Toward Harnessing DOACROSS

Parallelism for Multi-GPGPUs

Peng Di, Qing Wan, Xuemeng Zhang, Hui Wu and Jingling Xue
Programming Languages and Compilers Group
School of Computer Science and Engineering
UNSW, Sydney, NSW 2052, Australia

Abstract—To exploit the full potential of GPGPUs for general-
purpose computing, DOACR parallelism abundant in scientifc and
engineering applications must be harnessed. However, thegsence of
cross-iteration data dependences in DOACR loops poses an sibcle
to execute their computations concurrently using a massivaumber of
fine-grained threads. This work focuses on iterative PDE sgkrs rich in
DOACR parallelism to identify optimization principles and strategies
that allow their efficient mapping to GPGPUs. Our main finding is
that certain DOACR loops can be accelerated further on GPGPU if
they are algorithmically restructured (by a domain expert) to be more
amendable to GPGPU parallelization, judiciously optimizel (by the
compiler), and carefully tuned by a performance-tuning tod.

We substantiate this finding with a case study by presenting a
new parallel SSOR method that admits more efficient data-paallel
SIMD execution than red-black SOR on GPGPUs. Our solution
is obtained non-conventionally, by starting from a K-layer SSOR
method and then parallelizing it by applying a non-dependene-
preserving scheme consisting of a new domain decompositidechnique
followed by a generalized loop tiling. Despite its relativly slower
convergence, our new method outperforms red-black SOR by nidng
a better balance between data reuse and parallelism and by ading
off convergence rate for SIMD parallelism. Our experimentd results
highlight the importance of synergy between domain expertscompiler
optimizations and performance tuning in maximizing the performance
of applications, particularly PDE-based DOACR loops, on GR5PUs.

Keywords-GPGPU, DOACR Parallelism, Loop Tiling, SOR

. INTRODUCTION

GPGPUs have recently emerged as powerful data-parallel co-

processors for general-purpose computing as they provide t

tremendous memory bandwidth and computation power at com-

modity prices. The NVIDIA CUDA programming model facilitst
programming of general-purpose applications on modern BFPG
such as the NVIDIA GeForce 8 Series. Unfortunately, the lleve
of effort and expertise required to maximize applicationfqre

mance on such GPGPUs is still quite high. Some recent rdsearc

efforts focus on automatic transformation of loops intorieds [2],
compiler optimizations [2, 10], higher-level programmingpdels
(than CUDA) [10], cost models [6, 16], performance tunind,[&].

At this stage, the code parallelized in their benchmarkssists

of almost exclusively DOALL loops. Despite the simplicityf o
DOALL loops, the research community is still gathering tipe
rience and knowledge needed to establish principles aatkgtes
that allow efficient mapping of such computations to GPGPUs
One major challenge is that the underlying architecturakt@aints
and threading model interact in a fairly complex way, making
the optimization space discontinuous and the performaricano
application hard to predict.

Many scientific and engineering applications exhibit atand
DOACR parallelism. To exploit the full potential of GPGPUx f
general-purpose computing, we also need to investigate tioow
map DOACR (i.e., DOACROSS) loops efficiently to GPGPUs.

There are very few prior studies here. Some loop optiminatio
being developed [2, 10] can tackle DOACR loops genericallya t
limited extent. There is also a recent work on paralleliZBgPDEs

[13]. However, these techniques are constrained by ctesstion
dependences in DOACR loops. As a result, the presence of such
parallelism-inhibiting dependences makes it fundaménttficult

to create a massive number of fine-grained threads on GPGPUs
to execute the computations in a DOACR loop concurrently on a
massive number of processor cores.

In this work, we focus on iterative PDE solvers to establish
optimization principles and strategies for their efficiempping to
GPGPUs. We have chosen to parallelize the 2D SSOR (Symmetric
Successive-Over Relaxation) method on GPGPUs for two nsaso
First, this method represents one of the most importanatiter
solvers for large systems of linear equations with a massiveunt
of data parallelism to be harnessed. Second, the underlgo
nest exhibits representative cross-iteration dependewitt both
temporal and spatial data reuse to be captured.

We describe our experience in parallelizing SSOR as a cadg st
for GPGPUs by summarizing our contributions below.

« We present a new parallel SSOR method that admits efficient
data-parallel SIMD execution in GPGPUs. We have obtained
this solution in a non-conventional manner. The starting
point is a K-layer SSOR solver that perform& forward
SOR sweeps an& backward SOR sweeps alternately. This
sequential method is then parallelized by applying a non-
dependence-preserving scheme consisting of a new domain
decomposition technique followed by a generalized lodpdil

to the two sweep directions alternately.

Despite its relatively slower convergence, our new methdd o
performs red-black SOR on both one and multiple GPGPUs by
making a better balance between data reuse and parallelism
and by trading-off convergence rate for SIMD parallelism.
Our method will perform even better on some future GPGPU
architectures that may allow inter-kernel reuse to be étqulo

Our experimental results demonstrate that certain DOACR
loops can be accelerated further on GPGPUs if they are
algorithmically restructured to be more amendable to GPGPU
parallelization, judiciously optimized, and carefullyned by

a performance-tuning tool. This highlights the importante
synergy between domain experts, compiler optimizatiorts an
performance tuning in maximizing the performance of appli-
cations, particularly PDE-based DOACR loops, on GPGPUs.

The rest of this paper is organized as follows. Section legiv
a brief review of GPGPUs and CUDA. Section Il introduces a
multi-layer 2D SSOR iterative solver, with a particular drapis
on understanding its cross-iteration data dependencesioSdV

describes our new parallel SOR method. Sections V and Veptes | Resource [Limit]

i ; _ Number of Threads per Block 512
and analyze our experimental results on single and mulGR& Number of Active Threads per SN 1024
PUs, respectively. The performance gdvantages of our rueimr_ Number of Active Blocks per SM| 8
red-black SOR are validated and discussed. Section Viewnevi Shared Memory per SM 16KB
further some related work. Section VIII concludes the paper Number of 32-bit Registers per SM 16,384
Il. GPU ARCHITECTURE Table |

This work uses an NVIDIA Tesla S1070-400 GPU computing CUDA CONSTRAINTS ONS1070AND C1060.

system as the basis for its study. The S1070 computing system

consists of four Tesla C1060 GPUs to form a large set of pemres

cores. Each C1060 GPU has 30 streaming multiprocessors) (SMg, accessing data from global memory is crucial for good grerf

with each SM containing eight streaming processors (SPRJ® mance. Due to a hardware optimization knowngiabal memory

cessor cores, running at 1.3GHz. Each SP can perform one FMARccess coalescingaccesses from adjacent threads in a half-warp

(two ops) and one FMUL (one op) for three single-precisio®©Pts g adjacent locations are coalesced into a single contigatigned

per cycle. With 240 SPs in total, C1060 has a single-pretip@ak memory access. Thus, the significant performance benefitstalu

performance of 936 GFLOPS(SMs x 85Psx (2+1) x1.3GHz). coalesced accesses should be leveraged by compiler ogtionis.

With four times as many SPs, S1070 can deliver 3744 GFLOPS Tapje | lists some architectural constraints imposed onex us

(936GFLOPS x 4GPUs) of single-precision peak performance. program [14]. Due to their complex interactions, it can béiailt
Every C1060 GPU has 102 GB/s bandwidth to its 4GB off- 1o accurately predict the effects of compiler optimizasiam the

chip, global memory (callectievice memojy This amount of performance of a kernel. Unpublished details about GPUi-arch

bandwidth can be easily saturated with computational 88U tectyres further exacerbate the problem. There is oftemdearff

supporting nearly 936 GFLOPS of performance. In addition, @yetween the performance of individual threads and the ThiR4t-

global memory access has very high latency (400 — 600 cycles)eye| parallelism) among all threads [2, 10, 16].

As a result, several on-chip memories are available to @xplo

data reuse so as to lessen an application’s demand for ipff-ch lll. THE 2D SSOR FERATIVE SOLVER

memory bandwidth and reduce expensive off-chip memoryidraf Partial Differential Equations (PDEs) are widely used irese

In particular, each SM has a user/compiler-managed 16KBedha tific and engineering applications. Iterative methods astefr than

memory for data reuse or sharing among threads and 16,38direct methods in solving a large system of linear equatiams

32-bit registers partitioned among threads. For read-afdie, are thus often used. Three well-known iterative methodsacebi,

the constant and texture cache memories can significardiycee ~ Gauss-Seidel and Successive-Over-Relaxation (SOR).

memory latency. For the experiments done for SSOR in thikwor Many applications involve boundary value problems thatineq

these cache memories are not used. solving diffusion equations. Consider a 2D case:
In S1070, data exchange among its four C1060 GPUs (i.er; inte 2u 0%
GPU communication) is accomplished through the host. Au = Fr) + 72 (1)

In the NVIDIA CUDA programming model [14], a GPU works
as a co-processor with a host by executing data-paralleieker whereQ = [0, 1]x [0, 1] € R? is bounded witld2 as its boundary.
functions. A user program is compiled by the NVIDIA compiler The domain is divided with the step size$/(N: + 1) and
into host code and kernel code. The host code transfers data /(N2 + 1) along thei and j axes, respectively. By using;,;
and from the GPU’s device memory via API calls and initiatess t to denote the finite difference approximation ofat grid point
execution of each kernel by performing a function call. (4,4), we obtain the following five-point approximation of (1):

GPUs architectures allow a large number of fine-grainecattse
to cooperate in solving large-scale applications. In CUbeads
are organized hierarchically into three levels. Each Kecneates wherei =1,...,N; andj =1,..., N». The boundary condition
its own single grid. A grid is divided into many thread blocks is set to bedQ2 = 0 in the normal manner.

Each thread block is assigned to a single SM for the duratfon o Such a system of equations is often solved using an iterative
its execution. Threads in the same thread block can co@pbsat solver. The Jacobi method updates all grid points at antitera
barrier-synchronizing their memory accesses and can sfetee say, k using their previous values obtained at iteratior 1:

through the shared memory. Threads are otherwise indepgnde . 1, & 1 1 1

and synchronization across thread blocks is safely acdsheul Uiy = Z(ui—l,j +ui o1t Ui U) 3)

only by terminating the kernel. Finally, threads within aethd)

block are organized into warps of 32 threads. Each warp ésecu Fgr the SORk method, the computation Hﬁj uses the "?"”es of
in a SIMD fashion, issuing in four cycles on the eight SPs of an"i-1. andu; ;s thatkbzlivekailgeady bi?? computed at iteration
SM. When a warp running in an SM stalls, the SM can quickly and the old values af;;*, u; i ; andu;;, from iterationk —1:
switch to a ready warp in the same thread block or a ready warp & 1\ k=1, %W, k |k k=1 k-1

in some other thread block assigned to the same SM. wig = (mwhuiy 4 (wiong Ui +uise) - (4)

While maximizing data reuse through the shared memory help§he Gauss-Seidel method is a special case of SOR whenl.
to improve the performance of a kernel, shared memory bank A 2D iterative solver is typically implemented using a 3D oo
conflicts should be minimized. In addition, reducing theetetty nest, where the inner two loopsand j enumerate all grid points

Auij — Uio1,j = i1 — Uit1,j —Uigr1 = 0 (2)

solvers for uniprocessors. Michelle et al. [18] presentgaillel
Gauss-Seidel method by applying a full sparse tiling tephai

to improve the cache locality of a program for uniprocessors
and shared-memory machines. Wallin et al. [21] considered t
temporally tile Gauss-Seidel with pipelining techniquesnprove
parallelism on shared memory machines.

Due to its simplicity and good performand®BSOR has often
been a popular choice not only for distributed memory mazhin
but recently, also for GPUs [25RBSOR divides a domain of
grid points into a chessboard of red and black points. Due to
the absence of data dependences between red and black, points
the Jacobi method (using SOR) is applied to update the points
of one color simultaneously using the previous values cdetpu

G, Jj) (i+1,)) at the points of the other color. This high degree of finergdi
parallelism makesRBSOR amenable to data-parallel execution
Figure 1. A sequential multi-layer symmetric five-point S@fethod 0N GPUs. On the other han®BSOR does not respect the data
(MLSSOR) (K = 3). The five dependences at each point in the forward dependences in the original SOR (and SSOR), resulting iresom
and backward sweeps are directly derived from (4) and (Speetively. slightly slower convergence rates under some inputs. Iitiadd
RBSOR exhibits less data reuse (due to red-black ordering) and
may suffer from high inter-GPU communication overhead.
In this section, we describe a new parallel multi-layer SSOR

pApMyoDq
Sl e

papmtof

in thei — j plane, i.e., domain and the outermost Idoperforms

multiple sweeps, i.e., iterations across the j plane. The set of 545ithm, also denoteBILSSOR (as we will refer to its sequential
all points (k, 7, j) is known as théteration spaceof the loop nest. \orsion as the sequentitLSSOR henceforth), for GPU archi-
The Jacobi method is inherently parallel since all point8 € (ocqyres in order to strike a better balance between finieaga
be computed at the same time. However, it is often not used d“EaraIIeIism and data reuse thRBSOR. Like RBSOR. MLSSOR
to its slow convergence and high memory usage. The SOR ang developed using a non-dependence-preserving pazaliefn

Gauss-Seidel methods are known to be inherently sequéntial gopeme as follows. First, a new domain decomposition tecieris
their original forms. With an appropriate choice of the xeléon applied to enable simultaneous point updating using fieéngd

factor w, SOR converges faster than Gauss-Seidel. threads (Section IV-A). Second, a generalized loop tiliwich
The symmetric SOR, or SSOR, gom_blnes_ two SOR sweepgjjes the two sweep directions alternately, is applied sat the
together in suph away that the resulting |terat|pn matriifsilar resulting tiled code exhibits the same degree of intradledata
to @ symmetric matrix. In other words, SSOR is a forward sweefyese put better inter-kernel data reuse than traditiaap kiling
performed using (4) followed by a backward sweep using: (Section IV-B). Although existing NVIDIA GPU architectuse

uf,j :(17w)uf’;1+%(uf__ll’j+uf,]_-_11 + ufﬂ’jJruin) (5) cannot e_xploit inter-kernel data reuse, other §trear_n jsEmS s_uch
as Imagine [9] and AMD GPUs can. Despite this, applying the
In this paper, we consider to apply (4) and (5) alternately asgeneralized loop tiling to NVIDIA GPUs is still beneficial dis
illustrated in Figure 1, resulting in what is referred todexs a improves the convergence rate as discussed in Section Vd,Thi
multi-layer SSOR method. There af¢ layers since every sweep- a new tile scheduling scheme is introduced to ensure that all
ing direction is repeateds times and the method is symmetric SPs in one GPGPU can start executing their subdomains at the
due to the five-point stencil discretization used. In foeward same time, resulting in significantly improved SIMD partidien
sweep(4) is applied forK iterations, starting at the left and bottom at the expense of some slightly slower convergence ratesttea
boundaries of the domain and moving towards the right and topsequential SSOR under some inputs (Section IV-C). Findlig,
boundaries at each iteration. In thackward swegp5) is applied overall communication cost is kept to a minimum by overlagpi
also K times with the sweeping direction being reversed. computation and communication on multiple GPUs (Secticb)V
The multi-layer SSOR method/LSSOR, which is guaranteed
to converge [17], enables us to develop a new data-reusetigéf
and data-parallel implementation for GPU architecturdsvie Traditionally, the domain of an SOR solver is partitioned-di
jointly so that a processor computes all the points in itettt
IV. A PARALLEL MLSSOR METHOD FORGPGPLs subdomain in every SOR iteration. So the domain is meant to
Several parallel versions of SOR, including red-black SORbe the mesh, i.e., thé — j plane for a 2D SOR solver. In
(denotedRBSOR) [3], multi-color SOR [1, 12] and block-parallel MLSSOR, however, the sub-mesh allocated to an SP changes
SOR [22], have been proposed mostly for distributed memoryas the iteration proceeds, causing adjacent sub-meshestiam
machines. Tang and Xue [19] presented a method for tiling SORat their boundaries. To avoid any confusion, the domain of an
by applying skewing and tiling for distributed memory maws. = MLSSOR loop nest is meant to be its 3D iteration space. As a
Goumas et al. [4] later continued this line of investigatignfocus- result, domain decomposition divides the iteration spate 8D
ing on the parallelization of 2D iteration spaces that refsam the rectangular boxes (i.e., parallelepipeds).
discretization of PDEs. In addition, Huang, et al. [7] imtoced a The two sweep directions are partitioned as shown in Figure 2
code tiling technique for improving the cache performantEBE We describe only the technique used foKalayer forward sweep

A. Domain Decomposition

f k=ky+2K~-1
i
E
)
S
k=k,+K <

— k=k, +K -1
2
(
R

k=k,
» !

Figure 2. Domain decomposition for two alternate sweeps.

Figure 3. Tiling of the subdomai®y, 4, in the forward sweep shown
in Figure 2 intom x m = 3 x 3 = 9 tiles of height X' = 3. The middle
tile is full while all the rest are border tiles.

since it is mirrored by a backward sweep. There are two reasonsyeeps. To capture such temporal reuse, all three dimensiost

behind this somewhat unconventional partitioning apgno&drst,
together with our generalized loop tiling, this partitingiapproach
allows different subdomains to be executed in parallel with
inter-subdomain communication kept to a minimum, as dseds
in Section IV-C. Second, as is clear in Section V, better datze
and convergence rate can be obtained.

be tiled. Due to the existence of data dependencies in botvafd
and backward sweeps (Figure 1), it is illegal to simply tig i
iteration space by using rectangular boxes.

Figure 3 illustrates the loop tiling being applied to the doimain
Dy, 4, depicted for a forward sweep in Figure 2. As illustrated in
Figure 1, the sweeping direction used for updatingkhkayers in a

Let a 2D mesh of sizéV, x N be partitioned across a 2D mesh forward sweep is reversed in a backward sweep. Thus, thetmur

of size P, x P». For simplicity, it is assumed thd® divides N,
and P, divides N». Consider aK-layer forward sweep starting
from k = ky and ending ak = ky + K — 1. It is partitioned into
Py x P> blocks so that its intersection witty layer is divided into
Py x P, rectangles of sizéV1/P; x N2/P». This is achieved with
the following subdomain cutting planes across #idayers:

i = sx B 4k—ki+1l, s=1,...,P—1 ©)
jo= txFE4k—ki+1, t=1,... P—1
whose normals arél, —1,0) and (1,0, —1), respectively.

All non-border subdomains are 3D rectangles (paralletgsp

self dependencies are also reversed. This results in loop by
applied to two sweeping directions alternately, a gensatiin of
traditional loop tiling [23, 24] that tiles the entire it¢i@n space
uniformly. In addition, all border tiles are chosen to haedent
sizes so that they have all the same amount of work. This easur
load balancing among fine-grained threads.

For reasons of symmetry, we explain only how to tilé&aayer
subdomain obtained for a forward sweep, where (4) is refete
times across the — j plane. In general, d-layer subdomain is
divided intom x m tiles identified by their tile indices. Léf;, ¢,
be the tile located aft1,t2). Let K x M x M be the size of a

of size K x & x 2. The cutting hyperplanes near the borders of full tile. Let (ko, io, jo) be the lexicographically largest point of

the mesh are so chosen that all subdomains (border or nalefyor
have roughly the same number of grid points. L2}, 4, be a
non-border subdomain located (@ti, d2), where0<d; < P, and
0<dx < P,. Let D}, ,, be itsk-th layer. Then

D a4, = Dih +(1,1,1) @

where D70, + (1,1,1) = {(k,i.4) + (1L,1,1) | (ki) €
D}~ }. Inthis case, every layeb}, ,, in the subdomaimg, 4,
is atranslateof the Iayeer;;il2 below, i.e., drifts away from the

coordinate origin, alond1,1,1) as shown in Figure 2.

B. Generalized Loop Tiling

We tile our sequentiaMLSSOR by using a generalized loop
tiling transformation. As can be observed from (4) and (5 &n
also illustrated in Figure 1, there exists temporal reuseszcall
three dimensions in the 3D iteration space of MESSOR loop
nest. Specifically, each grid point is accessed five timeggua
sweep across thé — j plane, once by itself and four times by
its neighbours, and also accessed multiple times duringipteul

the bottom-left tile in the subdomain. The subdomain is didi
into m x m tiles by using the following hyperplanes:

ko <K k<ko+ K
it = (s—1)x M+ko—k+io+1,
Jj=@t-1)xM+ko—k+jo+1,

s=1,...,m—1 (8)
t=1,....,m—1

whose normals ar€l, 1,0) and (1,0, 1), respectively.
The main reason for tiling a subdomain this way is to ensuee th
the subdomains can be executed in parallel as discussetlyshor
There are(m — 2) x (m — 2) full (i.e., non-border) rectangular
tiles of size K x M x M in the center andn x m — (m — 2) X
(m —2) = 4(m — 1) border tiles. In Figure 3, only the one in the
center is full while all the rest are border tiles.

« Full Tiles. Let T}, ;, be the set of points in the-th layer of
Tyt If T, 1, is @ @ full tile, then we have:

Tiklat2 = Ttkﬁé + (17 -1, 71) (9)

Thus, every layer irl3, ., is atranslateof the layer below
along (1, —1,—1), as shown by the middle tile in Figure 3.

« Border Tiles. A border tile is a boundary tile that is a from 71,1 in Dg, 41,4, t0 72,1 In Dg, 4, in Figure 4(b).
hexahedron but not a rectangular box as shown in Figure 3. This explains why the slanted hyperplanes in Figure 3
are used in our loop tiling. In particular, the most up-to-

C. Parallelization for One GPU date value of a dependent point is always used. In the

We now explain the rationale behind our unconventional doma sequential SSOR, the value used at grid péink 1, 5)
decomposition and tiling techniques. Our parallelizastnategy is of 711 in Dy, 41,4, is computed ak — 1,5 + 1, 5)
simple. All K-layer sweeps are executed sequentially, bottom-up. (along the dependence depicted with an unfilled arrow
EachK-layer sweep is executed concurrently by all SPs in a GPU. head). In the parallel version, the value is fetched from
In order to enable all SPs to start executing at the same timee, (k,i+ 1,7) (along the dashed dependence).
tiles with the same tile index from all subdomains are exatut b) Bottom and Left Border Tiles: 7i.1, 712 and Tz.1.
in parallel by the same kernel. However, of the x m tiles in As the opposite of Case 2(a), the situation is reversed
a subdomain, the tiles i7;; | 0 < 4,5 < m} (e.g., the tiles except that the dependence frétn—1, i, 5) to (k, i, 5)
Ti,1, Th,2, T2, @andTz 2 in Figure 3) do not have inter-subdomain is always confined to the same subdomain. If a point
dependences and can thus be combined into a larger tile. This (k,4,7) in such a border tile of a subdomain depends
avoids unnecessary kernel startup overhead. Section \ppbea on(k,i—1,j) or (k,,j—1) computed in a top or right
shared memory reduction to deal with large tiles. border tile of an adjacent subdomald, then D’ has

In our implementation, every subdomain infé-layer sweep not been executed yet. In this case, the most up-to-date
is therefore partitioned int@ x 2 tiles. There are a total of four value(k—1,i—1, 5) or (k—1, i, j—1) already computed
kernels executing d@-layer sweep. All tiles with the same tile in D is used instead. The existence of such value
index (t1,t2) from different subdomains form a grid executed by is guaranteed due to the use of slanted hyperplanes
the same kernel, denoted;, ;,. For example, suppose that the in domain decomposition shown in Figure 2. This is
two adjacent subdomainSa, ., and D, +1,4, in a forward sweep illustrated in Figure 4(c). Poin(k,i,7) of 7i1 in
(highlighted by gray in Figure 2) are of the sizéx 8 x 8. They are Da, +1.4, requires the value ofk,i — 1,) of T in
each divided into four tileg:,1, 71,2, 72,1 and 73,2 as illustrated Da, .4, (along the dependence depicted with an unfilled
in Figure 4. How their sizes are chosen is discussed below. arrow head), which is computed afték, 4,). Thus,

The four kernelsKi 1, Ki2, K21 and K22 are executed the most up-to-date valugi — 1,i — 1,5) of 711 in
lexicographically in terms of their kernel indices. The msiin Dy, +1.4, (along the dashed dependence) is used.

the same tile are also executed lexicographically. Li@SOR,

our parallelization scheme does not respect all data depees
in the original SOR. However, the convergence is guaranbegd
at somewhat slower rates under some inputs [20, 26]. To (moro;,-OI
than) offset a drop in the convergence rate, all subdomains i

K-layer sweep can now be executed in parallel. This represen . . .
Y P P P as large as possible. This ensures that the hdighit a K-layer

a good tradeoff for data-parallel GPU computing, one of thg k . . L
fin?jings worthy being em?)hasised in this ngelrg ¥ sweep is the largest possible to maximize the chances for t8OR
Below we examine how the data dependences in the originaljj,e a_pplled. Therefore, if a subdomain has the sizex n x .
SOR are dealt with and how tile sizes are determined. 1,1 is chosen to havén —1) x (n.—1) at the bottom layer. This
nsures that the largeat = |n/2] is used. The sizes of the other

Consider the five data dependences depicted in Figure 1 for : tlesT. ». T 4T then determined dinalv b
K-layer forward sweep. There are two cases depending on aheth "' o€ 11€S41.2, 42,1 ahd72 2 are then determined accordingly by
the tile-cutting hyperplanes given in (8) as illustratedrigure 4.

they are intra- or inter-subdomain dependences:
1) Intra-Subdomain Dependences.There are two subcases pgrallelization for Multiple GPUs

depending whether these are intra- or inter-tile deperetenc o) -
Intra-tile dependences are satisfied since the points in a 'Nhe basic idea is to partition the mesh of a solver across the

tile are executed lexicographically. Inter-tile deperctenare ~ Multiple GPUs and appIfILSSOR to the sub-mesh allocated to
satisfied for the four tileq; 1, 77,2, 721 and Tz, in a sub- & GPU. With one single GPU, kernefs,> and Kz, do not have
domain since their corresponding kerndls,i, K12, Ka.1 inter-kernel data dependences and can thus be combinedamita-
and K, are executed in that order (i.e., lexicographically What improved data reuse and reduced kernel startup owerhea
in terms of tile indices). For the five dependences illustiat However, this kemel fusion increases the frequency ofriGeU
for 7z,1 in Dy, .a, in Figure 4(a), the three frorf; ; to 7o 1 communication in multiple GPUs, It_aadln_g to reduceql pertamoe.
are satisfied sincé7.; is computed earlier thaff, ;. Thus, the two kernels run sequentially in our experiments.
2) Inter-Subdomain DependencesThere are two subcases:
a) Top and Right Border Tiles: 712, 72,1 and 7.
If a point (k,,7) in such a border tile of a subdomain In this section, we present and analyze the performancdtsesu
depends offk—1,1, j), (k—1,i+1,5) or (k—1,4,5+1) and various tradeoffs that need to be made by a compiler for
computed in a bottom or left border tile of an adjacent executingMLSSOR and RBSOR on a single-GPU Tesla C1060.
subdomain (in Case 2(b)), the dependence is satisfietlVe focus more oiMLSSOR and touch orRBSOR briefly. For
since the dependent point must have already beerS8SOR, once the data operated by a thread are loaded intoex buff
computed. Such is the case for the three dependenceas the shared memory, there are no bank conflicts incurred.

When a kernel is executed, all inter-kernel dependences are
satisfied by fetching the dependent data from global memory.
Our parallel MLSSOR algorithm is guaranteed to converge
lowing a similar line of reasoning as in [20, 26]. Howeyvéo
taccelerate the convergence rate, the bottom-leftZile is made

V. RESULTS ANDANALYSIS FORONE GPU

Figure 4. Enforcement of the data dependences illustratethé two subdomains illustrated in Figures 2 and 3 in a fodwaweep. The meanings of
the dashed dependence shown in Part (b) (Part(c)) is rdfesren Case 2(a) (Case 2(b)) discussed in Section IV-C.

12

Alglyoritrt]m Nlimber of Itgrations to C%nverge Sreaoe Ereacmlece oo
npu 10 4*8*s orr:;o " Wa*s*s cg:;:z::; e
Tolerance Error 0.001 0.001 0.000001 . D4*8*8 Unrolling [14*8*8 Coalescing+Unrolling
SSOR 64 67 10214 8
RBSOR 78 70 10567 E °]
2x4x4 | 112 (139)| 105 (120)| 12769 (13215 4
MLSSOR | 4X8x8 | 96(111) 91 (92) | 11463 (12043 2 |
8x 16 x 16 | 76 (82) | 71 (85) | 10735 (10997
16 x 32 x 32| 71 (81) | 64 (70) | 10447 (10853 o
4 8 16 32 64 128
Table I Threads per Block
CONVERGENCE RATES FOR THREE INPUTS OF SI1Z&192 x 8192 WITH
THE GIVEN TOLERANCE ERRORS SHOWNFOR MLSSOR, DIFFERENT Figure 5. Execution times dfILSSOR. In each case, Org means that
SUBDOMAIN SIZES LEAD TO DIFFERENT CONVERGENCE RATESTHE neither unrolling nor coalescing is performed.

RATES INSIDE THE BRACKETS ARE OBTAINED WHEN ONLY THE
FORWARD SWEEPING DIRECTION IS USED

Section IV-C and the best temporal reuse. For each subdaizan

o we consider four different optimizations depending on wketoop
To begin with, Table Il compares the convergence rates off§SO unrolling and global memory coalescing are used or not.

MLSSOR andRBSOR for three different inputs. The convergence We first present the performance resultsMfSSOR and then
rate of MLSSOR depends on the subdomain size used. Note;n i e these results. We also discuss various tradeatisg al
that MLSSOR is designed to trade off its convergence rate forthe way, highlighting the importance of compiler optimizas,
data parallelism, as demonstrated in this sectdhSSOR can performance modeling and performance tuning.
converge more slowly thaRBSOR. For all experimental results 1) Performance: Figure 5 shows the execution times of
prelsented in th'f sectlo? afndh_Sectch)n _VI’ the input data sed in MLSSOR with respect to varying number of threads per thread
Column 2, i.e., “Input 1" of this .tab e is used. . block. Some performance bars are missing since in thosegeenfi
We are now ready to explain the two reasons for applying aiions the 16KB shared memory (cf. Table I is not big enotah
our generalized loop tiling to the multi-layer SSOR. Fifsefter 14 the data used by all the threads in a single thread block.
convergence is achieved than if a single sweeping dired8on \ye opserve that the performance BLSSOR is sensitive to
used as shown in Table Il. Second, inter-kernel data reuse Cagbdomain size. The effect of any optimization (or combamgt
be exploited in some stream processors even though thistis N, performance is non-linear due to complex interactionsram
presently possible for NVIDIA GPUs. As shown in Figure 2, any \arious GPU architectural constraints (cf. Table I).
pair of mirrored subdomains in two adjacent sweeps access th 2) Resource Usage and Performance Estimatéde analyze
same set of points. We estimate théitSSOR can achieve about the results of Figure 5 by making use of the resource usage

40% higher performance if such inter-kemel reuse can ai&. jntormation for kernelk;.; from Table Ill. Memory coalescing
does not appear in the table since it is immaterial to thestitzs

A. MLSSOR collected. A similar trend is observed if one of the othereéhr
We focus on two different subdomain sizes whex M x M = kernels is used. For subdomain sizZes 4 x 4 and4 x 8 x 8, the

2x4x4andK x M x M =4 x 8 x 8. In each caseK is the points/thread values fok,,; are3 x 3 and 7 x 7, respectively,
largest possible to obtain the fastest convergence assdisdun as shown in Figure 3. For each configuration identified by the

Registers/Thread Performance (GFLOP$) Bandwidth (GB/s)

SubdomainPoints|Threadsf| Shared Memory/ Wonl|B #Active
Size |Thread Block ||Thread Block (bytegNo Unrolling|Unrolling| """ 73 |®SM | ThreadgNo Unrolling|UnroIIing No UnroIIing|UnroIIing
4 404 0.125| 40 160
8 724 0.25| 22 176
16 1364 0.5 12 192
2x4x4|13%x3 32 2644 16 13 1 6 192 99.7 82.2 46.9 78.7
64 5204 2 3 192
128 10324 4 1 128
4 1260 0.125] 13 52
8 2412 0.25(6 48
ixsas|an 16 4716 17 59 05 3 48 108.1 93.9 26.9 46.6
X6 x x 32 9324 1] 1] 32
64
128 Out of Shared Memory

Table I
RESOURCE USAGE OMLSSOR (INSENSITIVE TO COALESCING FOR KERNELKC1,1 UNDER THE CONFIGURATIONS DEFINED BY THE FIRST THREE
COLUMNS (AND ALSO ILLUSTRATED IN FIGURE5).

first three columns together, a number of statistical degdisted. 62.4GB/s. This value is estimated average bandwidth for running
Columns 4 — 6 are self-explanatory. By compiling CUDA code threads. It is possible that all threads simultaneouslg tieta, thus
with the - cubi n flag, we could get some understanding aboutthe latency of accessing to global memory still exists. Ha@wgif
on-chip memory usage. In Column Wrg is the number of this value without any global memory optimization is morarth
warps in a thread block, which is determined by dividing the 102 GB/s, which is Tesla C1060’s off-chip bandwidth, a lot of
number of threads in a thread block by 32. In Columni;, time will be spent on waiting for data transport and the badtw
is the number of thread blocks assigned to each SM. It is lysual is likely to be bottleneck. In the last two columns, the baruttiv
determined by shared memory and register usage (Columns 4 estimates forfC;,; are given for unrolled and non-unrolled cases.
6). As indicated in Table I, C1060 has 16KB shared memory 3) Effects of Unrolling and Coalescing On performandeull
and 16,384 registers per SM. Consider the configuration viwen loop unrolling often achieves the best performanceMivSSOR
subdomain size i x 4 x 4 and threads/block is 8. Every thread and is thus applied to obtain the results given in Figure 5olling
block needs 724B shared memory. So the maximum number ofmproves data parallelism by removing branch instructicersd
simultaneously active blocks in one SMI§K B + 724B = 22 consequently, reduces significantly the dynamic numbensifuc-
(Column 8). The number of registers required by 22 threadskbl tions executed. With full unrolling, théILSSOR performance
is 16 registers/thread x 8 threads/block x 22 active blocks = always improves as shown in Figure 5 although the GFLOP
2816. Since this number is less than 16384, 22 blocks can bestimates have dropped as listed in Table Ill. In additiomplling
assigned to the same SM. Otherwid®; s is decided by register also affects register usage. In the case ef4 x 4, the number of
usage. The bottleneck then shifts from shared memory tetergi registers per thread has dropped from 16 to 13.4%r8 x 8, the
In a special case, although there are enough registers amddsh register requirement increases noticeably from 17 to 5¢hodigh
memory to execute more blocks, the number of active threas m unrolling usually increases register pressure, the iserés small
exceed the maximum value 1024 available per SM (cf. Table I)relative to the total number of registers available per SMdast
Bsr has to change to satisfy this constraint. For this configamat for MLSSOR). Thus, full loop unrolling accelerates thLSSOR
the largest number of active threads is 176 only (Column 9). performance by reducing the dynamic instruction count etest
Finally, let us look at the last four columns in Table I, whi Two strategies for reducing the negative impact of bandwat
give performance and bandwidth estimates for keidel. Tesla performance are to improve data reuse and reduce global rgemo
C1060 is capable of issuing40SPs x 1.3GHz = 312 billion access. The bandwidth is used most efficiently when the smul
operations per second. When all the SPs are fully occupibtthw neous memory accesses by threads in a half-warp can be cedles
is achievable in an application that has many threads, does ninto a single memory transaction. The memory system may lge ab
have many synchronization operations, and does not stres®ng ~ to combine these into a single memory accessing requesh Eve
bandwidth. In this situation, for example, 0% of a program if the average required bandwidth in our experiments is thas
instruction mix are fused FMAD and FMUL which can be done 102 GB/s and thus not the key bottleneck, the impact of comgs
each GPU cycle, then its single-precision performance can bon performance is still noticeable. As shown Figure 5, cig
at most3 x 10%FP x 312 = 93.6GFLOPS. We can obtain always improves performance. In particular, whBgy, = 1 in
kernel assemble instructions through thet x flag. In Columns Table Ill, the performance benefit of coalescing is maximtiza
10 and 11, the GFLOP estimates ffil;,; are given for both this case, when threads in the unique block assigned to an SM
unrolled and non-unrolled cases, which will be further désed stall on a load instruction, there exists no other blocks tlaa be
in Section V-A3. scheduled by the SM to overlap computation and communitatio
Another potential bottleneck is global memory bandwidth. | 4) Correlating Configurations’ Relative Performancedle find
5% of code are loads from off-chip memory, required bandwidthfrom Figure 5 that it is difficult to establish a certain réat
is 240SPs x 5%instructions x 4B/instruction x 1.3GHz = between anMLSSOR configuration and its execution time. We

—<+- Efficiency —&— Utilization

Threads per Block

N \

2*4*4 Unrolling 4*8*8 4*8*8 Unrolling
Subdomain Size

2*4*4

Figure 6. Efficiency andUtilization of MLSSOR (insensitive to coalesc-
ing) of kernel/Cy 1 for all the configurations given in Figure 5.

use the two performance metrics from [16] to provide somejinou
estimates for the relative performance results of certaimfigu-
rations. Both are meaningful only if global memory bandiwvidk
not the performance bottleneck. TE#iciency metric indicates the
overall efficiency of a configuration in terms of the total rluen
of instructions that must be executed before the kernelhiésis

! (10)

Effici = -
clency Instr x Threads

in Figure 5. Below we use these two metrics to analyze thetsffe
of thread granularity and loop unrolling on performance.

First of all, for both unrolled and non-unrolled codsdtjlization
drops when thread granularity increases. This implies that
number of active and ready threads is cut down because larger
threads consume more resources. In limited resource isiigat
shared memory and register usage affect the throughput 8iMan
However, since an increase Efficiency counteracts a decrease
in the throughput caused by reducddlization, MLSSOR is not
always slower whent x 8 x 8 is used, since larger threads, i.e.,
subdomains lead to faster convergence rates as shown ia Mabl

Next, for the same subdomain size with and without unrolling
the improvedEfficiency due to unrolling is entirely attributed to a
reduction inInstr sinceT hreads remains unchanged. Moreover,
unrolling does not alter the number of memory accesses. So
Regions should not change remarkably. According to Table I,
unrolling usually does not reduce resource usage. As atresul
Utilization worsens asnstr decreases. However, the gain from
improvedEfficiency seems to more than offset the loss caused by
worsenedUtilization here. So unrolling is always beneficial for
MLSSOR.

Furthermore, looking at the combined effects of thread gean
ity and unrolling on performanc®ILSSOR has betteEfficiency

where Instr derived from the PTX code of a kernel estimates the andUtilization under ‘2 x4 x4 Unrolling” than “4x 8 x8” (without

number of dynamic instructions executed per thread Bhéleads

is the number of threads created by the kernel. In this wdis, t

metric also reflects well the impact of data reuse on perfaoaa

When the tile size increase€fhreads decreases sharply. A thread

will have more work to do. In addition, the convergence w#l b

accelerated as shown in Table Il, resulting in a better efficy.
The Utilization metric is about the utilization of the compute

unrolling). This means that a decreaselimstr due to unrolling
affects the two metrics more than an increase in thread taiy
i.e., subdomain size. Consequentlg, X 4 x 4 Unrolling” results
in betterEfficiency than “4 x 8 x 8”, which has betteEfficiency
than 2 x 4 x 4". This analysis correlates well with the results
given in Figure 5, wherdILSSOR runs faster under2'x 4 x 4
Unrolling” except for the pathological “4 threads/blockése.

resources on a GPU by considering how often a warp may wait Finally, the weights ofEfficiency and Utilization are unpre-

and the amount of work available (from other warps) when é@do

(Bsm —1) x Wrp] (11)

Instr Wrp—1 +

Utilization = Tegions L

dictable, and the optimal configuration may need to balamth b
metrics. This is consistent with the observation made in],[16
highlighting the importance of using a tuning tool for effiot

where Regions is the number of dynamic instruction intervals solution space exploration.

delimited by blocking instructionsor the start/end of the kernel.
Long latency instructions, such as texture memory oparstio
and synchronization instructions, are considered as hbigch-

structions. Znstr_

. . Regions 2 o
instructions per interval. The quantity within the bracketdicates

5) Shared Memory ReductiorErom Table 1ll, we see that the
bottleneck oMLSSOR is shared memory. Our case study indicates
the importance for future GPU architectures to aggressieeploit

gives the average number of non-blocking both intra- and inter-kernel data reuse in scientific andreveging

applications to boost the performance of DOACR loops. Given

the number of independent warps in an SM. The first term isthe 16KB shared memory, the scarce resource must be eéfisctiv

the number of other currently executing warps in the sameathr
block. Dividing by two is for computing average possibilityalf
warps still need to execute. The second item is the numbeagiav

utilized with some shared memory reduction technique. Quhg- s
tion is to undo the merge of the tiles i, | 0 < ¢, < m}
into 7;,1 so as to execute the smaller tiles in separate kernels.

in other thread blocks assigned to the same SM. When thealegrdBut using smaller tiles leads to smaller tile heigkitas discussed

of parallelism is low, the value dfitilization is small.

Figure 6 plotsEfficiency and Utilization of C;; for all con-
figurations in Figure 5. A solid curve represertdsilization as a
function of different configurations for a fixed threadstfoas
marked. The single dashed curve represdtiticiency for all
possible values of threads/block since their efficiencyesirare
identical.

It should be pointed out that these two metrics are not Seifal
the configuration with only 4 threads per block. The full cartipg
capability of an SM consisting of eight SPs is not fully wdd.
Otherwise, there are good correlations betweerEffieiency and

in Section IV-C, resulting in slower convergence and poa&a
reuse. To avoid these problems and to facilitate memoryesoalg,

a different solution is used. When a row of points in a tile,,i.
Ti,1, T1,2, T2,1 or T2 are computed, only this row and its two
adjacent rows are kept in the shared memory. This solutisa al
sacrifices some temporal reuse but allows memory coalegoing
be realized more effectively.

With the shared memory reduction technique being applied,
Figures 7 and 8 are now given as the analogues of Figures 5,and 6
respectively. Some observations are in order. First, tni@peance
of MLSSOR drops slightly with shared memory reduction in most

Utilization metrics in Figure 6 and the actual performance resultsbut not all configurations. Second/LSSOR did not compile

N
o

W 2474 Org
W4'8'8 Org
W§+16°16 Org
W16'3232 Org

W2*4*4 Coalescing
B4+8°8 Coalescing
W8+16'16 Coalescing
163232 Coalescing

B2*4*4 Unrolling
B4'8'8 Unrolling
m8*16*16 Unrolling
B16'32'32 Unrolling

[2+4*4 Coalescing+Unrolling
D488 Coalescing+Unrolling
08+16*16 Coalescing+Unrolling
016*32°32 Coalescing+Unrolling

B = N
15) o S

Time (secs)

o

o

16 32

Threads per Block

64 128

Figure 7. Execution times dfILSSOR with shared memory reduction.

----Efficiency —&— Utilization

Threads per Block

—————
T T =
4*8*8 8*16*16 8*16*16 16*32*32 16*32*32
Unrolling Unrolling Unrolling

2*4*4 2*4*4 4°8*8
Unrolling

Subdomain size

Figure 8. Efficiency andUtilization of MLSSOR (insensitive to coalesc-
ing) of kernelfC1,1 with shared memory reduction.

(22X 4
X
>
= e ™
Oee
) $ o S0
i P . .
.
Utilization
Figure 9. Searching for optimal solutions by performancetricse

(illustrated usingEfficiency and Utilization for kernel K1,1). The best
configuration is highlighted by a circle.

M 1*1 Points/Thread W2*2 04*4

088 |

Time (secs)

| wll | |

32 64 128 256 512
Threads per Block

16

Figure 10. Execution times dRBSOR.

sometimes increase by nea#ly.5%. Thus, finer data partitioning
reduces an application’s demand for resources and incratse
degree of parallelism. However, it may affect negativelyeot

before for4 x 8 x 8 when the threads/block is 64 or 128 due to lack grchitectural constraints, i.e. by saturating the bantiwidgain

of shared memory but compiles now. Third, two larger subdoma
sizes8 x 16 x 16 and 16 x 32 x 32 are now included and can
compile except for a few large threads/block values. Fnalh
analogue of Table Il is omitted due to space limit. For corgmm
purposes, the new GFLOPS and bandwidth values correspptalin
the “2x4x 4" and “4x8x 8" rows in Table IIl are “120.9 70.5 58.0
123.9” and “124.5 101.3 62.1 101.3", respectively. With noeyn

the optimal configuration requires a balanced tradeoff tonbele.

6) Summary of Performance Metric§igure 9 plots the two
metric values for all configurations given in Figures 5 andfie
maximum metric value along each axis has been normalized to
one for comparison purposes. In general, the best perfa®nan
should come from configurations with both hidfficiency and
Utilization although their weights are difficult to valuate [16].

reduction, the required bandwidths are higher but the GFROP Thys, one desires configurations located towards the upiger r

values do not change as much at a similar magnitude.

Again there are good correlations between Figure 7 and &igur
In particular, there is an important point worth being resda
Although “4 x 8 x 8” results in lowerEfficiency than 2 x 4 x 4
Unrolling”, MLSSOR is a better performer undet % 8 x 8" when
the threads/block is 8 and 16 due to high#ilization. When the
threads/block increases to 32, the effect of a decreaBéiniency
on performance is larger than that of an increasdJiiization,
MLSSOR is slower under 4 x 8 x 8". However, the situation is
different in 128 threads/blockMLSSOR performs better under
“4 x 8 x 8" even though itsEfficiency and Utilization values
are both lower. As mentioned earlier, the required bandwizft
“2x4 x4 Unrolling” is 123.9 GB/s, which is beyond the maximum
102 GB/s available in Tesla C1060, while the required badtwi
of “4 x 8 x 8" is 101.3GB/s. Without coalescing, the GPU may
stall on waiting for accessing to global memory. As a reshié
execution time under2' x 4 x 4 Unrolling” is prolonged. With
coalescing, however, the overall memory time is reducedisTh
MLSSOR performs slightly better under2“x 4 x 4 Unrolling +
Coalescing” than 4 x 8 x 8".

With shared memory reduction, the number of active threads c

corner of the graph. The points connected by the line havieehig
opportunity to get better performance than others. Théedrpoint
for “4 x 8 x 8 Coalescing+Unrolling” using6 threads per block
with shared memory reduction is the best performer.

B. RBSOR

We have implementedRBSOR taken from the Java Grande
benchmark suite for CUDA following [25]. The performance
results are displayed in Figure 1&BSOR exhibits the same
performance withl x 1 points/thread when threads/block ranges
from 64 to 512. By examining resource usage, we find that the
bottleneck in this case is neither shared memory nor registe
With 64 or more threads per block, the number of threads to be
launched per SM exceeds 1024 (cf. Table I). Thus, the bettlen
is instruction issue. Therefore, fine-grained parallelsften gives
rise to good performance on GPU architectures. But the tvera
performance can be constrained by architectural consdrasach
as the number of active threads allowed, if the data reusetis n
adequately exploited.

For RBSOR, the Efficiency and Utilization metrics do not
appear to be sufficient in explaining its performance resuite

E1GPU B2GPUs 0O4GPUs

have made an attempt to understand its performance treodgthnr 1.8
experimentation, analysis and consulting [2BBSOR seems to
run at its full speed at x 1 points/thread with 128 threads/block.

1.6

Speedup

1.4
Both RBSOR and MLSSOR are compared in detail below. 2
VI. RESULTS ANDANALYSIS FORMULTIPLE GPUs q omel] el | N .
We compareMLSSOR and RBSOR on a Tesla S1070 com- 4006°4096 8192°8192 1638416384 24576°24576 28672*28672
puting system consisting of four GPUs. We evaluMeSSOR Problem Size

and RBSOR using their configurations giving rise to the best

single-GPU performances. These may not be the absolutédrest ~ Figure 11. Speedups MLSSOR over RBSOR for multi-GPUs.
a multi-GPU setting but seem to be a good choice for sterasiet
computationsMLSSOR uses a subdomain of sizex 8 x 8 with

16 threads/block with shared memory reduction wHRBSOR'’s
configuration isl x 1 points/thread with128 threads/block.

The host is an Intel Xeon Quad-core CPU running at 2.66GHz.
The mesh of an SOR solver is distributed block-wise alongdine
mension to the four GPUs. We need to use a series of CPU threads
to schedule and manage the execution of the sub-mesheatatioc
to the GPUs. In our experiments, four CPU threads are created Problem Size
run on four CPUs concurrently. Each CPU thread is assocyaitixd
an individual GPU. It is responsible for distributing thequered Figure 12. Computation speedupsMESSOR over RBSOR for multi-
data in the sub-mesh to the device memory of its associatdd] GP GPUS (with zero communication overhead assumed).
scheduling kernel execution on it, and communicating thenbary
data of sub-meshes with the other GPUs indirectly via the. hos

Figure 11 shows the speedupsMif SSOR overRBSOR. Over- to make CUDA kernels more accessible in high-level programgm
all, MLSSOR performs better with increasingly larger problem languages [10]. Developing programmer-friendly inteefacfor
size and more GPUs. However, the performance increases afgcelerating Java programs with CUDA is also an interestipic
not linear. We analyze this phenomenon by separating ttee-int [25]. Furthermore, systematic compiler optimization teioles are
GPU communication cost from the computation cost during auseful in generating highly parallelized CUDA code autdozly.
program execution. All device-to-device copies are asgombus. The latest version of the PGI 9.0 release from the Portland
The associated idle times are not stable in different runshef ~ Group includes PGF95 and PGCC accelerator compilers, which
same program. Thus, the inter-GPU communication time of aare supported on all Intel and AMD x64 processor-based syste
program is measured as an average of 10 program runs. Figvith CUDA-enabled NVIDIA GPUs [5]. Recently, Lee et al. [10]
ure 13 shows the inter-GPU communication overhead incseaseintroduce an automatic compiler framework to generate CUDA
of RBSOR over MLSSOR as the problem size increases on code from OpenMP programs. Baskaran, et al. [2] explore siee u
more and more GPUs. Figure 12 replots Figure 11 with the-interof affine loop transformations for GPU parallelization.

GPU communication costs being annihilated. Now, the coatjart Another important research is to develop cost models aridgun
speedup oMLSSOR over RBSOR increases more smoothly than tools for estimating and understanding the performancssltieg
before as the problem size increases across the multiplesGPU from different optimizations. Due to complex interactioasiong

Given a problem sizeMLSSOR and RBSOR incur about the the GPU architectural constraints, it seems to be difficulfind
same amount of inter-GPU communication. The difference lie near-optimal configurations by searching the solution sjiadly.
in the frequency of communication. FMLSSOR, the inter- Ryoo et al. [16] discuss some useful performance metrics and
GPU communication occurs whek:1»> and K22 run to com- optimization principles for GPU architectures [15], bueyhdid
pletion. Note that if/C1 2 and K21 were merged (as discussed not concern themselves specifically about DOACR loops. Homyy
Section IV-D), the inter-GPU communication would occur whe Kim [6] present an analytical model for estimating the exiru
every kernel completes, causing a 50% increase in comntiorica time of a program running on NVIDIA GPUs.
frequency. HoweverRBSOR communicates four times as many
as MLSSOR. As thread granularity increases, the frequency of

B2GPUs 04GPUs

=
o

-
o

-
N

mia=iar-im A

4096*4096 8192*8192 16384*16384 24576*24576 2867228672

Computation Speedup
N

-

communication incurred bMLSSOR decreases. However, due to § 25 B2GPUs D4GPUs
the idle times elapsed in inter-GPU communication, pertoroe § 2 —
fluctuations are expected across the problem sizes. ?E, 1.5
- 1
VIlI. RELATED WORK =
i) . . £ 05 -
We supplement a brief review of related work earlier by dis- E 0
. . o -
CUSS”ﬁ‘g Some _cur_rent work for GPU archltt_actures on langyage 4006*4096 8192°8192 16384*16384 24576°24576 2867228672
compiler optimizations and performance tuning. Problem Size

CUDA is a popular programming model for the NVIDIA GPUs

used by C/C++ programmers. The provided abstractions mags0 Figure 13. Inter-GPU communication overhead increasé®B8OR over
times limit the programmability of GPUs. One research diogcis MLSSOR for multi-GPUSs.

DOACR loops are difficult to run efficiently on GPGPUs since
their cross-iteration dependences pose a major obstackheto
exploitation of the fine-grained parallelism in these laop¥e
have described our experience on parallelizing the SSORaodet
in order to establish optimization principles and stragegfor (11]
accelerating the performance of DOACR loops on GPGPUs. We
have presented a new parallel SSOR solver, which is dewtlope

VIIl. CONCLUSION [10] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OgenM
to GPGPU: a compiler framework for automatic translation
and optimization. InPPoPP ’'09: Proceedings of the 14th

ACM SIGPLAN symposium on Principles and practice of
parallel programming pages 101-110, 2009.

Yixun Liu, Eddy Z. Zhang, and Xipeng Shen. A cross-
input adaptive framework for GPU program optimizations.
In IPDPS '09: Proceedings of the 2009 IEEE International
Symposium on Parallel and Distributed Processipgges 1—

based on a non-dependence-preserving parallelizatiamsshand
demonstrated its performance advantages over red-blagk 60r
experimental results, validated by detailed analysis,wsltoat

(12]

10, 2009.
Rami G. Melhem and K. V. S. Ramarao. Multicolor reorder-

many DOACR loops may be potentially accelerated if différen
algorithms that are more amenable to GPU computing can be
developed. The importance of synergy between domain expert
compiler optimizations and performance tuning is hightiéghin
maximizing application performance.

This research is supported by an Australian Research Qounci15]
Grant (DP0881330).

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

ing of sparse matrices resulting from irregular gridcCM
Trans. Math. Softw.14(2):117-138, 1988.

13] Paulius Micikevicius. 3d finite difference computatimn
GPUs using CUDA. IlGPGPU-2: Proceedings of 2nd Work-
shop on General Purpose Processing on Graphics Processing
Units, pages 79-84, 2009.

NVIDIA. NVIDIA CUDA programming guide 2.2, 2009.
Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghgork
Sam S. Stone, David B. Kirk, and Wen-mei W. Hwu. Opti-
mization principles and application performance evabratf

a multithreaded GPU using CUDA. IRPoPP '08: Proceed-
ings of the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programmingages 73—-82, 2008.
Shane Ryoo, Christopher I. Rodrigues, Sam S. Stona, Sar
Baghsorkhi, Sain-Zee Ueng, John A. Stratton, and Wen-
mei W. Hwu. Program optimization space pruning for
a multithreaded GPU. InCGO '08: Proceedings of the
sixth annual IEEE/ACM international symposium on Code
generation and optimizatigrpages 195-204, 2008.

V. K. Saul'yev. Integration of Equations of Parabolic Type
Equation by the Method of NePergamon Press, 1964.
Michelle Mills Strout, Larry Carter, Jeanne Ferrardaad Bar-
bara Kreaseck. Sparse tiling for stationary iterative roeésh
Int. J. High Perform. Comput. Appl18(1):95-113, 2004.

P. Tang and J. Xue. Generating efficient tiled code
for distributed memory machines. Parallel Computing
26(11):1369-1410, 2000.

Rohallah Tavakoli and Parviz Davami. New stable groxp e
plicit finite difference method for solution of diffusion ea-
tion. Applied Mathematics and Computatioh81(2):1379—
1386, 2006.

Dan Wallin, Henrik Lof, Erik Hagersten, and Sverkerlhte
gren. Multigrid and Gauss-Seidel smoothers revisitedalpar
lelization on chip multiprocessors. I1€S '06: Proceedings of
the 20th annual international conference on Supercomputin
pages 145-155, 2006.

Dexuan Xie. A new block parallel SOR method and its
analysis.SIAM J. Sci. Compyt27(5):1513-1533, 2006.

[23] Jingling Xue. On tiling as a loop transformatiorParallel

IX. ACKNOWLEDGEMENT [14]

REFERENCES

L. Adams and J. Ortega. A multi-color SOR method for
parallel computation. 1982 International Conference on
Parallel Processing (ICPP’82)pages 53-56, 1982.

Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Kr-
ishnamoorthy, J. Ramanujam, Atanas Rountev, and P. Sa-
dayappan. A compiler framework for optimization of affine
loop nests for GPGPUs. /€S '08: Proceedings of the 22nd
annual international conference on Supercomputipgges
225-234, 2008.

Stephen H. Brill and George F. Pinder. A block red-black
SOR method for a two-dimensional parabolic equation using[18]
Hermite collocation.The Mathematics of Finite Elements and
Applications 1997.

Georgios Goumas, Nikolaos Drosinos, Vasileios Karakas [19]
and Nectarios Koziris. Coarse-grain parallel execution fo
2-dimensional PDE problems.International Parallel and
Distributed Processing Symposiu@381, 2007.

The Portland Group. PGI accelerate compiler, 2009.
Sunpyo Hong and Hyesoon Kim. An analytical model
for a GPU architecture with memory-level and thread-level
parallelism awareness.SIGARCH Comput. Archit. News
37(3):152-163, 2009.

Q. Huang, J. Xue, and X. Vera. Code tiling for improving
the cache performance of PDE solvers 2003 International
Conference on Parallel Processing (ICPP’03)ages 615 —
625, 2003. [22]
Changhao Jiang and Marc Snir. Automatic tuning matrix
multiplication performance on graphics hardware. PACT

(16]

(17]

(20]

(21]

'05: Proceedings of the 14th International Conference on
Parallel Architectures and Compilation Techniqugsages
185-196, 2005.

Ujval Kapasi, William J. Dally, Scott Rixner, John D. Ong
and Brucek Khailany. The Imagine stream processoiC{®D
'02: Proceedings of the 2002 IEEE International Conference

(9]

Processing Letters7(4):409-424, 1997.

[24] Jingling Xue.Loop Tiling for Parallelism Kluwer Academic

Publishers, 2000.

[25] Yonghong Yan, Max Grossman, and Vivek Sarkar. JCUDA: A

programmer-friendly interface for accelerating Java prots
with CUDA. In Euro-Par, pages 887-899, 2009.

on Computer Design: VLSI in Computers and Processors[26] Hongkai Zhao. A fast sweeping method for Eikonal equrai

page 282, 2002.

Math. Comp, 74:603-627, 2005.

