
Toward Harnessing DOACROSS Parallelism for Multi-GPGPUs

Peng Di, Qing Wan, Xuemeng Zhang, Hui Wu and Jingling Xue
Programming Languages and Compilers Group
School of Computer Science and Engineering

UNSW, Sydney, NSW 2052, Australia

Abstract—To exploit the full potential of GPGPUs for general-
purpose computing, DOACR parallelism abundant in scientific and
engineering applications must be harnessed. However, the presence of
cross-iteration data dependences in DOACR loops poses an obstacle
to execute their computations concurrently using a massivenumber of
fine-grained threads. This work focuses on iterative PDE solvers rich in
DOACR parallelism to identify optimization principles and strategies
that allow their efficient mapping to GPGPUs. Our main finding is
that certain DOACR loops can be accelerated further on GPGPUs if
they are algorithmically restructured (by a domain expert) to be more
amendable to GPGPU parallelization, judiciously optimized (by the
compiler), and carefully tuned by a performance-tuning tool.

We substantiate this finding with a case study by presenting a
new parallel SSOR method that admits more efficient data-parallel
SIMD execution than red-black SOR on GPGPUs. Our solution
is obtained non-conventionally, by starting from a K-layer SSOR
method and then parallelizing it by applying a non-dependence-
preserving scheme consisting of a new domain decompositiontechnique
followed by a generalized loop tiling. Despite its relatively slower
convergence, our new method outperforms red-black SOR by making
a better balance between data reuse and parallelism and by trading
off convergence rate for SIMD parallelism. Our experimental results
highlight the importance of synergy between domain experts, compiler
optimizations and performance tuning in maximizing the performance
of applications, particularly PDE-based DOACR loops, on GPGPUs.

Keywords-GPGPU, DOACR Parallelism, Loop Tiling, SOR

I. I NTRODUCTION

GPGPUs have recently emerged as powerful data-parallel co-
processors for general-purpose computing as they provide the
tremendous memory bandwidth and computation power at com-
modity prices. The NVIDIA CUDA programming model facilitates
programming of general-purpose applications on modern GPGPUs
such as the NVIDIA GeForce 8 Series. Unfortunately, the level
of effort and expertise required to maximize application perfor-
mance on such GPGPUs is still quite high. Some recent research
efforts focus on automatic transformation of loops into kernels [2],
compiler optimizations [2, 10], higher-level programmingmodels
(than CUDA) [10], cost models [6, 16], performance tuning [11, 8].
At this stage, the code parallelized in their benchmarks consists
of almost exclusively DOALL loops. Despite the simplicity of
DOALL loops, the research community is still gathering the expe-
rience and knowledge needed to establish principles and strategies
that allow efficient mapping of such computations to GPGPUs.
One major challenge is that the underlying architectural constraints
and threading model interact in a fairly complex way, making
the optimization space discontinuous and the performance of an
application hard to predict.

Many scientific and engineering applications exhibit abundant
DOACR parallelism. To exploit the full potential of GPGPUs for
general-purpose computing, we also need to investigate howto
map DOACR (i.e., DOACROSS) loops efficiently to GPGPUs.

There are very few prior studies here. Some loop optimizations
being developed [2, 10] can tackle DOACR loops generically to a
limited extent. There is also a recent work on parallelizing3D PDEs
[13]. However, these techniques are constrained by cross-iteration
dependences in DOACR loops. As a result, the presence of such
parallelism-inhibiting dependences makes it fundamentally difficult
to create a massive number of fine-grained threads on GPGPUs
to execute the computations in a DOACR loop concurrently on a
massive number of processor cores.

In this work, we focus on iterative PDE solvers to establish
optimization principles and strategies for their efficientmapping to
GPGPUs. We have chosen to parallelize the 2D SSOR (Symmetric
Successive-Over Relaxation) method on GPGPUs for two reasons.
First, this method represents one of the most important iterative
solvers for large systems of linear equations with a massiveamount
of data parallelism to be harnessed. Second, the underlyingloop
nest exhibits representative cross-iteration dependences with both
temporal and spatial data reuse to be captured.

We describe our experience in parallelizing SSOR as a case study
for GPGPUs by summarizing our contributions below.

• We present a new parallel SSOR method that admits efficient
data-parallel SIMD execution in GPGPUs. We have obtained
this solution in a non-conventional manner. The starting
point is a K-layer SSOR solver that performsK forward
SOR sweeps andK backward SOR sweeps alternately. This
sequential method is then parallelized by applying a non-
dependence-preserving scheme consisting of a new domain
decomposition technique followed by a generalized loop tiling
to the two sweep directions alternately.

• Despite its relatively slower convergence, our new method out-
performs red-black SOR on both one and multiple GPGPUs by
making a better balance between data reuse and parallelism
and by trading-off convergence rate for SIMD parallelism.
Our method will perform even better on some future GPGPU
architectures that may allow inter-kernel reuse to be exploited.

• Our experimental results demonstrate that certain DOACR
loops can be accelerated further on GPGPUs if they are
algorithmically restructured to be more amendable to GPGPU
parallelization, judiciously optimized, and carefully tuned by
a performance-tuning tool. This highlights the importanceof
synergy between domain experts, compiler optimizations and
performance tuning in maximizing the performance of appli-
cations, particularly PDE-based DOACR loops, on GPGPUs.

The rest of this paper is organized as follows. Section II gives
a brief review of GPGPUs and CUDA. Section III introduces a
multi-layer 2D SSOR iterative solver, with a particular emphasis
on understanding its cross-iteration data dependences. Section IV

describes our new parallel SOR method. Sections V and VI present
and analyze our experimental results on single and multipleGPG-
PUs, respectively. The performance advantages of our method over
red-black SOR are validated and discussed. Section VII reviews
further some related work. Section VIII concludes the paper.

II. GPU ARCHITECTURE

This work uses an NVIDIA Tesla S1070-400 GPU computing
system as the basis for its study. The S1070 computing system
consists of four Tesla C1060 GPUs to form a large set of processor
cores. Each C1060 GPU has 30 streaming multiprocessors (SMs)
with each SM containing eight streaming processors (SPs) orpro-
cessor cores, running at 1.3GHz. Each SP can perform one FMAD
(two ops) and one FMUL (one op) for three single-precision FLOPs
per cycle. With 240 SPs in total, C1060 has a single-precision peak
performance of 936 GFLOPS (30SMs×8SPs×(2+1)×1.3GHz).
With four times as many SPs, S1070 can deliver 3744 GFLOPS
(936GFLOPS × 4GPUs) of single-precision peak performance.

Every C1060 GPU has 102 GB/s bandwidth to its 4GB off-
chip, global memory (calleddevice memory). This amount of
bandwidth can be easily saturated with computational resources
supporting nearly 936 GFLOPS of performance. In addition, a
global memory access has very high latency (400 – 600 cycles).
As a result, several on-chip memories are available to exploit
data reuse so as to lessen an application’s demand for off-chip
memory bandwidth and reduce expensive off-chip memory traffic.
In particular, each SM has a user/compiler-managed 16KB shared
memory for data reuse or sharing among threads and 16,384
32-bit registers partitioned among threads. For read-onlydata,
the constant and texture cache memories can significantly reduce
memory latency. For the experiments done for SSOR in this work,
these cache memories are not used.

In S1070, data exchange among its four C1060 GPUs (i.e., inter-
GPU communication) is accomplished through the host.

In the NVIDIA CUDA programming model [14], a GPU works
as a co-processor with a host by executing data-parallel kernel
functions. A user program is compiled by the NVIDIA compiler
into host code and kernel code. The host code transfers data to
and from the GPU’s device memory via API calls and initiates the
execution of each kernel by performing a function call.

GPUs architectures allow a large number of fine-grained threads
to cooperate in solving large-scale applications. In CUDA,threads
are organized hierarchically into three levels. Each kernel creates
its own single grid. A grid is divided into many thread blocks.
Each thread block is assigned to a single SM for the duration of
its execution. Threads in the same thread block can cooperate by
barrier-synchronizing their memory accesses and can sharedata
through the shared memory. Threads are otherwise independent,
and synchronization across thread blocks is safely accomplished
only by terminating the kernel. Finally, threads within a thread
block are organized into warps of 32 threads. Each warp executes
in a SIMD fashion, issuing in four cycles on the eight SPs of an
SM. When a warp running in an SM stalls, the SM can quickly
switch to a ready warp in the same thread block or a ready warp
in some other thread block assigned to the same SM.

While maximizing data reuse through the shared memory helps
to improve the performance of a kernel, shared memory bank
conflicts should be minimized. In addition, reducing the latency

Resource Limit

Number of Threads per Block 512
Number of Active Threads per SM 1024
Number of Active Blocks per SM 8

Shared Memory per SM 16KB
Number of 32-bit Registers per SM 16,384

Table I
CUDA CONSTRAINTS ONS1070AND C1060.

in accessing data from global memory is crucial for good perfor-
mance. Due to a hardware optimization known asglobal memory
access coalescing, accesses from adjacent threads in a half-warp
to adjacent locations are coalesced into a single contiguous aligned
memory access. Thus, the significant performance benefits due to
coalesced accesses should be leveraged by compiler optimizations.

Table I lists some architectural constraints imposed on a user
program [14]. Due to their complex interactions, it can be difficult
to accurately predict the effects of compiler optimizations on the
performance of a kernel. Unpublished details about GPU archi-
tectures further exacerbate the problem. There is often a tradeoff
between the performance of individual threads and the TLP (thread-
level parallelism) among all threads [2, 10, 16].

III. T HE 2D SSOR ITERATIVE SOLVER

Partial Differential Equations (PDEs) are widely used in scien-
tific and engineering applications. Iterative methods are faster than
direct methods in solving a large system of linear equationsand
are thus often used. Three well-known iterative methods areJacobi,
Gauss-Seidel and Successive-Over-Relaxation (SOR).

Many applications involve boundary value problems that require
solving diffusion equations. Consider a 2D case:

∆u =
∂2u

∂i2
+

∂2u

∂j2
(1)

whereΩ = [0, 1]×[0, 1] ∈ R
2 is bounded with∂Ω as its boundary.

The domainΩ is divided with the step sizes1/(N1 + 1) and
1/(N2 + 1) along thei and j axes, respectively. By usingui,j

to denote the finite difference approximation ofu at grid point
(i, j), we obtain the following five-point approximation of (1):

4ui,j − ui−1,j − ui,j−1 − ui+1,j − ui,j+1 = 0 (2)

wherei = 1, . . . , N1 and j = 1, . . . , N2. The boundary condition
is set to be∂Ω = 0 in the normal manner.

Such a system of equations is often solved using an iterative
solver. The Jacobi method updates all grid points at an iteration,
say,k using their previous values obtained at iterationk − 1:

uk
i,j =

1

4
(uk−1

i−1,j + uk−1

i,j−1 + uk−1

i+1,j + uk−1

i,j+1) (3)

For the SOR method, the computation ofuk
i.j uses the values of

uk
i−1,j anduk

i,j−1 that have already been computed at iterationk
and the old values ofuk−1

i,j , uk−1

i+1,j anduk−1

i,j+1 from iterationk−1:

uk
i,j = (1−ω)uk−1

i,j +
ω

4
(uk

i−1,j +uk
i,j−1+uk−1

i+1,j +uk−1

i,j+1) (4)

The Gauss-Seidel method is a special case of SOR whenω = 1.
A 2D iterative solver is typically implemented using a 3D loop

nest, where the inner two loopsi and j enumerate all grid points

k

2 k

1 k

3 Kk

41 ! Kk

5 k

62 Kk

" #ji ,1$

" #1, $ji

" #1, !ji

" #ji ,1!" #ji ,

" #ji ,1$

" #1, $ji

" #ji ,1!

" #1, !ji

%
%

" #ji ,

" #ji ,

" #ji ,

j

i

Figure 1. A sequential multi-layer symmetric five-point SORmethod
(MLSSOR) (K = 3). The five dependences at each point in the forward
and backward sweeps are directly derived from (4) and (5), respectively.

in the i− j plane, i.e., domain and the outermost loopk performs
multiple sweeps, i.e., iterations across thei − j plane. The set of
all points(k, i, j) is known as theiteration spaceof the loop nest.

The Jacobi method is inherently parallel since all points can
be computed at the same time. However, it is often not used due
to its slow convergence and high memory usage. The SOR and
Gauss-Seidel methods are known to be inherently sequentialin
their original forms. With an appropriate choice of the relaxation
factor ω, SOR converges faster than Gauss-Seidel.

The symmetric SOR, or SSOR, combines two SOR sweeps
together in such a way that the resulting iteration matrix issimilar
to a symmetric matrix. In other words, SSOR is a forward sweep
performed using (4) followed by a backward sweep using:

uk
i,j =(1−ω)uk−1

i,j +
ω

4
(uk−1

i−1,j +uk−1

i,j−1 + uk
i+1,j +uk

i,j+1) (5)

In this paper, we consider to apply (4) and (5) alternately as
illustrated in Figure 1, resulting in what is referred to here as a
multi-layer SSOR method. There areK layers since every sweep-
ing direction is repeatedK times and the method is symmetric
due to the five-point stencil discretization used. In theforward
sweep, (4) is applied forK iterations, starting at the left and bottom
boundaries of the domain and moving towards the right and top
boundaries at each iteration. In thebackward sweep, (5) is applied
alsoK times with the sweeping direction being reversed.

The multi-layer SSOR method,MLSSOR, which is guaranteed
to converge [17], enables us to develop a new data-reuse-effective
and data-parallel implementation for GPU architectures below.

IV. A PARALLEL MLSSOR METHOD FORGPGPUS

Several parallel versions of SOR, including red-black SOR
(denotedRBSOR) [3], multi-color SOR [1, 12] and block-parallel
SOR [22], have been proposed mostly for distributed memory
machines. Tang and Xue [19] presented a method for tiling SOR
by applying skewing and tiling for distributed memory machines.
Goumas et al. [4] later continued this line of investigationby focus-
ing on the parallelization of 2D iteration spaces that result from the
discretization of PDEs. In addition, Huang, et al. [7] introduced a
code tiling technique for improving the cache performance of PDE

solvers for uniprocessors. Michelle et al. [18] presented aparallel
Gauss-Seidel method by applying a full sparse tiling technique
to improve the cache locality of a program for uniprocessors
and shared-memory machines. Wallin et al. [21] considered to
temporally tile Gauss-Seidel with pipelining techniques to improve
parallelism on shared memory machines.

Due to its simplicity and good performance,RBSOR has often
been a popular choice not only for distributed memory machines,
but recently, also for GPUs [25].RBSOR divides a domain of
grid points into a chessboard of red and black points. Due to
the absence of data dependences between red and black points,
the Jacobi method (using SOR) is applied to update the points
of one color simultaneously using the previous values computed
at the points of the other color. This high degree of fine-grained
parallelism makesRBSOR amenable to data-parallel execution
on GPUs. On the other hand,RBSOR does not respect the data
dependences in the original SOR (and SSOR), resulting in some
slightly slower convergence rates under some inputs. In addition,
RBSOR exhibits less data reuse (due to red-black ordering) and
may suffer from high inter-GPU communication overhead.

In this section, we describe a new parallel multi-layer SSOR
algorithm, also denotedMLSSOR (as we will refer to its sequential
version as the sequentialMLSSOR henceforth), for GPU archi-
tectures in order to strike a better balance between fine-grained
parallelism and data reuse thanRBSOR. Like RBSOR, MLSSOR
is developed using a non-dependence-preserving parallelization
scheme as follows. First, a new domain decomposition technique is
applied to enable simultaneous point updating using fine-grained
threads (Section IV-A). Second, a generalized loop tiling,which
tiles the two sweep directions alternately, is applied so that the
resulting tiled code exhibits the same degree of intra-kernel data
reuse but better inter-kernel data reuse than traditional loop tiling
(Section IV-B). Although existing NVIDIA GPU architectures
cannot exploit inter-kernel data reuse, other stream processors such
as Imagine [9] and AMD GPUs can. Despite this, applying the
generalized loop tiling to NVIDIA GPUs is still beneficial asit
improves the convergence rate as discussed in Section V. Third,
a new tile scheduling scheme is introduced to ensure that all
SPs in one GPGPU can start executing their subdomains at the
same time, resulting in significantly improved SIMD parallelism
at the expense of some slightly slower convergence rates than the
sequential SSOR under some inputs (Section IV-C). Finally,the
overall communication cost is kept to a minimum by overlapping
computation and communication on multiple GPUs (Section IV-D).

A. Domain Decomposition

Traditionally, the domain of an SOR solver is partitioned dis-
jointly so that a processor computes all the points in its allotted
subdomain in every SOR iteration. So the domain is meant to
be the mesh, i.e., thei − j plane for a 2D SOR solver. In
MLSSOR, however, the sub-mesh allocated to an SP changes
as the iteration proceeds, causing adjacent sub-meshes to overlap
at their boundaries. To avoid any confusion, the domain of an
MLSSOR loop nest is meant to be its 3D iteration space. As a
result, domain decomposition divides the iteration space into 3D
rectangular boxes (i.e., parallelepipeds).

The two sweep directions are partitioned as shown in Figure 2.
We describe only the technique used for aK-layer forward sweep

21 ,1ddD

21,dd
D

12
0

! " Kkk

Kkk "
0

1
0

! " Kkk

0
kk "

i

j

k

 Figure 2. Domain decomposition for two alternate sweeps.

since it is mirrored by a backward sweep. There are two reasons
behind this somewhat unconventional partitioning approach. First,
together with our generalized loop tiling, this partitioning approach
allows different subdomains to be executed in parallel withthe
inter-subdomain communication kept to a minimum, as discussed
in Section IV-C. Second, as is clear in Section V, better datareuse
and convergence rate can be obtained.

Let a 2D mesh of sizeN1×N2 be partitioned across a 2D mesh
of sizeP1 × P2. For simplicity, it is assumed thatP1 dividesN1

and P2 divides N2. Consider aK-layer forward sweep starting
from k = kf and ending atk = kf + K − 1. It is partitioned into
P1×P2 blocks so that its intersection withkf layer is divided into
P1 ×P2 rectangles of sizeN1/P1 ×N2/P2. This is achieved with
the following subdomain cutting planes across theK-layers:

i = s × N1

P1

+ k − kf + 1, s = 1, . . . , P1 − 1

j = t × N2

P2

+ k − kf + 1, t = 1, . . . , P2 − 1
(6)

whose normals are(1,−1, 0) and (1, 0,−1), respectively.
All non-border subdomains are 3D rectangles (parallelepipeds)

of sizeK × N1

P1

× N2

P2

. The cutting hyperplanes near the borders of
the mesh are so chosen that all subdomains (border or non-border)
have roughly the same number of grid points. LetDd1,d2

be a
non-border subdomain located at(d1, d2), where06d1 <P1 and
06d2 <P2. Let Dk

d1,d2
be itsk-th layer. Then

Dk
d1,d2

= Dk−1

d1,d2
+ (1, 1, 1) (7)

where Dk−1

d1,d2
+ (1, 1, 1) = {(k, i, j) + (1, 1, 1) | (k, i, j) ∈

Dk−1

d1,d2
}. In this case, every layerDk

d1,d2
in the subdomainDd1,d2

is a translateof the layerDk−1

d1,d2
below, i.e., drifts away from the

coordinate origin, along(1, 1, 1) as shown in Figure 2.

B. Generalized Loop Tiling

We tile our sequentialMLSSOR by using a generalized loop
tiling transformation. As can be observed from (4) and (5) and is
also illustrated in Figure 1, there exists temporal reuse across all
three dimensions in the 3D iteration space of theMLSSOR loop
nest. Specifically, each grid point is accessed five times during a
sweep across thei − j plane, once by itself and four times by
its neighbours, and also accessed multiple times during multiple

1 k

2 k

3 Kk

i

j

k

Figure 3. Tiling of the subdomainDd1,d2
in the forward sweep shown

in Figure 2 intom × m = 3 × 3 = 9 tiles of heightK = 3. The middle
tile is full while all the rest are border tiles.

sweeps. To capture such temporal reuse, all three dimensions must
be tiled. Due to the existence of data dependencies in both forward
and backward sweeps (Figure 1), it is illegal to simply tile its
iteration space by using rectangular boxes.

Figure 3 illustrates the loop tiling being applied to the subdomain
Dd1,d2

depicted for a forward sweep in Figure 2. As illustrated in
Figure 1, the sweeping direction used for updating theK layers in a
forward sweep is reversed in a backward sweep. Thus, the fournon-
self dependencies are also reversed. This results in loop tilingbeing
applied to two sweeping directions alternately, a generalization of
traditional loop tiling [23, 24] that tiles the entire iteration space
uniformly. In addition, all border tiles are chosen to have different
sizes so that they have all the same amount of work. This ensures
load balancing among fine-grained threads.

For reasons of symmetry, we explain only how to tile aK-layer
subdomain obtained for a forward sweep, where (4) is repeated K
times across thei − j plane. In general, aK-layer subdomain is
divided intom×m tiles identified by their tile indices. LetTt1,t2

be the tile located at(t1, t2). Let K × M × M be the size of a
full tile. Let (k0, i0, j0) be the lexicographically largest point of
the bottom-left tile in the subdomain. The subdomain is divided
into m × m tiles by using the following hyperplanes:

k0 6 k < k0 + K
i = (s−1) × M + k0 − k + i0 + 1, s = 1, . . . , m−1
j = (t−1) × M + k0 − k + j0 + 1, t = 1, . . . , m−1

(8)

whose normals are(1, 1, 0) and (1, 0, 1), respectively.
The main reason for tiling a subdomain this way is to ensure that

the subdomains can be executed in parallel as discussed shortly.
There are(m− 2) × (m− 2) full (i.e., non-border) rectangular

tiles of sizeK × M × M in the center andm × m − (m − 2) ×
(m− 2) = 4(m− 1) border tiles. In Figure 3, only the one in the
center is full while all the rest are border tiles.

• Full Tiles. Let T k
t1,t2

be the set of points in thek-th layer of
Tt1,t2 . If Tt1,t2 is a a full tile, then we have:

T k
t1,t2

= T k−1
t1,t2

+ (1,−1,−1) (9)

Thus, every layer inTt1,t2 is a translateof the layer below
along (1,−1,−1), as shown by the middle tile in Figure 3.

• Border Tiles. A border tile is a boundary tile that is a
hexahedron but not a rectangular box as shown in Figure 3.

C. Parallelization for One GPU

We now explain the rationale behind our unconventional domain
decomposition and tiling techniques. Our parallelizationstrategy is
simple. All K-layer sweeps are executed sequentially, bottom-up.
EachK-layer sweep is executed concurrently by all SPs in a GPU.
In order to enable all SPs to start executing at the same time,the
tiles with the same tile index from all subdomains are executed
in parallel by the same kernel. However, of them × m tiles in
a subdomain, the tiles in{Ti,j | 0 6 i, j < m} (e.g., the tiles
T1,1, T1,2, T2,1 andT2,2 in Figure 3) do not have inter-subdomain
dependences and can thus be combined into a larger tile. This
avoids unnecessary kernel startup overhead. Section V-A5 applies
shared memory reduction to deal with large tiles.

In our implementation, every subdomain in aK-layer sweep
is therefore partitioned into2 × 2 tiles. There are a total of four
kernels executing aK-layer sweep. All tiles with the same tile
index (t1, t2) from different subdomains form a grid executed by
the same kernel, denotedKt1,t2 . For example, suppose that the
two adjacent subdomainsDd1,d2

andDd1+1,d2
in a forward sweep

(highlighted by gray in Figure 2) are of the sizeK×8×8. They are
each divided into four tilesT1,1, T1,2, T2,1 andT2,2 as illustrated
in Figure 4. How their sizes are chosen is discussed below.

The four kernelsK1,1, K1,2, K2,1 and K2,2 are executed
lexicographically in terms of their kernel indices. The points in
the same tile are also executed lexicographically. LikeRBSOR,
our parallelization scheme does not respect all data dependences
in the original SOR. However, the convergence is guaranteedbut
at somewhat slower rates under some inputs [20, 26]. To (more
than) offset a drop in the convergence rate, all subdomains in a
K-layer sweep can now be executed in parallel. This represents
a good tradeoff for data-parallel GPU computing, one of the key
findings worthy being emphasised in this paper.

Below we examine how the data dependences in the original
SOR are dealt with and how tile sizes are determined.

Consider the five data dependences depicted in Figure 1 for a
K-layer forward sweep. There are two cases depending on whether
they are intra- or inter-subdomain dependences:

1) Intra-Subdomain Dependences.There are two subcases
depending whether these are intra- or inter-tile dependences.
Intra-tile dependences are satisfied since the points in a
tile are executed lexicographically. Inter-tile dependences are
satisfied for the four tilesT1,1, T1,2, T2,1 andT2,2 in a sub-
domain since their corresponding kernelsK1,1, K1,2, K2,1

and K2,2 are executed in that order (i.e., lexicographically
in terms of tile indices). For the five dependences illustrated
for T2,1 in Dd1,d2

in Figure 4(a), the three fromT1,1 to T2,1

are satisfied sinceT1,1 is computed earlier thanT2,1.
2) Inter-Subdomain Dependences.There are two subcases:

a) Top and Right Border Tiles: T1,2, T2,1 and T2,2.
If a point (k, i, j) in such a border tile of a subdomain
depends on(k−1, i, j), (k−1, i+1, j) or (k−1, i, j+1)
computed in a bottom or left border tile of an adjacent
subdomain (in Case 2(b)), the dependence is satisfied
since the dependent point must have already been
computed. Such is the case for the three dependences

from T1,1 in Dd1+1,d2
to T2,1 in Dd1,d2

in Figure 4(b).
This explains why the slanted hyperplanes in Figure 3
are used in our loop tiling. In particular, the most up-to-
date value of a dependent point is always used. In the
sequential SSOR, the value used at grid point(i+1, j)
of T1,1 in Dd1+1,d2

is computed at(k − 1, i + 1, j)
(along the dependence depicted with an unfilled arrow
head). In the parallel version, the value is fetched from
(k, i + 1, j) (along the dashed dependence).

b) Bottom and Left Border Tiles: T1,1, T1,2 and T2,1.
As the opposite of Case 2(a), the situation is reversed
except that the dependence from(k−1, i, j) to (k, i, j)
is always confined to the same subdomain. If a point
(k, i, j) in such a border tile of a subdomainD depends
on (k, i−1, j) or (k, i, j−1) computed in a top or right
border tile of an adjacent subdomainD′, thenD′ has
not been executed yet. In this case, the most up-to-date
value(k−1, i−1, j) or (k−1, i, j−1) already computed
in D is used instead. The existence of such value
is guaranteed due to the use of slanted hyperplanes
in domain decomposition shown in Figure 2. This is
illustrated in Figure 4(c). Point(k, i, j) of T1,1 in
Dd1+1,d2

requires the value of(k, i − 1, j) of T2,1 in
Dd1,d2

(along the dependence depicted with an unfilled
arrow head), which is computed after(k, i, j). Thus,
the most up-to-date value(k − 1, i − 1, j) of T1,1 in
Dd1+1,d2

(along the dashed dependence) is used.

When a kernel is executed, all inter-kernel dependences are
satisfied by fetching the dependent data from global memory.

Our parallel MLSSOR algorithm is guaranteed to converge
following a similar line of reasoning as in [20, 26]. However, to
accelerate the convergence rate, the bottom-left tileT1,1 is made
as large as possible. This ensures that the heightK in a K-layer
sweep is the largest possible to maximize the chances for SORto
be applied. Therefore, if a subdomain has the sizeK × n × n,
T1,1 is chosen to have(n− 1)× (n− 1) at the bottom layer. This
ensures that the largestK = ⌊n/2⌋ is used. The sizes of the other
three tilesT1,2, T2,1 andT2,2 are then determined accordingly by
the tile-cutting hyperplanes given in (8) as illustrated inFigure 4.

D. Parallelization for Multiple GPUs

The basic idea is to partition the mesh of a solver across the
multiple GPUs and applyMLSSOR to the sub-mesh allocated to
a GPU. With one single GPU, kernelsK1,2 andK2,1 do not have
inter-kernel data dependences and can thus be combined withsome-
what improved data reuse and reduced kernel startup overhead.
However, this kernel fusion increases the frequency of inter-GPU
communication in multiple GPUs, leading to reduced performance.
Thus, the two kernels run sequentially in our experiments.

V. RESULTS AND ANALYSIS FOR ONE GPU

In this section, we present and analyze the performance results
and various tradeoffs that need to be made by a compiler for
executingMLSSOR andRBSOR on a single-GPU Tesla C1060.
We focus more onMLSSOR and touch onRBSOR briefly. For
SSOR, once the data operated by a thread are loaded into a buffer
in the shared memory, there are no bank conflicts incurred.

1=k

2=k

4==Kk

3=k

21 ,1 ddD +21 ,ddD
1,1T

1,2T

2,2T

2,1T

i

j

k

()ji ,1−

()1, −ji

()1, +ji ()ji ,1+

)(a

()ji,

()ji,

()ji ,1+()1, +ji

()1, −ji

()ji ,1−

)(b

()ji,

()ji,

()ji,

()ji ,1−

()1, −ji

()ji ,1−

()ji,

()ji ,1+

()1, +ji

)(c

()ji ,1+

Figure 4. Enforcement of the data dependences illustrated for the two subdomains illustrated in Figures 2 and 3 in a forward sweep. The meanings of
the dashed dependence shown in Part (b) (Part(c)) is referred to in Case 2(a) (Case 2(b)) discussed in Section IV-C.

Algorithm Number of Iterations to Converge
Input 1 2 3

Tolerance Error 0.001 0.001 0.000001
SSOR 64 67 10214

RBSOR 78 70 10567

MLSSOR

2 × 4 × 4 112 (139) 105 (120) 12769 (13215)
4 × 8 × 8 96 (111) 91 (92) 11463 (12043)

8 × 16 × 16 76 (82) 71 (85) 10735 (10997)
16 × 32 × 32 71 (81) 64 (70) 10447 (10853)

Table II
CONVERGENCE RATES FOR THREE INPUTS OF SIZE8192 × 8192 WITH

THE GIVEN TOLERANCE ERRORS SHOWN. FOR MLSSOR, DIFFERENT

SUBDOMAIN SIZES LEAD TO DIFFERENT CONVERGENCE RATES. THE
RATES INSIDE THE BRACKETS ARE OBTAINED WHEN ONLY THE

FORWARD SWEEPING DIRECTION IS USED.

To begin with, Table II compares the convergence rates of SSOR,
MLSSOR andRBSOR for three different inputs. The convergence
rate of MLSSOR depends on the subdomain size used. Note
that MLSSOR is designed to trade off its convergence rate for
data parallelism, as demonstrated in this section.MLSSOR can
converge more slowly thanRBSOR. For all experimental results
presented in this section and Section VI, the input data set used in
Column 2, i.e., “Input 1” of this table is used.

We are now ready to explain the two reasons for applying
our generalized loop tiling to the multi-layer SSOR. First,better
convergence is achieved than if a single sweeping directionis
used as shown in Table II. Second, inter-kernel data reuse can
be exploited in some stream processors even though this is not
presently possible for NVIDIA GPUs. As shown in Figure 2, any
pair of mirrored subdomains in two adjacent sweeps access the
same set of points. We estimate thatMLSSOR can achieve about
40% higher performance if such inter-kernel reuse can materialize.

A. MLSSOR

We focus on two different subdomain sizes whenK×M×M =
2 × 4 × 4 andK × M × M = 4 × 8 × 8. In each case,K is the
largest possible to obtain the fastest convergence as discussed in

0

2

4

6

8

10

12

4 8 16 32 64 128

Threads per Block

T
im

e
 (

se
cs

)

2*4*4 Org 2*4*4 Coalescing
2*4*4 Unrolling 2*4*4 Coalescing+Unrolling
4*8*8 Org 4*8*8 Coalescing
4*8*8 Unrolling 4*8*8 Coalescing+Unrolling

Figure 5. Execution times ofMLSSOR. In each case, Org means that
neither unrolling nor coalescing is performed.

Section IV-C and the best temporal reuse. For each subdomainsize,
we consider four different optimizations depending on whether loop
unrolling and global memory coalescing are used or not.

We first present the performance results ofMLSSOR and then
analyze these results. We also discuss various tradeoffs along
the way, highlighting the importance of compiler optimizations,
performance modeling and performance tuning.

1) Performance: Figure 5 shows the execution times of
MLSSOR with respect to varying number of threads per thread
block. Some performance bars are missing since in those configu-
rations the 16KB shared memory (cf. Table I) is not big enoughto
hold the data used by all the threads in a single thread block.
We observe that the performance ofMLSSOR is sensitive to
subdomain size. The effect of any optimization (or combination)
on performance is non-linear due to complex interactions among
various GPU architectural constraints (cf. Table I).

2) Resource Usage and Performance Estimates:We analyze
the results of Figure 5 by making use of the resource usage
information for kernelK1,1 from Table III. Memory coalescing
does not appear in the table since it is immaterial to the statistics
collected. A similar trend is observed if one of the other three
kernels is used. For subdomain sizes2× 4× 4 and4× 8× 8, the
points/thread values forK1,1 are 3 × 3 and 7 × 7, respectively,
as shown in Figure 3. For each configuration identified by the

SubdomainPoints/ Threads/ Shared Memory/ Registers/Thread #Active Performance (GFLOPS) Bandwidth (GB/s)

Size Thread Block Thread Block (bytes)No Unrolling Unrolling WTB BSM ThreadsNo Unrolling Unrolling No Unrolling Unrolling

2 × 4 × 4 3 × 3

4 404

16 13

0.125 40 160

99.7 82.2 46.9 78.7

8 724 0.25 22 176
16 1364 0.5 12 192
32 2644 1 6 192
64 5204 2 3 192
128 10324 4 1 128

4 × 8 × 8 7 × 7

4 1260

17 59

0.125 13 52

108.1 93.9 26.9 46.68 2412 0.25 6 48
16 4716 0.5 3 48
32 9324 1 1 32
64 Out of Shared Memory
128

Table III
RESOURCE USAGE OFMLSSOR (INSENSITIVE TO COALESCING) FOR KERNELK1,1 UNDER THE CONFIGURATIONS DEFINED BY THE FIRST THREE

COLUMNS (AND ALSO ILLUSTRATED IN FIGURE 5).

first three columns together, a number of statistical data are listed.
Columns 4 – 6 are self-explanatory. By compiling CUDA code
with the -cubin flag, we could get some understanding about
on-chip memory usage. In Column 7,WTB is the number of
warps in a thread block, which is determined by dividing the
number of threads in a thread block by 32. In Column 8,BSM

is the number of thread blocks assigned to each SM. It is usually
determined by shared memory and register usage (Columns 4 –
6). As indicated in Table I, C1060 has 16KB shared memory
and 16,384 registers per SM. Consider the configuration whenthe
subdomain size is2 × 4 × 4 and threads/block is 8. Every thread
block needs 724B shared memory. So the maximum number of
simultaneously active blocks in one SM is16KB ÷ 724B = 22
(Column 8). The number of registers required by 22 threads block
is 16 registers/thread × 8 threads/block× 22 active blocks =
2816. Since this number is less than 16384, 22 blocks can be
assigned to the same SM. Otherwise,BSM is decided by register
usage. The bottleneck then shifts from shared memory to registers.
In a special case, although there are enough registers and shared
memory to execute more blocks, the number of active threads may
exceed the maximum value 1024 available per SM (cf. Table I).
BSM has to change to satisfy this constraint. For this configuration,
the largest number of active threads is 176 only (Column 9).

Finally, let us look at the last four columns in Table III, which
give performance and bandwidth estimates for kernelK1,1. Tesla
C1060 is capable of issuing240SPs × 1.3GHz = 312 billion
operations per second. When all the SPs are fully occupied, which
is achievable in an application that has many threads, does not
have many synchronization operations, and does not stress memory
bandwidth. In this situation, for example, if10% of a program
instruction mix are fused FMAD and FMUL which can be done
each GPU cycle, then its single-precision performance can be
at most 3 × 10%FP × 312 = 93.6GFLOPS. We can obtain
kernel assemble instructions through the-ptx flag. In Columns
10 and 11, the GFLOP estimates forK1,1 are given for both
unrolled and non-unrolled cases, which will be further discussed
in Section V-A3.

Another potential bottleneck is global memory bandwidth. If
5% of code are loads from off-chip memory, required bandwidth
is 240SPs × 5%instructions × 4B/instruction × 1.3GHz =

62.4GB/s. This value is estimated average bandwidth for running
threads. It is possible that all threads simultaneously load data, thus
the latency of accessing to global memory still exists. However, if
this value without any global memory optimization is more than
102 GB/s, which is Tesla C1060’s off-chip bandwidth, a lot of
time will be spent on waiting for data transport and the bandwidth
is likely to be bottleneck. In the last two columns, the bandwidth
estimates forK1,1 are given for unrolled and non-unrolled cases.

3) Effects of Unrolling and Coalescing On performance:Full
loop unrolling often achieves the best performance forMLSSOR
and is thus applied to obtain the results given in Figure 5. Unrolling
improves data parallelism by removing branch instructions, and
consequently, reduces significantly the dynamic number of instruc-
tions executed. With full unrolling, theMLSSOR performance
always improves as shown in Figure 5 although the GFLOP
estimates have dropped as listed in Table III. In addition, unrolling
also affects register usage. In the case of2× 4× 4, the number of
registers per thread has dropped from 16 to 13. For4× 8× 8, the
register requirement increases noticeably from 17 to 59. Although
unrolling usually increases register pressure, the increase is small
relative to the total number of registers available per SM (at least
for MLSSOR). Thus, full loop unrolling accelerates theMLSSOR
performance by reducing the dynamic instruction count executed.

Two strategies for reducing the negative impact of bandwidth on
performance are to improve data reuse and reduce global memory
access. The bandwidth is used most efficiently when the simulta-
neous memory accesses by threads in a half-warp can be coalesced
into a single memory transaction. The memory system may be able
to combine these into a single memory accessing request. Even
if the average required bandwidth in our experiments is lessthan
102 GB/s and thus not the key bottleneck, the impact of coalescing
on performance is still noticeable. As shown Figure 5, coalescing
always improves performance. In particular, whenBSM = 1 in
Table III, the performance benefit of coalescing is maximized. In
this case, when threads in the unique block assigned to an SM
stall on a load instruction, there exists no other blocks that can be
scheduled by the SM to overlap computation and communication.

4) Correlating Configurations’ Relative Performances:We find
from Figure 5 that it is difficult to establish a certain relation
between anMLSSOR configuration and its execution time. We

2*4*4 2*4*4 Unrolling 4*8*8 4*8*8 Unrolling

T
h
re
a
d
s
 p
e
r
B
lo
c
k

Subdomain Size

Efficiency Utilization

16

32

64
8
4

128

Figure 6. Efficiency andUtilization of MLSSOR (insensitive to coalesc-
ing) of kernelK1,1 for all the configurations given in Figure 5.

use the two performance metrics from [16] to provide some rough
estimates for the relative performance results of certain configu-
rations. Both are meaningful only if global memory bandwidth is
not the performance bottleneck. TheEfficiency metric indicates the
overall efficiency of a configuration in terms of the total number
of instructions that must be executed before the kernel finishes:

Efficiency =
1

Instr × Threads
(10)

whereInstr derived from the PTX code of a kernel estimates the
number of dynamic instructions executed per thread andThreads
is the number of threads created by the kernel. In this work, this
metric also reflects well the impact of data reuse on performance.
When the tile size increases,Threads decreases sharply. A thread
will have more work to do. In addition, the convergence will be
accelerated as shown in Table II, resulting in a better efficiency.

The Utilization metric is about the utilization of the compute
resources on a GPU by considering how often a warp may wait
and the amount of work available (from other warps) when it does:

Utilization = Instr
Regions

[WT B−1

2
+ (BSM − 1) × WTB] (11)

where Regions is the number of dynamic instruction intervals
delimited by blocking instructionsor the start/end of the kernel.
Long latency instructions, such as texture memory operations
and synchronization instructions, are considered as blocking in-
structions. Instr

Regions
gives the average number of non-blocking

instructions per interval. The quantity within the brackets indicates
the number of independent warps in an SM. The first term is
the number of other currently executing warps in the same thread
block. Dividing by two is for computing average possibility, half
warps still need to execute. The second item is the number of warps
in other thread blocks assigned to the same SM. When the degree
of parallelism is low, the value ofUtilization is small.

Figure 6 plotsEfficiency and Utilization of K1,1 for all con-
figurations in Figure 5. A solid curve representsUtilization as a
function of different configurations for a fixed threads/block as
marked. The single dashed curve representsEfficiency for all
possible values of threads/block since their efficiency curves are
identical.

It should be pointed out that these two metrics are not suitable for
the configuration with only 4 threads per block. The full computing
capability of an SM consisting of eight SPs is not fully utilized.
Otherwise, there are good correlations between theEfficiency and
Utilization metrics in Figure 6 and the actual performance results

in Figure 5. Below we use these two metrics to analyze the effects
of thread granularity and loop unrolling on performance.

First of all, for both unrolled and non-unrolled code,Utilization
drops when thread granularity increases. This implies thatthe
number of active and ready threads is cut down because larger
threads consume more resources. In limited resource situations,
shared memory and register usage affect the throughput of anSM.
However, since an increase inEfficiency counteracts a decrease
in the throughput caused by reducedUtilization, MLSSOR is not
always slower when4 × 8 × 8 is used, since larger threads, i.e.,
subdomains lead to faster convergence rates as shown in Table II.

Next, for the same subdomain size with and without unrolling,
the improvedEfficiency due to unrolling is entirely attributed to a
reduction inInstr sinceThreads remains unchanged. Moreover,
unrolling does not alter the number of memory accesses. So
Regions should not change remarkably. According to Table III,
unrolling usually does not reduce resource usage. As a result,
Utilization worsens asinstr decreases. However, the gain from
improvedEfficiency seems to more than offset the loss caused by
worsenedUtilization here. So unrolling is always beneficial for
MLSSOR.

Furthermore, looking at the combined effects of thread granular-
ity and unrolling on performance,MLSSOR has betterEfficiency
andUtilization under “2×4×4 Unrolling” than “4×8×8” (without
unrolling). This means that a decrease inInstr due to unrolling
affects the two metrics more than an increase in thread granularity,
i.e., subdomain size. Consequently, “2 × 4 × 4 Unrolling” results
in betterEfficiency than “4× 8× 8”, which has betterEfficiency
than “2 × 4 × 4”. This analysis correlates well with the results
given in Figure 5, whereMLSSOR runs faster under “2 × 4 × 4
Unrolling” except for the pathological “4 threads/block” case.

Finally, the weights ofEfficiency and Utilization are unpre-
dictable, and the optimal configuration may need to balance both
metrics. This is consistent with the observation made in [16],
highlighting the importance of using a tuning tool for efficient
solution space exploration.

5) Shared Memory Reduction:From Table III, we see that the
bottleneck ofMLSSOR is shared memory. Our case study indicates
the importance for future GPU architectures to aggressively exploit
both intra- and inter-kernel data reuse in scientific and engineering
applications to boost the performance of DOACR loops. Given
the 16KB shared memory, the scarce resource must be effectively
utilized with some shared memory reduction technique. One solu-
tion is to undo the merge of the tiles in{Ti,j | 0 6 i, j < m}
into T1,1 so as to execute the smaller tiles in separate kernels.
But using smaller tiles leads to smaller tile heightK as discussed
in Section IV-C, resulting in slower convergence and poorerdata
reuse. To avoid these problems and to facilitate memory coalescing,
a different solution is used. When a row of points in a tile, i.e.,
T1,1, T1,2, T2,1 or T2,2 are computed, only this row and its two
adjacent rows are kept in the shared memory. This solution also
sacrifices some temporal reuse but allows memory coalescingto
be realized more effectively.

With the shared memory reduction technique being applied,
Figures 7 and 8 are now given as the analogues of Figures 5 and 6,
respectively. Some observations are in order. First, the performance
of MLSSOR drops slightly with shared memory reduction in most
but not all configurations. Second,MLSSOR did not compile

0

5

10

15

20

25

4 8 16 32 64 128 256
Threads per Block

T
im

e
(s

ec
s)

2*4*4 Org 2*4*4 Coalescing 2*4*4 Unrolling 2*4*4 Coalescing+Unrolling
4*8*8 Org 4*8*8 Coalescing 4*8*8 Unrolling 4*8*8 Coalescing+Unrolling
8*16*16 Org 8*16*16 Coalescing 8*16*16 Unrolling 8*16*16 Coalescing+Unrolling
16*32*32 Org 16*32*32 Coalescing 16*32*32 Unrolling 16*32*32 Coalescing+Unrolling

Figure 7. Execution times ofMLSSOR with shared memory reduction.

2*4*4 2*4*4
Unrolling

4*8*8 4*8*8
Unrolling

8*16*16 8*16*16
Unrolling

16*32*32 16*32*32
Unrolling

T
h
re
a
d
s
 p
e
r
B
lo
c
k

Efficiency Utilization32

64
8

4

128

256

16

Unrolling Unrolling Unrolling Unrolling

Subdomain size

Figure 8. Efficiency andUtilization of MLSSOR (insensitive to coalesc-
ing) of kernelK1,1 with shared memory reduction.

before for4×8×8 when the threads/block is 64 or 128 due to lack
of shared memory but compiles now. Third, two larger subdomain
sizes8 × 16 × 16 and 16 × 32 × 32 are now included and can
compile except for a few large threads/block values. Finally, an
analogue of Table III is omitted due to space limit. For comparison
purposes, the new GFLOPS and bandwidth values corresponding to
the “2×4×4” and “4×8×8” rows in Table III are “120.9 70.5 58.0
123.9” and “124.5 101.3 62.1 101.3”, respectively. With memory
reduction, the required bandwidths are higher but the GFLOPS
values do not change as much at a similar magnitude.

Again there are good correlations between Figure 7 and Figure 8.
In particular, there is an important point worth being restated.
Although “4× 8× 8” results in lowerEfficiency than “2 × 4× 4
Unrolling”, MLSSOR is a better performer under “4×8×8” when
the threads/block is 8 and 16 due to higherUtilization. When the
threads/block increases to 32, the effect of a decrease inEfficiency
on performance is larger than that of an increase inUtilization,
MLSSOR is slower under “4 × 8 × 8”. However, the situation is
different in 128 threads/block.MLSSOR performs better under
“4 × 8 × 8” even though itsEfficiency and Utilization values
are both lower. As mentioned earlier, the required bandwidth of
“2×4×4 Unrolling” is 123.9 GB/s, which is beyond the maximum
102 GB/s available in Tesla C1060, while the required bandwidth
of “4 × 8 × 8” is 101.3GB/s. Without coalescing, the GPU may
stall on waiting for accessing to global memory. As a result,the
execution time under “2 × 4 × 4 Unrolling” is prolonged. With
coalescing, however, the overall memory time is reduced. Thus,
MLSSOR performs slightly better under “2 × 4 × 4 Unrolling +
Coalescing” than “4 × 8 × 8”.

With shared memory reduction, the number of active threads can

Utilization

E
ff

ic
ie

n
cy

Figure 9. Searching for optimal solutions by performance metrics
(illustrated usingEfficiency and Utilization for kernel K1,1). The best
configuration is highlighted by a circle.

0
5

10
15
20
25
30
35
40
45

4 8 16 32 64 128 256 512
Threads per Block

T
im

e
(s

ec
s)

1*1 Points/Thread 2*2 4*4 8*8

Figure 10. Execution times ofRBSOR.

sometimes increase by nearly87.5%. Thus, finer data partitioning
reduces an application’s demand for resources and increases its
degree of parallelism. However, it may affect negatively other
architectural constraints, i.e. by saturating the bandwidth. Again
the optimal configuration requires a balanced tradeoff to bemade.

6) Summary of Performance Metrics:Figure 9 plots the two
metric values for all configurations given in Figures 5 and 7.The
maximum metric value along each axis has been normalized to
one for comparison purposes. In general, the best performance
should come from configurations with both highEfficiency and
Utilization although their weights are difficult to valuate [16].
Thus, one desires configurations located towards the upper right
corner of the graph. The points connected by the line have higher
opportunity to get better performance than others. The circled point
for “4 × 8 × 8 Coalescing+Unrolling” using16 threads per block
with shared memory reduction is the best performer.

B. RBSOR

We have implementedRBSOR taken from the Java Grande
benchmark suite for CUDA following [25]. The performance
results are displayed in Figure 10.RBSOR exhibits the same
performance with1 × 1 points/thread when threads/block ranges
from 64 to 512. By examining resource usage, we find that the
bottleneck in this case is neither shared memory nor registers.
With 64 or more threads per block, the number of threads to be
launched per SM exceeds 1024 (cf. Table I). Thus, the bottleneck
is instruction issue. Therefore, fine-grained parallelismoften gives
rise to good performance on GPU architectures. But the overall
performance can be constrained by architectural constraints, such
as the number of active threads allowed, if the data reuse is not
adequately exploited.

For RBSOR, the Efficiency and Utilization metrics do not
appear to be sufficient in explaining its performance results. We

have made an attempt to understand its performance trend through
experimentation, analysis and consulting [25].RBSOR seems to
run at its full speed at1× 1 points/thread with 128 threads/block.
Both RBSOR andMLSSOR are compared in detail below.

VI. RESULTS AND ANALYSIS FOR MULTIPLE GPUS

We compareMLSSOR and RBSOR on a Tesla S1070 com-
puting system consisting of four GPUs. We evaluateMLSSOR
and RBSOR using their configurations giving rise to the best
single-GPU performances. These may not be the absolute bestfor
a multi-GPU setting but seem to be a good choice for stencil-based
computations.MLSSOR uses a subdomain of size4× 8× 8 with
16 threads/block with shared memory reduction whileRBSOR’s
configuration is1 × 1 points/thread with128 threads/block.

The host is an Intel Xeon Quad-core CPU running at 2.66GHz.
The mesh of an SOR solver is distributed block-wise along onedi-
mension to the four GPUs. We need to use a series of CPU threads
to schedule and manage the execution of the sub-meshes allocated
to the GPUs. In our experiments, four CPU threads are createdto
run on four CPUs concurrently. Each CPU thread is associatedwith
an individual GPU. It is responsible for distributing the required
data in the sub-mesh to the device memory of its associated GPU,
scheduling kernel execution on it, and communicating the boundary
data of sub-meshes with the other GPUs indirectly via the host.

Figure 11 shows the speedups ofMLSSOR overRBSOR. Over-
all, MLSSOR performs better with increasingly larger problem
size and more GPUs. However, the performance increases are
not linear. We analyze this phenomenon by separating the inter-
GPU communication cost from the computation cost during a
program execution. All device-to-device copies are asynchronous.
The associated idle times are not stable in different runs ofthe
same program. Thus, the inter-GPU communication time of a
program is measured as an average of 10 program runs. Fig-
ure 13 shows the inter-GPU communication overhead increases
of RBSOR over MLSSOR as the problem size increases on
more and more GPUs. Figure 12 replots Figure 11 with the inter-
GPU communication costs being annihilated. Now, the computation
speedup ofMLSSOR overRBSOR increases more smoothly than
before as the problem size increases across the multiple GPUs.

Given a problem size,MLSSOR and RBSOR incur about the
same amount of inter-GPU communication. The difference lies
in the frequency of communication. ForMLSSOR, the inter-
GPU communication occurs whenK1,2 and K2,2 run to com-
pletion. Note that ifK1,2 and K2,1 were merged (as discussed
Section IV-D), the inter-GPU communication would occur when
every kernel completes, causing a 50% increase in communication
frequency. However,RBSOR communicates four times as many
as MLSSOR. As thread granularity increases, the frequency of
communication incurred byMLSSOR decreases. However, due to
the idle times elapsed in inter-GPU communication, performance
fluctuations are expected across the problem sizes.

VII. R ELATED WORK

We supplement a brief review of related work earlier by dis-
cussing some current work for GPU architectures on languages,
compiler optimizations and performance tuning.

CUDA is a popular programming model for the NVIDIA GPUs
used by C/C++ programmers. The provided abstractions may some-
times limit the programmability of GPUs. One research direction is

1

1.2

1.4

1.6

1.8

4096*4096 8192*8192 16384*16384 24576*24576 28672*28672

S
p
e
e
d
u
p

1GPU 2GPUs 4GPUs

4096*4096 8192*8192 16384*16384 24576*24576 28672*28672

Problem Size

Figure 11. Speedups ofMLSSOR over RBSOR for multi-GPUs.

1

1.2

1.4

1.6

1.8

4096*4096 8192*8192 16384*16384 24576*24576 28672*28672C
o

m
p

u
ta

ti
o

n
 S

p
e
e
d

u
p

2GPUs 4GPUs

4096*4096 8192*8192 16384*16384 24576*24576 28672*28672

Problem Size

Figure 12. Computation speedups ofMLSSOR over RBSOR for multi-
GPUs (with zero communication overhead assumed).

to make CUDA kernels more accessible in high-level programming
languages [10]. Developing programmer-friendly interfaces for
accelerating Java programs with CUDA is also an interestingtopic
[25]. Furthermore, systematic compiler optimization techniques are
useful in generating highly parallelized CUDA code automatically.
The latest version of the PGI 9.0 release from the Portland
Group includes PGF95 and PGCC accelerator compilers, which
are supported on all Intel and AMD x64 processor-based systems
with CUDA-enabled NVIDIA GPUs [5]. Recently, Lee et al. [10]
introduce an automatic compiler framework to generate CUDA
code from OpenMP programs. Baskaran, et al. [2] explore the use
of affine loop transformations for GPU parallelization.

Another important research is to develop cost models and tuning
tools for estimating and understanding the performances resulting
from different optimizations. Due to complex interactionsamong
the GPU architectural constraints, it seems to be difficult to find
near-optimal configurations by searching the solution space blindly.
Ryoo et al. [16] discuss some useful performance metrics and
optimization principles for GPU architectures [15], but they did
not concern themselves specifically about DOACR loops. Hongand
Kim [6] present an analytical model for estimating the execution
time of a program running on NVIDIA GPUs.

0

0.5

1

1.5

2

2.5

4096*4096 8192*8192 16384*16384 24576*24576 28672*28672

C
o
m
m
.
T
im

e
 I
n
c
r
e
a
s
e

2GPUs 4GPUs

Problem Size

Figure 13. Inter-GPU communication overhead increases ofRBSOR over
MLSSOR for multi-GPUs.

VIII. C ONCLUSION

DOACR loops are difficult to run efficiently on GPGPUs since
their cross-iteration dependences pose a major obstacle tothe
exploitation of the fine-grained parallelism in these loops. We
have described our experience on parallelizing the SSOR method
in order to establish optimization principles and strategies for
accelerating the performance of DOACR loops on GPGPUs. We
have presented a new parallel SSOR solver, which is developed
based on a non-dependence-preserving parallelization scheme, and
demonstrated its performance advantages over red-black SOR. Our
experimental results, validated by detailed analysis, show that
many DOACR loops may be potentially accelerated if different
algorithms that are more amenable to GPU computing can be
developed. The importance of synergy between domain experts,
compiler optimizations and performance tuning is highlighted in
maximizing application performance.

IX. A CKNOWLEDGEMENT

This research is supported by an Australian Research Council
Grant (DP0881330).

REFERENCES

[1] L. Adams and J. Ortega. A multi-color SOR method for
parallel computation. In1982 International Conference on
Parallel Processing (ICPP’82), pages 53–56, 1982.

[2] Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Kr-
ishnamoorthy, J. Ramanujam, Atanas Rountev, and P. Sa-
dayappan. A compiler framework for optimization of affine
loop nests for GPGPUs. InICS ’08: Proceedings of the 22nd
annual international conference on Supercomputing, pages
225–234, 2008.

[3] Stephen H. Brill and George F. Pinder. A block red-black
SOR method for a two-dimensional parabolic equation using
Hermite collocation.The Mathematics of Finite Elements and
Applications, 1997.

[4] Georgios Goumas, Nikolaos Drosinos, Vasileios Karakasis,
and Nectarios Koziris. Coarse-grain parallel execution for
2-dimensional PDE problems.International Parallel and
Distributed Processing Symposium, 0:381, 2007.

[5] The Portland Group. PGI accelerate compiler, 2009.
[6] Sunpyo Hong and Hyesoon Kim. An analytical model

for a GPU architecture with memory-level and thread-level
parallelism awareness.SIGARCH Comput. Archit. News,
37(3):152–163, 2009.

[7] Q. Huang, J. Xue, and X. Vera. Code tiling for improving
the cache performance of PDE solvers. In2003 International
Conference on Parallel Processing (ICPP’03), pages 615 –
625, 2003.

[8] Changhao Jiang and Marc Snir. Automatic tuning matrix
multiplication performance on graphics hardware. InPACT
’05: Proceedings of the 14th International Conference on
Parallel Architectures and Compilation Techniques, pages
185–196, 2005.

[9] Ujval Kapasi, William J. Dally, Scott Rixner, John D. Owens,
and Brucek Khailany. The Imagine stream processor. InICCD
’02: Proceedings of the 2002 IEEE International Conference
on Computer Design: VLSI in Computers and Processors,
page 282, 2002.

[10] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP
to GPGPU: a compiler framework for automatic translation
and optimization. InPPoPP ’09: Proceedings of the 14th
ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 101–110, 2009.

[11] Yixun Liu, Eddy Z. Zhang, and Xipeng Shen. A cross-
input adaptive framework for GPU program optimizations.
In IPDPS ’09: Proceedings of the 2009 IEEE International
Symposium on Parallel and Distributed Processing, pages 1–
10, 2009.

[12] Rami G. Melhem and K. V. S. Ramarao. Multicolor reorder-
ing of sparse matrices resulting from irregular grids.ACM
Trans. Math. Softw., 14(2):117–138, 1988.

[13] Paulius Micikevicius. 3d finite difference computation on
GPUs using CUDA. InGPGPU-2: Proceedings of 2nd Work-
shop on General Purpose Processing on Graphics Processing
Units, pages 79–84, 2009.

[14] NVIDIA. NVIDIA CUDA programming guide 2.2, 2009.
[15] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi,

Sam S. Stone, David B. Kirk, and Wen-mei W. Hwu. Opti-
mization principles and application performance evaluation of
a multithreaded GPU using CUDA. InPPoPP ’08: Proceed-
ings of the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming, pages 73–82, 2008.

[16] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S.
Baghsorkhi, Sain-Zee Ueng, John A. Stratton, and Wen-
mei W. Hwu. Program optimization space pruning for
a multithreaded GPU. InCGO ’08: Proceedings of the
sixth annual IEEE/ACM international symposium on Code
generation and optimization, pages 195–204, 2008.

[17] V. K. Saul’yev. Integration of Equations of Parabolic Type
Equation by the Method of Net. Pergamon Press, 1964.

[18] Michelle Mills Strout, Larry Carter, Jeanne Ferrante,and Bar-
bara Kreaseck. Sparse tiling for stationary iterative methods.
Int. J. High Perform. Comput. Appl., 18(1):95–113, 2004.

[19] P. Tang and J. Xue. Generating efficient tiled code
for distributed memory machines. Parallel Computing,
26(11):1369–1410, 2000.

[20] Rohallah Tavakoli and Parviz Davami. New stable group ex-
plicit finite difference method for solution of diffusion equa-
tion. Applied Mathematics and Computation, 181(2):1379–
1386, 2006.

[21] Dan Wallin, Henrik Löf, Erik Hagersten, and Sverker Holm-
gren. Multigrid and Gauss-Seidel smoothers revisited: paral-
lelization on chip multiprocessors. InICS ’06: Proceedings of
the 20th annual international conference on Supercomputing,
pages 145–155, 2006.

[22] Dexuan Xie. A new block parallel SOR method and its
analysis.SIAM J. Sci. Comput., 27(5):1513–1533, 2006.

[23] Jingling Xue. On tiling as a loop transformation.Parallel
Processing Letters, 7(4):409–424, 1997.

[24] Jingling Xue.Loop Tiling for Parallelism. Kluwer Academic
Publishers, 2000.

[25] Yonghong Yan, Max Grossman, and Vivek Sarkar. JCUDA: A
programmer-friendly interface for accelerating Java programs
with CUDA. In Euro-Par, pages 887–899, 2009.

[26] Hongkai Zhao. A fast sweeping method for Eikonal equations.
Math. Comp., 74:603–627, 2005.

