(* Title: Jinja/Compiler/Compiler2.thy ID: $Id: Compiler2.html 1910 2004-05-19 04:46:04Z kleing $ Author: Tobias Nipkow Copyright TUM 2003 *) header {* \isaheader{Compilation Stage 2} *} theory Compiler2 = PCompiler + J1 + JVMExec: consts compE2 :: "expr1 => instr list" compEs2 :: "expr1 list => instr list" primrec "compE2 (new C) = [New C]" "compE2 (Cast C e) = compE2 e @ [Checkcast C]" "compE2 (Val v) = [Push v]" "compE2 (e1 «bop» e2) = compE2 e1 @ compE2 e2 @ (case bop of Eq => [CmpEq] | Add => [IAdd])" "compE2 (Var i) = [Load i]" "compE2 (i:=e) = compE2 e @ [Store i, Push Unit]" "compE2 (e\<bullet>F{D}) = compE2 e @ [Getfield F D]" "compE2 (e1\<bullet>F{D} := e2) = compE2 e1 @ compE2 e2 @ [Putfield F D, Push Unit]" "compE2 (e\<bullet>M(es)) = compE2 e @ compEs2 es @ [Invoke M (size es)]" "compE2 ({i:T; e}) = compE2 e" "compE2 (e1;;e2) = compE2 e1 @ [Pop] @ compE2 e2" "compE2 (if (e) e1 else e2) = (let cnd = compE2 e; thn = compE2 e1; els = compE2 e2; test = IfFalse (int(size thn + 2)); thnex = Goto (int(size els + 1)) in cnd @ [test] @ thn @ [thnex] @ els)" "compE2 (while (e) c) = (let cnd = compE2 e; bdy = compE2 c; test = IfFalse (int(size bdy + 3)); loop = Goto (-int(size bdy + size cnd + 2)) in cnd @ [test] @ bdy @ [Pop] @ [loop] @ [Push Unit])" "compE2 (throw e) = compE2 e @ [instr.Throw]" "compE2 (try e1 catch(C i) e2) = (let catch = compE2 e2 in compE2 e1 @ [Goto (int(size catch)+2), Store i] @ catch)" "compEs2 [] = []" "compEs2 (e#es) = compE2 e @ compEs2 es" text{* Compilation of exception table. Is given start address of code to compute absolute addresses necessary in exception table. *} consts compxE2 :: "expr1 => pc => nat => ex_table" compxEs2 :: "expr1 list => pc => nat => ex_table" primrec "compxE2 (new C) pc d = []" "compxE2 (Cast C e) pc d = compxE2 e pc d" "compxE2 (Val v) pc d = []" "compxE2 (e1 «bop» e2) pc d = compxE2 e1 pc d @ compxE2 e2 (pc + size(compE2 e1)) (d+1)" "compxE2 (Var i) pc d = []" "compxE2 (i:=e) pc d = compxE2 e pc d" "compxE2 (e\<bullet>F{D}) pc d = compxE2 e pc d" "compxE2 (e1\<bullet>F{D} := e2) pc d = compxE2 e1 pc d @ compxE2 e2 (pc + size(compE2 e1)) (d+1)" "compxE2 (e\<bullet>M(es)) pc d = compxE2 e pc d @ compxEs2 es (pc + size(compE2 e)) (d+1)" "compxE2 ({i:T; e}) pc d = compxE2 e pc d" "compxE2 (e1;;e2) pc d = compxE2 e1 pc d @ compxE2 e2 (pc+size(compE2 e1)+1) d" "compxE2 (if (e) e1 else e2) pc d = (let pc1 = pc + size(compE2 e) + 1; pc2 = pc1 + size(compE2 e1) + 1 in compxE2 e pc d @ compxE2 e1 pc1 d @ compxE2 e2 pc2 d)" "compxE2 (while (b) e) pc d = compxE2 b pc d @ compxE2 e (pc+size(compE2 b)+1) d" "compxE2 (throw e) pc d = compxE2 e pc d" "compxE2 (try e1 catch(C i) e2) pc d = (let pc1 = pc + size(compE2 e1) in compxE2 e1 pc d @ compxE2 e2 (pc1+2) d @ [(pc,pc1,C,pc1+1,d)])" "compxEs2 [] pc d = []" "compxEs2 (e#es) pc d = compxE2 e pc d @ compxEs2 es (pc+size(compE2 e)) (d+1)" consts max_stack :: "expr1 => nat" max_stacks :: "expr1 list => nat" primrec "max_stack (new C) = 1" "max_stack (Cast C e) = max_stack e" "max_stack (Val v) = 1" "max_stack (e1 «bop» e2) = max (max_stack e1) (max_stack e2) + 1" "max_stack (Var i) = 1" "max_stack (i:=e) = max_stack e" "max_stack (e\<bullet>F{D}) = max_stack e" "max_stack (e1\<bullet>F{D} := e2) = max (max_stack e1) (max_stack e2) + 1" "max_stack (e\<bullet>M(es)) = max (max_stack e) (max_stacks es) + 1" "max_stack ({i:T; e}) = max_stack e" "max_stack (e1;;e2) = max (max_stack e1) (max_stack e2)" "max_stack (if (e) e1 else e2) = max (max_stack e) (max (max_stack e1) (max_stack e2))" "max_stack (while (e) c) = max (max_stack e) (max_stack c)" "max_stack (throw e) = max_stack e" "max_stack (try e1 catch(C i) e2) = max (max_stack e1) (max_stack e2)" "max_stacks [] = 0" "max_stacks (e#es) = max (max_stack e) (1 + max_stacks es)" lemma max_stack1: "1 ≤ max_stack e" (*<*)by(induct e) (simp_all add:max_def)(*>*) constdefs compMb2 :: "expr1 => jvm_method" "compMb2 ≡ λbody. let ins = compE2 body @ [Return]; xt = compxE2 body 0 0 in (max_stack body, max_vars body, ins, xt)" compP2 :: "J1_prog => jvm_prog" "compP2 ≡ compP compMb2" (*<*) declare compP2_def [simp] (*>*) lemma compMb2 [simp]: "compMb2 e = (max_stack e, max_vars e, compE2 e @ [Return], compxE2 e 0 0)" (*<*)by (simp add: compMb2_def)(*>*) end
lemma max_stack1:
1 <= max_stack e
lemma compMb2:
compMb2 e = (max_stack e, max_vars e, compE2 e @ [Return], compxE2 e 0 0)