (d+1)"
"compxE2 (Var i) pc d = []"
"compxE2 (i:=e) pc d = compxE2 e pc d"
"compxE2 (e\<bullet>F{D}) pc d = compxE2 e pc d"
"compxE2 (e1\<bullet>F{D} := e2) pc d =
   compxE2 e1 pc d @ compxE2 e2 (pc + size(compE2 e1)) (d+1)"
"compxE2 (e\<bullet>M(es)) pc d =
   compxE2 e pc d @ compxEs2 es (pc + size(compE2 e)) (d+1)"
"compxE2 ({i:T; e}) pc d = compxE2 e pc d"
"compxE2 (e1;;e2) pc d =
   compxE2 e1 pc d @ compxE2 e2 (pc+size(compE2 e1)+1) d"
"compxE2 (if (e) e1 else e2) pc d =
        (let pc1   = pc + size(compE2 e) + 1;
             pc2   = pc1 + size(compE2 e1) + 1
         in compxE2 e pc d @ compxE2 e1 pc1 d @ compxE2 e2 pc2 d)"
"compxE2 (while (b) e) pc d =
   compxE2 b pc d @ compxE2 e (pc+size(compE2 b)+1) d"
"compxE2 (throw e) pc d = compxE2 e pc d"
"compxE2 (try e1 catch(C i) e2) pc d =
   (let pc1 = pc + size(compE2 e1)
    in compxE2 e1 pc d @ compxE2 e2 (pc1+2) d @ [(pc,pc1,C,pc1+1,d)])"

"compxEs2 [] pc d    = []"
"compxEs2 (e#es) pc d = compxE2 e pc d @ compxEs2 es (pc+size(compE2 e)) (d+1)"

consts
  max_stack :: "expr1 => nat"
  max_stacks :: "expr1 list => nat"
primrec
"max_stack (new C) = 1"
"max_stack (Cast C e) = max_stack e"
"max_stack (Val v) = 1"
"max_stack (e1 «bop» e2) = max (max_stack e1) (max_stack e2) + 1"
"max_stack (Var i) = 1"
"max_stack (i:=e) = max_stack e"
"max_stack (e\<bullet>F{D}) = max_stack e"
"max_stack (e1\<bullet>F{D} := e2) = max (max_stack e1) (max_stack e2) + 1"
"max_stack (e\<bullet>M(es)) = max (max_stack e) (max_stacks es) + 1"
"max_stack ({i:T; e}) = max_stack e"
"max_stack (e1;;e2) = max (max_stack e1) (max_stack e2)"
"max_stack (if (e) e1 else e2) =
  max (max_stack e) (max (max_stack e1) (max_stack e2))"
"max_stack (while (e) c) = max (max_stack e) (max_stack c)"
"max_stack (throw e) = max_stack e"
"max_stack (try e1 catch(C i) e2) = max (max_stack e1) (max_stack e2)"
 
"max_stacks [] = 0"
"max_stacks (e#es) = max (max_stack e) (1 + max_stacks es)"

lemma max_stack1: "1 ≤ max_stack e"
(*<*)by(induct e) (simp_all add:max_def)(*>*)


constdefs
  compMb2 :: "expr1 => jvm_method"
  "compMb2  ≡  λbody.
  let ins = compE2 body @ [Return];
      xt = compxE2 body 0 0
  in (max_stack body, max_vars body, ins, xt)"

  compP2 :: "J1_prog => jvm_prog"
  "compP2  ≡  compP compMb2"

(*<*)
declare compP2_def [simp]
(*>*)

lemma compMb2 [simp]:
  "compMb2 e = (max_stack e, max_vars e, compE2 e @ [Return], compxE2 e 0 0)"
(*<*)by (simp add: compMb2_def)(*>*)


end

lemma max_stack1:

  1 <= max_stack e

lemma compMb2:

  compMb2 e = (max_stack e, max_vars e, compE2 e @ [Return], compxE2 e 0 0)