(* Title: Jinja/Common/Basis.thy
ID: $Id: Aux.html 1910 2004-05-19 04:46:04Z kleing $
Author: David von Oheimb, Tobias Nipkow
Copyright 1999 TU Muenchen
*)
header {*
\chapter{Jinja Source Language}\label{cha:j}
\isaheader{Auxiliary Definitions}
*}
theory Aux = Main:
(* FIXME move and possibly turn into a general simproc *)
lemma nat_add_max_le[simp]:
"((n::nat) + max i j ≤ m) = (n + i ≤ m ∧ n + j ≤ m)"
(*<*)by arith(*>*)
lemma Suc_add_max_le[simp]:
"(Suc(n + max i j) ≤ m) = (Suc(n + i) ≤ m ∧ Suc(n + j) ≤ m)"
(*<*)by arith(*>*)
(*<*)
syntax "_Some" :: "'a => 'a option" ("(⌊_⌋)")
(*>*)
translations "⌊x⌋" == "Some x"
(*<*)
declare
option.splits[split]
Let_def[simp]
subset_insertI2 [simp]
Un_subset_iff[simp]
(*>*)
section {*@{text distinct_fst}*}
constdefs
distinct_fst :: "('a × 'b) list => bool"
"distinct_fst ≡ distinct ˆ map fst"
lemma distinct_fst_Nil [simp]:
"distinct_fst []"
(*<*)
apply (unfold distinct_fst_def)
apply (simp (no_asm))
done
(*>*)
lemma distinct_fst_Cons [simp]:
"distinct_fst ((k,x)#kxs) = (distinct_fst kxs ∧ (∀y. (k,y) ∉ set kxs))"
(*<*)
apply (unfold distinct_fst_def)
apply (auto simp:image_def)
done
(*>*)
(*
lemma distinct_fst_append:
"[| distinct_fst kxs'; distinct_fst kxs; ∀(k,x) ∈ set kxs. ∀(k',x') ∈ set kxs'. k' ≠ k |]
==> distinct_fst(kxs @ kxs')"
by (induct kxs) (auto dest: fst_in_set_lemma)
lemma distinct_fst_map_inj:
"[| distinct_fst kxs; inj f |] ==> distinct_fst (map (λ(k,x). (f k, g k x)) kxs)"
by (induct kxs) (auto dest: fst_in_set_lemma simp: inj_eq)
*)
lemma map_of_SomeI:
"[| distinct_fst kxs; (k,x) ∈ set kxs |] ==> map_of kxs k = Some x"
(*<*)by (induct kxs) (auto simp:fun_upd_apply)(*>*)
section {* Using @{term list_all2} for relations *}
constdefs
fun_of :: "('a × 'b) set => 'a => 'b => bool"
"fun_of S ≡ λx y. (x,y) ∈ S"
text {* Convenience lemmas *}
(*<*)
declare fun_of_def [simp]
(*>*)
lemma rel_list_all2_Cons [iff]:
"list_all2 (fun_of S) (x#xs) (y#ys) =
((x,y) ∈ S ∧ list_all2 (fun_of S) xs ys)"
(*<*)by simp(*>*)
lemma rel_list_all2_Cons1:
"list_all2 (fun_of S) (x#xs) ys =
(∃z zs. ys = z#zs ∧ (x,z) ∈ S ∧ list_all2 (fun_of S) xs zs)"
(*<*)by (cases ys) auto(*>*)
lemma rel_list_all2_Cons2:
"list_all2 (fun_of S) xs (y#ys) =
(∃z zs. xs = z#zs ∧ (z,y) ∈ S ∧ list_all2 (fun_of S) zs ys)"
(*<*)by (cases xs) auto(*>*)
lemma rel_list_all2_refl:
"(!!x. (x,x) ∈ S) ==> list_all2 (fun_of S) xs xs"
(*<*)by (simp add: list_all2_refl)(*>*)
lemma rel_list_all2_antisym:
"[| (!!x y. [|(x,y) ∈ S; (y,x) ∈ T|] ==> x = y);
list_all2 (fun_of S) xs ys; list_all2 (fun_of T) ys xs |] ==> xs = ys"
(*<*)by (rule list_all2_antisym) auto(*>*)
lemma rel_list_all2_trans:
"[| !!a b c. [|(a,b) ∈ R; (b,c) ∈ S|] ==> (a,c) ∈ T;
list_all2 (fun_of R) as bs; list_all2 (fun_of S) bs cs|]
==> list_all2 (fun_of T) as cs"
(*<*)by (rule list_all2_trans) auto(*>*)
lemma rel_list_all2_update_cong:
"[| i<size xs; list_all2 (fun_of S) xs ys; (x,y) ∈ S |]
==> list_all2 (fun_of S) (xs[i:=x]) (ys[i:=y])"
(*<*)by (simp add: list_all2_update_cong)(*>*)
lemma rel_list_all2_nthD:
"[| list_all2 (fun_of S) xs ys; p < size xs |] ==> (xs!p,ys!p) ∈ S"
(*<*)by (drule list_all2_nthD) auto(*>*)
lemma rel_list_all2I:
"[| length a = length b; !!n. n < length a ==> (a!n,b!n) ∈ S |] ==> list_all2 (fun_of S) a b"
(*<*)by (erule list_all2_all_nthI) simp(*>*)
(*<*)declare fun_of_def [simp del](*>*)
end
lemma nat_add_max_le:
(n + max i j <= m) = (n + i <= m & n + j <= m)
lemma Suc_add_max_le:
(Suc (n + max i j) <= m) = (Suc (n + i) <= m & Suc (n + j) <= m)
lemma distinct_fst_Nil:
distinct_fst []
lemma distinct_fst_Cons:
distinct_fst ((k, x) # kxs) = (distinct_fst kxs & (ALL y. (k, y) ~: set kxs))
lemma map_of_SomeI:
[| distinct_fst kxs; (k, x) : set kxs |] ==> map_of kxs k = ⌊x⌋
lemma rel_list_all2_Cons:
list_all2 (fun_of S) (x # xs) (y # ys) = ((x, y) : S & list_all2 (fun_of S) xs ys)
lemma rel_list_all2_Cons1:
list_all2 (fun_of S) (x # xs) ys = (EX z zs. ys = z # zs & (x, z) : S & list_all2 (fun_of S) xs zs)
lemma rel_list_all2_Cons2:
list_all2 (fun_of S) xs (y # ys) = (EX z zs. xs = z # zs & (z, y) : S & list_all2 (fun_of S) zs ys)
lemma rel_list_all2_refl:
(!!x. (x, x) : S) ==> list_all2 (fun_of S) xs xs
lemma rel_list_all2_antisym:
[| !!x y. [| (x, y) : S; (y, x) : T |] ==> x = y; list_all2 (fun_of S) xs ys; list_all2 (fun_of T) ys xs |] ==> xs = ys
lemma rel_list_all2_trans:
[| !!a b c. [| (a, b) : R; (b, c) : S |] ==> (a, c) : T; list_all2 (fun_of R) as bs; list_all2 (fun_of S) bs cs |] ==> list_all2 (fun_of T) as cs
lemma rel_list_all2_update_cong:
[| i < length xs; list_all2 (fun_of S) xs ys; (x, y) : S |] ==> list_all2 (fun_of S) (xs[i := x]) (ys[i := y])
lemma rel_list_all2_nthD:
[| list_all2 (fun_of S) xs ys; p < length xs |] ==> (xs ! p, ys ! p) : S
lemma rel_list_all2I:
[| length a = length b; !!n. n < length a ==> (a ! n, b ! n) : S |] ==> list_all2 (fun_of S) a b