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Abstract—Happens-before detectors are precise but can be too
conservative to detect certain data races in repeated test runs as
they are sensitive to thread interleaving. By making the opposite
tradeoffs, lockset detectors can detect more races but are not
precise (by reporting false positives). For both types of detectors,
happens-before detectors run more slowly as they use expensive
vector clocks. Existing hybrid race detectors (combining lockset
and happens-before) alleviate some of the limitations in both
analysis techniques at the cost of additional analysis overhead.

Recently, due to FASTTRACK , epoch-based happens-before
and lockset detectors now exhibit comparable performance.It
is the time to rethink how to design a hybrid race detector to
balance precision and coverage, by leveraging the lightweightness
of epoch clocks. ACCULOCK is the first such a solution.

ACCULOCK analyzes a program by reasoning about the subset
of the happens-before relation observed with lock acquiresand
releases excluded, thereby reducing its sensitivity to thread inter-
leaving. When such a weaker happens-before relation is violated,
ACCULOCK applies a new efficient lockset algorithm to enforce a
lock-based synchronization discipline by distinguishingthe locks
protecting reads and writes. The key motivation behind is to
ensure that ACCULOCK can improve happens-before detectors
by discovering also data races in alternate thread interleavings
when analyzing one program execution while limiting false
warnings thus incurred in a controlled manner. In addition,
ACCULOCK achieves these objectives by maintaining comparable
performance as FASTTRACK , the fastest happens-before detector.

All these properties of ACCULOCK are validated and con-
firmed by comparing it against six other detectors, all imple-
mented in Jikes RVM using 11 benchmark programs.

I. I NTRODUCTION

The ubiquity of multicore processors is clearly increasing
software complexity by driving the need for multithreaded
applications. Adata raceoccurs in a multithreaded program
when at least two different threads access the same memory
location without an ordering constraint enforced between the
accesses, such that at least one of the accesses is a write [1].
Data races themselves are not necessarily errors; but they of-
ten introduce serious hard-to-find, crash-causing concurrency-
related software defects. Therefore, tools for automatic detec-
tion of data races are invaluable.

Ultimately, data races should be detected with a range
of tools used in stages, including both static and dynamic
detectors. Static analysis techniques are (statically) sound [2],
[3], [4], [5], [6], [7] but imprecise (by producing many false
positives). In contrast, dynamic analysis techniques [8],[9],

[10], [11], [12], [13], [14], [15], [16] produce false negatives
but can be precise or imprecise. This work presents a new
dynamic race detector that combines a new lockset analysis
with happens-before analysis in a novel way by leveraging the
recent advantages made in the FASTTRACK work [12].

A. Related Work

There are a number of dynamic detectors reported, with
lockset and happens-beforesitting at the two ends of the
spectrum. Lockset race detection, as exemplified by ERASER

[9], analyzes a program by enforcing a locking discipline
and reports a race if two threads access a shared memory
location without holding a common lock. Lockset detectors are
insensitive to thread interleaving and run with low performance
overhead, but are imprecise (by reporting false positives)be-
cause they ignore the ordering of events in program executions.

Happens-before race detection tracks the happens-before
relation, a casual relationship induced by program order and
synchronization order during an execution, represented us-
ing vector clocks (VCs) [17]. Happens-before detectors are
sensitive to thread interleaving and dynamically sound and
precise for one particular execution only. Earlier examples
include TRADE [14] and DJIT+ [18]. VCs are expensive to
implement, both in time and space. Recently, FASTTRACK

[12] has reduced most VC-based operations fromO(n) to
O(1), wheren is the number of threads, i.e., size of a vector
clock, by using scalar clocks calledepochswhenever possible.
In their implementation [12], FASTTRACK achieves about the
same performance as the lockset detector ERASER, at the
expense of being dependent on thread interleaving. PACER

[19] lowers its overhead by applying statistical sampling.
Goldilocks [20] captures the happens-before relation using a

unified lockset containing locks, threads and volatile variables.
Although it is dynamically sound and precise, the overhead of
traversing its global synchronization list is much higher than
FASTTRACK in a high-performance JVM, as shown in [12].

In the pre-FASTTRACK era, there were two kinds of at-
tempts on combining lockset and happens-before race detec-
tion to detect data races. One is to use the lockset information
to improve the efficiency of VCs, as in MULTI RACE [18],
by limiting VC operations to accesses to a shared location
with an empty lockset. The other is to use the happens-before
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(a) Race (A, B)always re-
ported by ACCULOCK but
possibly by FASTTRACK.

(b) Race (A, B)always reported
by ACCULOCK but possibly by
FASTTRACK.

(c) Race (A, B) reported by
ACCULOCK if and only if
reported by FASTTRACK.

(d) A false positive, (A, B),always re-
ported by ACCULOCK but never by FAST-
TRACK, caused by shared channels [21].

Fig. 1. An illustration of the design philosophy behind ACCULOCK compared to FASTTRACK given thesame thread interleaving.

information to reduce false positives in a lockset detectorlike
ERASER. “H YBRID” [21] does this by reporting the same true
positives as ERASER while RACETRACK [10] may report less
to trade precision for efficiency. However, these earlier hybrid
detectors are often (significantly) slower than lockset and
happens-before detectors as VCs are expensive to maintain.
The only exception is that RACETRACK has about the same
performance as ERASER but is less precise. These results are
validated by their authors, partly in the FASTTRACK work [12]
and more extensively in our experiments.

Independently, THREADSANITIZER [22] has also recently
been designed to combine lockset and happens-before to
dynamically detect data races. However, it differs from AC-
CULOCK in two key aspects. First, THREADSANITIZER still
uses VCs to reason about happens-before while ACCULOCK

adopts lightweight epochs. Second, THREADSANITIZER keeps
track of multiple locksets for concurrent writes to a shared
location to increase its chances in detecting races caused by the
multiple protecting lock idiom while ACCULOCK maintains
only the lockset for the last write. However, according to the
authors of THREADSANITIZER [22], such races rarely occur
in real-world programs. Due to the above two differences,
THREADSANITIZER suffers no less analysis overhead than
earlier hybrid detectors such as HYBRID and MULTI RACE.
(Using caching in VC-based detectors can speed up only some
VC operations as caching is not overhead-free and all VC
operations on cold and conflict cache misses are stillO(n).)

B. Overview of the Idea

1) Motivation: Due to FASTTRACK, an epoch-based
happens-before detector has nearly closed the performancegap
with a lockset detector. It is the time to reconsider how to
design a dynamic detector that combines happens-before and
lockset to obtain improved precision and coverage, under the
conditions that the detector achieves comparable performance
and limits the number of false positives reported compared to
FASTTRACK. ACCULOCK is the first such a solution.

The four key design objectives for ACCULOCK, as illus-
trated in Figure 1 and explained below, are as follows:

1) To increase coverage of data races in a happens-before
detector by detecting also races in alternate thread inter-
leavings when analyzing a particular program execution;

2) To reduce the sensitivity of a happens-before detector to
thread interleaving caused also due to the use of varying

numbers of threads in the same program;
3) To limit false positives incurred in a controlled manner;
4) To achieve comparable performance as FASTTRACK

with more or less the same memory overhead.

The motivations for these objectives are discussed below. To
motivate Objective (2) for now, we have tested FASTTRACK

(both our implementation and the version of PACER [19] with
its sampling rate set as 100%) onxalan from DaCapo.
FASTTRACK reports a particular race, as discussed in Sec-
tion V-B1, depending on thread interleavings caused by using
varying numbers of threads. For example, FASTTRACK never
reports the race in 500 runs tested when the number of threads
is 8, but ACCULOCK catches it in all 500 runs.

2) Solution:ACCULOCK leverages the framework of FAST-
TRACK but with this new set of design objectives to meet.

FASTTRACK is dynamically sound and precise since it
uses the true happens-before relation, denoted

hb
−→, induced

by program order and synchronization order. In Figure 1,
FASTTRACK will report a race betweenA and B in (a) and
(c) if T2 acquires lockl1 before T1 does sinceB

hb
−→ A

does not hold, but chooses to be silent (in order to be 100%
dynamically precise) if the lock acquisition order is reversed,
in which case,A

hb
−→ B holds. In (b), FASTTRACK does not

report the racy pair (A, B) when the thread interleaving is either
T1→ T2→ T3 or T3→ T2→ T1. In (d), FASTTRACK will
never report a race. This last example provides an abstraction
of shared channels [21], in which accesses tochannel
are synchronized but accesses to the transmitted data (i.e., the
nodes in the two lists) need not be.

ACCULOCK achieves the four design objectives by (1) using
accu−hb
−−−−−→, a thread-interleaving-less-sensitivesubset of

hb
−→,

obtained with all lock acquires and releases excluded and
(2) applying a new lockset algorithm that distinguishes the
locks protecting reads and writes when enforcing a locking
discipline. By comparing with FASTTRACK in Figure 1,
ACCULOCK always reports the races in (a) and (b) since the
two unordered accessesA andB in each case are not protected
by a common lock (to satisfy Objectives (1) and (2)). In (c),
which provides an abstraction of multiple protecting locks,
ACCULOCK behaves exactly the same as FASTTRACK (to
achieve Objective (4)). Otherwise, any lockset algorithm may
have to use sets of sets of locks instead of just sets of locks
[9, p. 409] (to satisfy Objective (3)), but this can be costly.



In addition, ACCULOCK also tries to fulfill Objective (4) by
leveraging the lightweight epoch representation of

accu−hb
−−−−−→ to

provide constant-time fast paths for most reads and writes in
program order, as in FASTTRACK and by avoidingO(n) vector
clock operations on lock acquires and releases (due to the use
of

accu−hb
−−−−−→ rather than

hb
−→). In (d), ACCULOCK reports a

potential race betweenA and B to the data transmitted via
the channel, which turns out to be a false positive (discovered
only by further analysis), but FASTTRACK does not (as it only
reports a race actually seen).

Note that neither FASTTRACK nor ACCULOCK understands
the semantic differences among all the four cases (not to
mention shared channels, in particular).

Definition 1 (∅-Races). A potential data race detected between
two concurrent accesses to a locationx in a program execution
is called a∅-race if they do not accessx with a common lock
(i.e., with the set of common locks being∅) in the execution.

We argue that∅-races such as the one illustrated in Fig-
ure 1(d) should be flagged for further analysis due to the
detrimental effects of data races on the reliability of multi-
threaded software. Alternatively, such false positives can be
eliminated with user annotations so that the missing happens-
before relationship is thus established [21].

By using the new lockset algorithm proposed, ACCULOCK

is expected to report usually∅-races in real code. In fact, in the
absence of multiple protecting locks, as is common in practice,
all races reported by ACCULOCK are∅-races (Theorem 3). In
our experiments, all races reported by ACCULOCK for 10 out
of the 11 benchmark programs used are∅-races.

C. Contributions

• We introduce a new dynamic race detector, ACCULOCK,
with all properties discussed in Section I-B (Section III).
We provide a new lockset algorithm that enables a
seamless integration of the lockset and happens-before
mechanisms to achieve a fine balance between precision
and coverage of data races reported.

• We have implemented ACCULOCK and six other dynamic
detectors, ERASER [9], DJIT+ [18], RACETRACK [10],
MULTI RACE [18], “H YBRID” [21] and FASTTRACK [12]
in Jikes RVM and validated ACCULOCK’s fulfilment of
its design objectives using 11 benchmarks, the largest
Java programs ever used as a collection in the dynamic
analysis literature (Section IV).

• We have analyzed all these detectors (in terms of per-
formance, memory requirement, precision and coverage)
to provide insights for further studies (Section V). In
particular, ACCULOCK is capable of finding more data
races than FASTTRACK when looking for∅-races while
maintaining comparable analysis overhead.

II. BACKGROUND

We first review vector clocks (VCs) and how a genericO(n)
(time and space) VC-based happens-before detector works,
where n is the number of threads (Section II-A). We then

describe how FASTTRACK uses epoch clocks to reduce most
O(n) VC operations toO(1) (Section II-B). Finally, we review
the basic LOCKSET algorithm and touch upon ERASER, the
classic lockset algorithm, on which many others are based
(Section II-C).

A. VCs and VC-based Happens-Before Detection

VC detectors soundly and precisely track the (true) happens-
before relation

hb
−→, which is the transitive closure of its (intra-

thread) program order and (inter-thread) synchronizationorder
(induced by, e.g., forks, joins, lock acquires and releases). By
performing dynamic analysis on all synchronization, read and
write operations, they detect concurrent variable accesses and
report a data race if one is a write.

A vector clockV C : T id→ Nat records a clock for each
thread in the program. VCs are partially ordered (⊑) point-
wise with a minimum element(0, . . . , 0) and a join operation
(⊔), which is defined to be a point-wise maximum.

1) Synchronization Operations:Accesses to synchroniza-
tion objects (threads, locksandvolatile variablesin Java) are
always ordered and never raced. Each synchronization object
has its own clock. Each threadt keeps a vector clockCt such
that for any threadu, the entryCt[u] records the clock for the
last operation ofu that happens before the current operation
of threadt. Similarly, the analysis maintains a vector clockCl

(Cv) for each lockl (each volatile variablev).
These VCs are updated on synchronization operations that

affect
hb
−→. For example, when a threadt releases lockl, the

analysis updatesCl with Ct (by copying the contents ofCt

into Cl) and then increments the entryt in t’s vector clock.
When a threadt subsequently acquires lockl, the analysis
updatesCt to beCt ⊔Cl, since all subsequent operations oft

happen after that release operation. Obviously, a join or copy
takesO(n) in time and space.

2) Variable Reads and Writes:For each shared variable,
i.e., memory locationx, which can be an object field or
an object itself depending the level of granularity used, the
analysis keeps two vector clocks,Rx and Wx, such that the
entriesRx[t] and Wx[t] record the clock values of the last
read and write tox by threadt, respectively. At each read,
the analysis checks that prior writes happen before the current
threadt’s VC, Ct, by verifying Wx ⊑ Ct and then updates
Rx[t] with Ct[t]. At each write, the analysis checks for data
races with prior reads and writes by verifyingWx ⊑ Ct and
Rx ⊑ Ct and then updatesWx[t] with Ct[t]. Again, all these
happens-before checks takeO(n) time each.

B. Epochs andFASTTRACK

FASTTRACK has reduced mostO(n) VC operations to
O(1), by exploiting the following insights: (1) In a race-free

program, all writes to a variable are totally ordered by
hb
−→, and

on encountering a write, all previous reads must happen before
the write by

hb
−→, and (2) the analysis must keep track of all

concurrent reads since they potentially race with a subsequent
write. As a result, FASTTRACK replaces the write vector clock
Wx with an epochc@t, which records the clock valuec at



Algorithm 1 Read [FASTTRACK]: threadt reads variablex

if Rx 6= epoch(t) then {If same epoch, no action}
check Wx 4 Ct

if |Rx| = 1 ∧Rx 4 Ct then
Rx ← epoch(t) {Overwrite read map}

else
Rx[t]← Ct[t] {Update read map}

end if
end if

Algorithm 2 Write [FASTTRACK]: threadt writes variablex

if Wx 6= epoch(t) then {If same epoch, no action}
check Wx 4 Ct

if |Rx| 6 1 then
check Rx 4 Ct

else
check Rx ⊑ Ct {O(1) amortized time}

end if
Rx ← empty
Wx ← epoch(t) {Update write epoch}

end if

which threadt performed the last write tox. When reads are
ordered by

hb
−→, FASTTRACK uses an epoch for the last read.

Otherwise, it uses VCs for reads.
Some notations are introduced and used later in presenting

our ACCULOCK algorithm. The functionepoch(t) is a short-
hand for c@t, wherec = Ct[t]. In addition, c@t 4 V C iff
c 6 V C[t], whereV C is a vector clock.

For comparison purposes later with ACCULOCK, Algo-
rithms 1 and 2 show the core part of FASTTRACK in handling
reads and writes but is formulated more compactly according
to [19]. In [19], read epochs and VCs are unified into aread
map, which maps zero or more threads to clock values. Thus,
a read map is an epoch if it has one entry, the initial state is
epoch0@t if it has zero entries, and a VC otherwise.

Following [12], gray shading indicates operations that take
O(n) time each, wheren is the number of threads.

At a read, FASTTRACK does nothing if the read mapRx

is an epoch equal to the current thread’s time. Otherwise,
it checks whether the last write races with the current read.
Finally, it either replacesRx with an epoch ifRx is an epoch
and happens before the current read or updatesRx’s t entry.

At a write, FASTTRACK also does nothing if the variable’s
write epoch is the same as the thread’s epoch. Otherwise, it
checks to see if the current write races with the last write.
Finally, it checks for races with prior reads and clears the read
map. In FASTTRACK, the read map is cleared this way because
for each prior read in the read map, one of the following
statements holds: (1) it races with the current write, in which
case, the race has been detected and reported, or (2) it happens
before the current write, in which case, both accesses do not
race. The shaded check takesO(|Rx|) 6 O(n) time but it is
amortized over the last|Rx| analysis steps that takeO(1) time
each. By being able to clear the read map, FASTTRACK can
adaptively switch between epochs and VCs so that the number
of O(n) VC operations is greatly reduced.

Algorithm 3 Access [LOCKSET]: threadst reads or writesx

Lt ← set of locks held now
if x is a readthen

Lt ← Lt ∪ {readers lock}
end if
CLx ← CLx ∩ Lt

{Initialized with set of all locks}
check CLx = ∅ {Check for races}

C. Locksets andERASER

The basic LOCKSET algorithm, as depicted in Figure 3,
detects violations of a locking discipline without considering
the happens-before information. LOCKSET requires that every
shared location be protected consistently by at least one
common lock on each access (read or write) to it.

For each threadt, Lt holds the set of all locks acquired
by t at any time. For each shared locationx, the candidate
set, CLx, records the set of all locks, known aslockset, that
have consistently protected every access tox so far. The
use of a “fake lock” in [18], denotedreaders lock, serves
to suppress false warnings on concurrent reads tox without
holding a common lock. However, any later write tox will
causereaders lock to be removed fromCLx.

By ignoring
hb
−→, LOCKSET may result in excessive false

positives. To alleviate this, ERASER uses a state machine to
handle unsoundly thread-local and read-shared data. For the
reasons regarding the unsoundness, we refer the reader to [9].

III. A CCULOCK

We describe our ACCULOCK algorithm that detects data
races dynamically by taking advantage of the lightweight
epoch representation of

accu−hb
−−−−−→ (a thread-interleaving-less-

sensitive subset of
hb
−→) and by also deploying an efficient

yet more precise new lockset algorithm (than LOCKSET).
This combination enables ACCULOCK to achieve a better
coverage of data races than FASTTRACK and a better precision
than ERASER. ACCULOCK achieves these objectives as well
as the others about maintaining comparable performance as
FASTTRACK and limiting its data races reported to be mostly
∅-races (Definition 1), as discussed in Section I-B,

Algorithms 4 – 13 give the algorithmic core of ACCULOCK,
with Algorithms 10 and 11 being ACCULOCK’s counterparts
of FASTTRACK’s Algorithms 1 and 2.

The notations,epoch(t) (the current epoch of threadt),
4 (on an epoch and a VC) and⊔ (on two VCs), as in
FASTTRACK, andLt as in LOCKSET, are used as before.

Below we introduce the components of ACCULOCK by
functionality. We explain the design decisions and tradeoffs
made in order for ACCULOCK to meet its design objectives.
Section III-A discusses how to track

accu−hb
−−−−−→. Section III-B

describes how ACCULOCK approximates the lock-subset con-
dition [18], [21] to both eliminate some redundant race checks
and catch more data races than FASTTRACK. Section III-C
contains the key contribution of the work. It describes how
ACCULOCK detects data races by combining

accu−hb
−−−−−→ and



our new lockset algorithm. Section III-D characterizes thedata
races reported by ACCULOCK with respect to FASTTRACK.

A. Tracking
accu−hb
−−−−−→

Like all happens-before detectors, ACCULOCK keeps a
vector clockCt for every threadt. However, ACCULOCK uses
these vector clocks to track

accu−hb
−−−−−→ rather than

hb
−→.

In Algorithms 6 – 9, ACCULOCK tracks the inter-thread
synchronization order induced byfork, join, notify and
notifyAll as in Java as well as the intra-thread program
order by incrementing clockCt’s t entry orCu’s u entry. Note
that lock acquires and releases in Algorithms 4 and 5 do not
affect the synchronization order. However, in a lock release,
the clock of threadt is incremented merely to facilitate the
lock-subset optimization described in Section III-B.

The shadedO(n) VC operations for tracking the syn-
chronization order induced byfork, join, notify and
notifyAll are needed in all happens-before detectors.
However, these events happen infrequently compared to lock
acquires and releases, which are tracked inO(n) time and
space in FASTTRACK but ignored in ACCULOCK.

As for volatile reads and writes, there are two choices,
depending a client’s need for a particular program. If Algo-
rithms 12 and 13 are incorporated, then ACCULOCK behaves
exactly as FASTTRACK by including the effects of volatile
variables on

accu−hb
−−−−−→. Otherwise, ACCULOCK proceeds by

treating volatile variables just as lock objects.

B. Approximating the Lock-Subset Condition

Traditionally, the lock-subset optimization [18], [21] serves
to reduce the number of accesses participating for race checks.

Definition 2 (Redundant Accesses). Let there be two accesses
a andb to the same shared locationx made by the same thread.
We say thatb is redundantwith respect toa if (1) a andb are
both reads,a andb are both writes, ora is a write andb is a
read, and (2)a’s lockset is a subset ofb’s lockset.

Thus, a future access tox that races withb must also race
with a. As a result,b can be ignored in race detection.

Eliminating all redundant checks would be counter-
productive as subset operations are costly. ACCULOCK ap-
proximates the lock-subset condition so that an elimination of
some redundant accesses serves to both bring a performance
gain and increase the number of data races detected.

Note that in Algorithms 4 and 5, the vector clockCt in
threadt ticks only at a lock release but not at a lock acquire.
Thus, the results stated in Lemmas 1 and 2 are immediate.

Lemma 1 (Redundant Reads). Let Px be the epoch of a prior
access (read or write) tox. If Px = epoch(t), then a future
read atepoch(t) is redundant (w.r.t. the prior access).

Lemma 2 (Redundant Writes). Let Px be the epoch of a prior
write to x. If Px = epoch(t), then a future write atepoch(t)
is redundant (w.r.t. the prior write)

Consider threadT1 in Figure 1(a). IfPx represents epoch
of the first read tox in the code, then the second read tox is

Algorithm 4 Acquire: threadt acquires lockm

Lt ← Lt ∪ {m}

Algorithm 5 Release: threadt releases lockm

Lt ← Lt − {m}
Ct[t]← Ct[t] + 1

Algorithm 6 Fork: threadt forks threadu
Lu ← set of all possible locks
Cu ← Cu ⊔ Ct

Ct[t]← Ct[t] + 1

Algorithm 7 Join: threadt joins threadu

Ct ← Ct ⊔ Cu

Cu[u]← Cu[u] + 1

Algorithm 8 Notify: threadt notifies threadu

Cu ← Cu ⊔ Ct

Ct[t]← Ct[t] + 1

Algorithm 9 NotifyAll: thread t wakes up all waiting threads

for all threadsu waiting for threadt do
Cu ← Cu ⊔ Ct

end for
Ct[t]← Ct[t] + 1

Algorithm 10 Read: threadt reads variablex

if epoch(t) 6∈{Rx[t].epoch,Wx.epoch} then{If same epoch, no action}
Rx[t].epoch← epoch(t) {Update read epoch}
Rx[t].lockset← Lt {Update read lockset}
if Wx.epoch 64 Ct then

checkRx[t].lockset∩Wx.lockset = ∅ {Check with prior write}
end if

end if

Algorithm 11 Write: threadt writes variablex

if epoch(t) 6=Wx.epoch then {If same epoch, no action}
if Wx.epoch 64 Ct then
Wx.lockset←Wx.lockset ∩ Lt

checkWx.lockset = ∅ {Check with prior write}
else
Wx.lockset← Lt {Update write lockset}

end if
Wx.epoch← epoch(t) {Update write epoch}
for all threadst′ in read mapRx do {O(1) amortized time}

if Rx[t′].epoch 64 Ct then
checkRx[t′].lockset ∩ Lt =∅ {Check with prior reads}

end if
end for
Rx ← empty {ClearRx}

end if

Algorithm 12 Volatile Read: threadt reads volatile variablex

Ct ← Ct ⊔ Cx

Algorithm 13 Volatile Write: threadt writes volatile variablex

Cx ← Cx ⊔ Ct

Ct[t]← Ct[t] + 1



Code in a Thread Code in a Thread
lock l1
= x
lock l2
= x
unlock l2
lock l3
= x
unlock l3
unlock l1

lock l1
x =
lock l2
x =
unlock l2
lock l3
x =
unlock l3
unlock l1

(a) Lemma 1 (b) Lemma 2

Fig. 2. An illustration of the nonnecessity of the lock-subset conditions
stated in Lemmas 1 and 2 to enable for the lock-subset optimization.

redundant by Definition 2 (with respect to the first) and also
by Lemma 1 as both are in the same epoch. Consider thread
T1 in Figure 1(c). The second read tox is not redundant
(with respect to the first read tox) and also concluded so by
Lemma 1 as both reads have different epochs.

However, the lock-subset condition in either lemma is
sufficient but not necessary, as illustrated in Figure 2. To
see why the condition in Lemma 1 is not necessary, consider
the code sequence executed in a thread given in Figure 2(a).
The last two reads are redundant with respect to the first by
Definition 2. However, in ACCULOCK, the first read shares the
same epoch as the second but that epoch is different from the
epoch of the third read. So ACCULOCK can ignore the second
but must analyze the third. The nonnecessity of the lock-subset
condition in Lemma 2 is illustrated similarly using Figure 2(b).

In summary, ACCULOCK removes some redundant accesses
in O(1) time in order to keep its performance comparable
as FASTTRACK. How such redundancy elimination also helps
ACCULOCK detect more races will be clear below.

C. Detecting Data Races

We are now ready to introduce our new
accu−hb
−−−−−→-aware

lockset algorithm and examine how ACCULOCK applies it to
detect three kinds of data races for concurrent accesses (w.r.t.
accu−hb
−−−−−→): write-read (a write concurrent with a later read),
write-write (a write concurrent with a later write) andread-
write (a read concurrent with a later write).

The core part of ACCULOCK for race detection is given
in Algorithms 10 and 11. As in LOCKSET, Lt holds the set
of all locks acquired by threadt at any time, according to
Algorithms 4 and 5. ACCULOCK maintains the following two
metadata structures for each shared locationx:

• Rx is a read map that maps zero or more threads to
(epoch, lockset) pairs for all concurrent reads tox (w.r.t.
accu−hb
−−−−−→) with at most one read from each thread. For
each threadt, Rx.epoch is the epoch for the last non-
redundant read in threadt (with some redundant reads
to x being removed by Lemma 1) andRx.lockset is the
lockset protectingx in threadt.

• Wx is a single(epoch, lockset) pair, whereWx.lockset

records the lockset forx that has consistently protected
all concurrent writes tox (w.r.t.

accu−hb
−−−−−→) so far and

Wx.epoch gives the epoch for the last non-redundant

write to x among all threads (with some redundant writes
to x being removed by Lemma 2).

1) Write-Read Races:At a read in a threadt, as shown
in Algorithm 10, ACCULOCK does nothing if the current read
is redundant (Lemma 1). Otherwise, ACCULOCK records the
epoch and lockset of the current read inRx for threadt, by
overwriting the prior read, if any. As a result,Rx keeps the
(epoch, lockset)’s for all concurrent reads tox to be checked
for races with a later write tox.

If the current read is not ordered with the last write made
at Wx.epoch, then ACCULOCK checks to see if the current
read races with one of the prior writes implicitly represented
by their common lockset inWx.lockset. A data race warning
is reported when the current read and one of the prior writes
are not protected by a common lock.

2) Write-Write and Read-Write Races:At a write in a
thread t, as in Algorithm 11, ACCULOCK does nothing if
the current write is redundant by Lemma 2. Otherwise, AC-
CULOCK checks for a potential race with a prior write. If
the current write and the last write made atWx.epoch are
unordered (by

accu−hb
−−−−−→), ACCULOCK updatesWx.lockset

and reports a race (between the current write and one of the
prior writes) whenWx.lockset becomes empty. If both writes
are ordered, then the current write happens after the last one
(by

accu−hb
−−−−−→). In this case,Wx.lockset is reset toLt, i.e., the

lockset protecting the current write. In either case,Wx.epoch

is updated with the current epoch (for the current write).
Afterwards, ACCULOCK checks for races by looping over

all reads inRx that happen concurrently with the current write
protected by the locksetLt (w.r.t.

accu−hb
−−−−−→). As in Algo-

rithm 2 of FASTTRACK, this for loop takesO(|Rx|) 6 O(n)
time but is amortized over the last|Rx| analysis steps that
take O(1) amortized time each, using the efficient lockset
implementation [9], [10]. If no races are detected, the current
write happens after all reads inRx (in the sense of

hb
−→). In

both cases (whether the current write races with any prior read
or not),Rx is cleared. We resetRx this way in order to ensure
that ACCULOCK and FASTTRACK can be on a par in terms
of analysis overhead incurred. As a result, some races caused
by the multiple protecting locks idiom may go undetected but
these are rare according to [22] and our experiments.

3) Examples:Let us revisit the four examples in Figure 1.

Figure 1(a). SupposeT1 acquires lockl1 beforeT2. In
this case, FASTTRACK will not find the race between
A andB. At the first read tox in T1, ACCULOCK

stores the current epoch and the empty lockset for the
read intoRx[T1] so thatRx[T1].lockset = ∅. The
second read is redundant and thus ignored. When
the write in T2 is analyzed, its protecting lockset
is Lt = {l1}. (So Wx.lockset is updated to be
{l1}.) ACCULOCK detects the race (A, B) because
Rx[T1].lockset ∩ Lt = ∅, implying that x is not
consistently locked by a common lock.
If the lock acquisition order is reversed, ACCULOCK

will also succeed in detecting the same data race.



Figure 1(b). ACCULOCK can detect the race betweenA
andB in all six interleavings but FASTTRACK fails
with T1 → T2 → T3 and T3 → T2 → T1.
Consider T1 → T2 → T3. The two reads in
T1 and T2 are concurrent by

accu−hb
−−−−−→ (but not

by
hb
−→), Rx records the epochs and locksets for

the two reads so thatRx[T1].lockset = {l2} and
Rx[T2].lockset = {l1, l2}. At the later write inT3,
Lt = {l1} holds. ACCULOCK detects the race as the
accessesA and B are not protected by a common
lock.

Figure 1(c). ACCULOCK behaves exactly as FASTTRACK

in order to be fast and avoid false warnings as
explained below. Both detectors regard the two reads
to x in T1 as happening in program order. IfT2
acquires lockl1 beforeT1, both detectors will dis-
cover the race (A, B). If the lock acquisition order is
reversed, both detectors keep only the second read
(lines 4 and 6 in Algorithm 1 and lines 2 and 3 in
Algorithm 10). So both will miss the race.

Figure 1(d). ACCULOCK detects this∅-race similarly as
in Figure 1(a), except that it is a false warning,
confirmed later only by the programmer or other
means. However, FASTTRACK does not.

4) ACCULOCK’s Lockset Mechanism:ACCULOCK aims to
find more data races than FASTTRACK by being mindful
about alternate thread interleavings when analyzing a given
program execution. It must do so by maintaining comparable
performance as FASTTRACK and limiting false warnings in a
controlled manner. Thus, ACCULOCK is designed to miss a
data race (known later by further analysis) that is reportedby
LOCKSET or ERASER if detecting the race only causes it to
be buried in a flood of accomplishing false warnings.

Therefore, ACCULOCK exploits the program order included
in

accu−hb
−−−−−→ to mimic FASTTRACK whenever necessary. In Al-

gorithm 10, only the last non-redundant read in each thread is
recorded inRx. In Algorithm 11, only the last non-redundant
write among all threads is recorded inWx, and in addition,
on seeing two writes in a row that are ordered by

accu−hb
−−−−−→,

ACCULOCK resetsWx.lockset to Lt (line 6). Moreover,
ACCULOCK also exploits implicitly the synchronization order
induced by lock acquires and releases by clearingRx at each
write to x to improve both time and space efficiency. This is
because the current write either races with some of the prior
reads inRx or happens after all of them in the sense of

hb
−→.

Finally, by distinguishing the locks protecting reads and writes
usingRx andWx and approximating the lock-subset condition
efficiently, ACCULOCK performs the amortizedO(1) lockset
operations in thefor loop of Algorithm 11 only infrequently,
i.e., on a write whenRx hasO(n) entries.

D. Characterizing Data Races

We give a few properties about ACCULOCK to show its
fulfilment of our design requirements. We supplement this
analysis by providing experimental evidence in Section V.

Theorem 1 (Compared with LOCKSET). ACCULOCK reports
no more data races thanLOCKSET in any thread interleaving.

Proof: Let Ma (Mf ) be the set of shared memory
locations checked for races by ACCULOCK (LOCKSET). Due
to the use of

accu−hb
−−−−−→ (and also

hb
−→ in Algorithm 11) in

ACCULOCK, then Ma ⊆ Mf holds. For anyx ∈ Ma, if
ACCULOCK detects a race tox, so will LOCKSET, because
ACCULOCK distinguishes reads and writes tox but LOCKSET

does not when finding the common locks held forx.
However, ACCULOCK may report some (real) data races that

ERASER does not since the latter is unsound in its handling
of thread-local and read-shared data. A formal comparison
between the two can be involved and is thus omitted.

ACCULOCK misses no races detected by FASTTRACK when
looking for more in alternate thread interleavings.

Theorem 2 (Compared with FASTTRACK). Consider a fixed
program execution (with the same thread interleaving). If
FASTTRACK reports a pair of racy accesses on a shared
locationx during this execution,ACCULOCK will also report
a (not necessarily identical) pair of racy accesses onx.

Proof: Let there be a racy pair(a, b) on x from FAST-
TRACK (implying that eithera or b is a write). Thena andb

are not ordered by
hb
−→, and consequently, not by

accu−hb
−−−−−→. Let

a′ (b′) bea (b) or an earlier non-redundant access in the same
epoch. Being racy by FASTTRACK, a andb are not protected
by a common lock. Nor area′ andb′ according to Lemmas 1
and 2. So(a′, b′) is racy by ACCULOCK.

In the absence of multiple protecting locks, ACCULOCK

reports only the potential races that it is designed to find.

Theorem 3 (∅-Races). Suppose each location is protected by
a fixed lock (or none). ThenACCULOCK reports only∅-races.

Proof: Suppose that ACCULOCK detects a pair of racy
accesses to a shared location. Then one of the two accesses
must not be protected by a common lock using a simple case
analysis. The rest of the proof follows from Definition 1.

In the presence of multiple protecting locks, however, as
shown in Figure 1(b), ACCULOCK may report false warnings
that are not∅-races, just like LOCKSET and ERASER. As
discussed in [9, p. 409], all such false warnings can be avoided
by using sets of sets of locks instead of just sets of locks, which
may be costly in practice (if used improperly).

Consider a program given in Figure 3 that is adapted from
Figure 1(c) so that (1) the first read tox in T1 is now a write
instead, and (2) the write tox in T2 is guarded by not only
l1 but alsol2. Suppose that the write inT2 is made between
the two accesses inT1 in the modified program. After the two
writes,Wx.lockset = {l2}. At the read inT1, ACCULOCK

will report a false warning, (A, B) for x, since its lockset
is Rx[T1].lockset = {l1}, implying thatRx[T1].lockset ∩
Wx.lockset = ∅. This false warning is not an∅-race as the
second read inT1 and the write inT2 are protected by the
lock l1.

The lockset intersection,Wx.lockset ← Wx.lockset ∩ Lt,



Thread T1 Thread T2
lock l2
x =
unlock l2
lock l1

= x A
unlock l1

lock l1
lock l2
x = B
unlock l2
unlock l1

Fig. 3. An illustration of a false warning (A, B) that is not an∅-race.

performed in Algorithm 11 is the culprit for such false warn-
ings. However, it trades off such imprecision for efficiency.
In practice, however, for the 11 benchmarks used in our
experiments, ACCULOCK reports only a few non-∅-races.

IV. I MPLEMENTATION

We have implemented ACCULOCK and six other dynamic
race detectors all in the Jikes JVM. The six other detectors
are: ERASER [9] (a well-known imprecise detector based
on LOCKSET), RACETRACK [10] (an imprecise hybrid lock-
set/VC detector), “HYBRID” [21] (a hybrid Lockset/VC de-
tector), DJIT+ [18] (a high-performance VC-based detector),
MULTI RACE [18] (a hybrid Lockset/DJIT+ detector), and
FASTTRACK [12] (the fastest happens-before detector).

To ensure reliable comparisons, all algorithms were imple-
mented on top of EMPTY as similarly as possible in order
to reuse the same data structures such as vector clocks and
locksets. EMPTY performs no analysis and is used to measure
the instrumentation overhead at compile time as well as the
overhead of associating metadata with each monitored object
and synchronization object at run time). It is implemented
inside the Jikes RVM (version 3.1.0), a high-performance
Java-in-Java virtual machine. Jikes RVM’s performance is
competitive with commercial VMs as of November 2009.

A. Metadata

There are three kinds of metadata for ACCULOCK concern-
ing reads/writes, VCs and locksets. We handle the first two as
in PACER [19] and the last as in ERASER [9] and RACETRACK

[10].

• Two wordsare added to the header of each object. The
first word points to the read/write metadata for each
instrumented fieldx: Rx andWx. The second points to
the synchronization data, i.e., its VC for a synchronization
object. Similarly, a word is added per static field for
read/write metadata. If volatile variables are handled by
applying Algorithms 12 and 13, a word per (object or
static) volatile field is also added for synchronization
metadata.

• As in ERASER and RACETRACK, a lockset table is used
to record all distinct locksets ever created and to identify
a lockset uniquely by its index into the table. Lookups in
the table are lock-free while inserts are serialized.

The other six detectors are implemented similarly.

B. Instrumentation

There are two dynamic compilers to translate Java bytecode
into native code in the Jikes RVM. Thebaselinecompiles
each method initially when it first executes. When a method
becomeshot, theoptimizingcompiler recompiles it at succes-
sively higher optimization levels. Our implementation modifies
both compilers to add instrumentation to at each interesting
program point, such as a synchronization operation, read or
write. Only the application code of a program loaded at run
time is instrumented. In the optimizing compiler, we use
its mostly static intraprocedural escape analysis to filterout
thread-local accesses.

C. Reporting Races

All detectors report at most one race for each field moni-
tored. The racy pairs reported for a shared location by different
detectors may be different.

V. EXPERIMENTAL EVALUATION

We validate the fulfilment of its design objectives by AC-
CULOCK by comparing it against six other dynamic detectors
using 11 benchmarks, the largest programs ever used as a
collection in the literature. Our results show that ACCULOCK

is capable of reporting more (real) data races than FAST-
TRACK, while maintaining comparable analysis overhead (in
performance and memory overhead) and limiting the data
races reported to be mostly∅-races (Definition 1). In addition,
neither of the other detectors meets all our design objectives.

A. Methodology

1) Platform: We performed all experiments on a 3.0GHz
quad-core Intel Xeon machine running Redhat Enterprise
Linux 5 (kernel version is 2.6.18) with 16GB of memory.

2) Benchmark Configuration:We have selected 11 bench-
marks that expose different runtime structures and patterns
in the following way. We have used all four multithreaded
programs in the latest release of theDaCapo benchmark
suite (9.12-bach) [23] that can compile under the Jikes
JVM: xalan, a test tool for the xerces library to transform
XML documents into HTML,lusearch, a benchmark using
lucene to index a set of documents,avrora, a simula-
tor running AVR microcontrollers, andsunflow, a render
processing images using a ray-tracing algorithm. We also
include the two multithreaded programs in an older version of
DaCapo (version2006-10-MR2): hsqldb, a JDBCbench-
like in-memory benchmark andeclipse, a (non-GUI) JDT
performance test tool for the Eclipse IDE. The other five
benchmarks are:hedc, a tool to access astrophysics data from
Internet [11],mtrt, a multithreaded ray-tracing program from
SPEC JVM98,jspider, a highly configurable and customiz-
able web spider engine [24],cache4j, a cache system for
Java objects with a simple API and fast implementation [25],
andjcs, a distributed caching system [26].

For the sixDaCapo benchmarks, the inputs with default
sizes were used (as some of these benchmarks run out of
memory on larger sizes). Formtrt, the largest input size was
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xalan 265,897 360 2,199 64 4.65 2.34 4.81 4.59 10.19 14.1 14.2 5.58 6.03 24 24 24 6[16] 6[16] 6[16] 36[29]
lusearch 110,960 100 505 64 6.89 2.05 4.26 3.76 5.04 6.24 6.37 3.84 3.75 0 0 0 1[12] 1[12] 1[12] 1[12]
hsqldb 148,481 113 1,012 16 2.74 3.36 7.82 7.78 15.92 – – 7.73 8.24 9 6 5 – – 3[4] 3[4]
eclipse 165,366 1,230 9,580 16 27.1 3.06 10.06 10.24 18.4 – – 9.29 9.62 139 53 87 – – 17[3] 67[30]
avrora 136,756 397 1,785 6 13.6 1.69 3.55 3.48 4.66 4.5 4.52 3.23 3.4 37 2 3 3 3 3 4[1]
sunflow 108,962 121 986 16 5.56 5.05 41.27 41.67 102.8 79.6 80.1 54.1 51.9 4 3 4 19[7] 19[7] 19[7] 19[24]
mtrt 11,317 38 243 20 1.53 2.73 4.95 4.83 8.31 15.8 15.8 4.81 4.88 12 6 5 6[1] 6[1] 6[1] 6[1]
cache4j 5,061 9 65 64 49.1 1.32 2.29 2.24 3.69 4.27 4.28 2.47 2.47 1 1 1 2 2 2 2
jcs 66,944 70 364 64 32.4 1.7 4.0 3.83 8.71 8.03 7.92 4.69 4.83 3 3 3 3 3 3 5[3]
hedc* 24,924 38 140 30 1.24 1.06 1.07 1.08 1.07 1.08 1.08 1.08 1.09 2 0 1 3[2] 1 3[2] 3[2]
jspider* 18,826 304 1,630 15 33.4 1.05 1.08 1.08 1.07 1.08 1.08 1.07 1.08 8 2 6 7[4] 7[4] 7[4] 7[4]

Average 2.6 9.2 9.1 20.0 18.9 19.0 10.3 10.9 239 100 139 92[42] 88[42] 119[49] 257[130]

TABLE I
BENCHMARK RESULTS. THE TWO MARKED WITH ‘*’ ARE NOT COMPUTE-BOUND AND ARE THUS EXCLUDED WHEN COMPUTING AVERAGE SLOWDOWNS.
DJIT+ AND MULTI RACE RAN OUT OF MEMORY ONHSQLDB AND ECLIPSE DUE TO THE 4GB HEAP LIMITATION IN JIKES JVM. THE WARNINGS INSIDE

THE BRACKETS ARE GENERATED IF CLASS INITIALIZERS AND OBJECTCONSTRUCTORS ARE ALSO INSTRUMENTED. IN EACH OF THE “#RACE

WARNINGS” COLUMNS, THE “AVERAGE” REPRESENTS THE TOTAL NUMBER OF WARNINGS REPORTED BY THAT DETECTOR.

enabled with the option “-s100”. For jspider, it was set
up to run on a randomly chosenURL using google. For
cache4j andjcs, their benchmark inputs were used.

3) Computing Time and Space Overheads:These measure-
ments are the average of 10 runs. The time spent on analyzing
a program by a detector does not include the time for recording
and printing the stack traces for each racy pair of accesses
reported. The benchmarks marked with ‘*’ in Table I are not
compute-bound and are excluded when computing the average
performance slowdown for a detector.

4) Counting Race Warnings:Dynamically detecting races
is challenging as some races occur infrequently. For each
program, we report all distinct warnings found in the 10 runs
by a detector to ensure a reliable comparison with others.

5) Analysis Configuration:ACCULOCK provides a number
of analysis switches, controlling whether to analyze memory
locations at the level of fields or objects, whether to distinguish
the elements of an array or not, and whether to include the
events of volatile reads/writes in

accu−hb
−−−−−→ or not.

Due to space limitations, we will restrict ourselves to
the fine-grain analysis performed at the field level. Volatile
variables are handled by Algorithms 12 and 13. Finally, all
array elements are individually monitored.

We used the default generational mark-region collector with
the options as-Xmx4000M -X:processors=all.

B. Results and Analysis

Table I lists the size, the number of classes, the num-
ber of methods, the number of threads and uninstrumented
running times for each program examined. In addition, the
“Instrumented Times” columns show the running times of
each program under each of the detectors, reported as the
ratio to the uninstrumented running time. The variations in
slowdowns for different programs are common for different
dynamic detectors. The “#Race Warnings” columns give the
number of warning produced by each detector. Like ERASER,

both HYBRID and RACETRACK suppress “initialization warn-
ings” using ERASER’s unsound state machine in handling
thread-local and read-shared data. To achieve an apples-to-
apples comparison with the other four detectors, DJIT+,
MULTI RACE, FASTTRACK and ACCULOCK, class initializers
and object constructors are not instrumented. Otherwise, all
initialization warnings reported are given inside the brackets.

Here are some observations about the following four detec-
tors when compared to ACCULOCK directly or indirectly:

DJIT+. Like FASTTRACK, ACCULOCK is faster than DJIT+,
which always reports the same warning as FAST-
TRACK as both differ only in how the happens-before
relation is represented (by VCs vs. VCs + epochs).

MULTI RACE. This detector has about the same overhead
and behaves exactly the same as DJIT+ except that
only accesses with an empty lockset concluded by
ERASER are checked using VC operations. Due to
ERASER’s unsound state machine used as discussed
below, MULTI RACE may miss real races and report
false warnings, as already discussed in [12].

HYBRID. This detector uses what is similar as
accu−hb
−−−−−→ to

filter out some potential races from ERASER that are
ordered by

accu−hb
−−−−−→. While being effective in some

programs, such aseclipse andavrora, HYBRID

can be up to 3× (in sunflow) slower than ERASER

and inherits the same imprecise state machine from
ERASER. The aggressive lock-subset optimization
[18], [21] used in HYBRID for removing redundant
accesses can be expensive for some programs.

RACETRACK. By making the opposite tradeoff as HYBRID,
this detector runs as fast as ERASER but can be very
imprecise since it starts looking for races on a mem-
ory location only after it has “observed” some racy
evidence or missed some racy accesses regarding
the location. By comparing the “RACETRACK” and



“FASTTRACK” columns tallying the warnings found
(even they may represent different warnings)), we
find that RACETRACK often detects only a small sub-
set of races detected by FASTTRACK in a program
(e.g., sunflow). On the other hand, ACCULOCK

detects all what FASTTRACK does (by Theorem 2
and in practice).

Given the above discussions, it suffices to analyze our re-
sults by comparing ACCULOCK and FASTTRACK. Afterwards,
we compare ACCULOCK and ERASER only briefly.

1) FASTTRACK Comparison:We first compare the instru-
mentation overheads incurred by FASTTRACK and ACCU-
LOCK and then examine both detectors in terms of extra race
conditions discovered by ACCULOCK.

a) Instrumentation Overheads:Table I shows that AC-
CULOCK has slightly higher analysis overhead (about 5.8% on
average more) than FASTTRACK, when implemented in the
same EMPTY framework. Note that ACCULOCK is slightly
faster forlusearch and sunflow. ACCULOCK achieves
such comparable performance by leveraging the lightweight
epoch representation of VCs as in FASTTRACK and the fast
lockset operations as in ERASER. As shown in Table I,
ERASER remains to be the fastest of all detectors evaluated.

Program Memory Memory Overhead
(MB) ERASER FASTTRACK ACCULOCK

xalan 106.5 3.98 4.79 4.79
lusearch 73.1 4.89 4.48 4.19
hsqldb 94.1 6.84 6.87 6.9
eclipse 156.5 5.21 5.39 5.54
avrora 48.1 4.89 4.63 5
sunflow 48.1 10.25 7.72 7.75
mtrt 48.5 5.93 6.94 6.7
cache4j 34.1 2.52 2.62 2.21
jcs 59.7 2.36 2.67 2.71
hedc 19.7 1.42 1.43 1.46
jspider 37.8 1.28 1.28 1.28
Average 66.0 4.51 4.44 4.47

TABLE II
COMPARING MEMORY OVERHEAD, WHICH IS THE RATIO OF THE

MAXIMUM HEAP SPACE USED DURING ANALYSIS TO THE MAXIMUM HEAP

SPACE USED UNDER UNINSTRUMENTED EXECUTION.

Table II shows that ACCULOCK has more or less the same
memory overhead as FASTTRACK. Compared with ERASER,
both detectors also have similar memory requirements.

Both ACCULOCK and FASTTRACK keep the same set
of instrumentation states for a locationx. There are three
states for reads:Same-Epoch, Exclusive when |Rx| = 1 in
FASTTRACK or |Rx| = 1 in ACCULOCK, andRead-Shared
when |Rx| > 1 or |Rx| > 1. There are two states for writes:
Same-Epoch andExclusive (with |Wx| = 1 in FASTTRACK

or |Wx| = 1 in ACCULOCK always).
Table III gives the number of times each state is entered

by all instrumented locations in FASTTRACK and the number
of O(n) VC operations performed on synchronization objects.
Table IV presents similar statistics for ACCULOCK, together
with those for lockset operations. ACCULOCK checks more

frequently for races between a write and earlier concurrent
reads than FASTTRACK (as shown in the “Exclusive” columns
in the two tables) because lock acquire and release ordering
events are ignored in

accu−hb
−−−−−→ (but included in

hb
−→). On the

other hand, as shown in the “#VC Ops on Sync Objects”
columns, ACCULOCK reduces significantly the number of
O(n) VC operations on synchronization objects performed
by FASTTRACK. In jcs, nearly all synchronization events
are volatile reads. Such reduction can be more pronounced
on affecting their relative analysis times when the number of
threads,n, increases.

In general, ACCULOCK is slightly slower than FASTTRACK

in analyzing a program when the number of lockset operations
or the number of times the instrumented locations stay in the
Read-Shared state or both are relatively high (as inxalan
andhsqldb). For the ray-tracing applicationsunflow, AC-
CULOCK is faster FASTTRACK since ACCULOCK stays in the
same epoch more often. Note that ACCULOCK needs to record
the lockset for each non-redundant read. For the two caching
applications,cache4j andjcs, the extra overhead incurred
by ACCULOCK over FASTTRACK is slightly higher injcs
than cache4j as ACCULOCK stays in theRead-Shared
state more often injcs. Finally, ACCULOCK is slightly faster
than FASTTRACK on lusearch because the ratio of the
number ofO(n) VC operations performed on synchronization
objects in FASTTRACK to the number of lockset operations
performed by ACCULOCK is relatively high.

b) Effectiveness of Data Race Detection:ACCULOCK is
more effective than FASTTRACK in the sense that (1) it detects
all real races reported by FASTTRACK on every benchmark
used (over 10 runs), as shown in the last three columns of
Table V, (2) it reports only∅-races in 10 out of the 11
benchmarks used, and (3) it finds more real races among the
extra race warnings reported (relative to FASTTRACK).

By Theorem 2, ACCULOCK always finds a superset of races
found by FASTTRACK given the same thread interleaving.
This condition may or may not hold in two separate runs
for the two detectors. However, this theorem holds for the 11
benchmarks used in our experiments (as shown by Column
“−F” in Table V), as ACCULOCK uses

accu−hb
−−−−−→, which is

less sensitive to thread interleaving than
hb
−→.

We have analyzed the extra warnings reported by ACCU-
LOCK (in the “+F” columns) forxalan, eclipse, avrora
andjcs using sets of sets of locks instead of just sets of locks
for 10 runs. Only three foreclipse are found to be false
warnings that are removable using sets of sets of locks. All the
rest are∅-races (Definition 1), which are the potential races
that ACCULOCK is designed to flag for further analysis, as
motivated in Section I-B.

Let us examine the∅-races listed in the last column of
Table V. First of all, ACCULOCK and FASTTRACK report the
same set of real races in seven of the 11 programs tested,
showing that ACCULOCK is usually precise by refraining from
reporting false warnings. We have manually analyzed all∅-
races reported in three of the remaining four benchmarks,



Program

#INSTRUMENTATION STATES ENTERED #VC OPS ONREADS WRITES
SYNC OBJECTSSAME EXCLUSIVE

READ SAME EXCLUSIVE
[O(n)]

EPOCH SHARED EPOCH |Rx| = 1 |Rx| > 1

xalan 0.43B 0.16B 43.8M 27.8M 46.3M 4 8.94M
lusearch 0.76B 0.11B 9.84M 0.23B 49.2M 0 3.51M
hsqldb 80.6M 0.13B 47430 1.85M 24.8M 18 9.71M
eclipse 3.3B 0.34B 99.8M 0.75B 0.14B 352 4.9M
avrora 0.82B 0.11B 5.03M 0.34B 42.1M 0.1M 3.8M
sunflow 1.2B 0.22B 2.36B 0.35B 0.35B 6 1642
mtrt 0.17B 3.0M 1.11M 6.34M 18.5M 41 9626
cache4j 29.5M 0.13B 9.5M 0 71.1M 65 44.8M
jcs 26.5M 0.14B 0.32B 29.2M 0.11B 66 0.22B
hedc 32712 37462 1717 7995 2312 0 528
jspider 0.65M 0.11M 5984 0.26M 55633 11 4035

TABLE III
STATISTICS ABOUT FASTTRACK ANALYSIS OPERATIONS.

Program
INSTRUMENTATION STATES ENTERED

#VC OPS ON #LOCKSETOPS
READS WRITES SYNC OBJECTS

SAME EXCLUSIVE
READ SAME EXCLUSIVE [O(n)] LOOKUPS INTERSECTS INSERTSEPOCH SHARED EPOCH |Rx| = 1 |Rx| > 1

xalan 0.45B 0.16B 22.3M 26.9M 46.1M 0.03M 131 0.28B 5.42M 0.02M
lusearch 0.73B 0.14B 4.14M 0.23B 51.6M 65 0.85M 6.61M 446 1094
hsqldb 79.8M 0.14B 2.85M 1.74M 25.0M 0.02M 3.07M 0.14B 0.34M 2652
eclipse 3.38B 0.33B 11.7M 0.75B 0.14B 0.01M 1.25M 23.4M 0.26M 8412
avrora 0.82B 0.11B 7.0M 0.34B 40.3M 0.22M 0.43M 8.27 3.61M 10
sunflow 2.85B 0.23B 0.87M 0.35B 0.35B 4 34 1.62M 498 18
mtrt 0.19B 3.94M 0.07M 7.92M 16.5M 42 27 1.61M 194 22
cache4j 29.4M 61.1M 79.9M 0 71.8M 0.02M 64 0.16B 14.6M 3
jcs 0.14B 87.5M 0.26B 29.2M 0.11B 1.42M 0.21B 533 0.21B 13
hedc 0.03M 0.03M 789 7746 2296 0 154 396 38 67
jspider 0.69M 0.11M 3746 0.28M 55633 20 1047 0.16M 16 240

TABLE IV
STATISTICS ABOUT ACCULOCK ANALYSIS OPERATIONS.

Program -E +E -F +F
FP ∅-races FP ∅-races

xalan 0 0 19 0 0 30
lusearch 0 0 1 0 0 0
hsqldb 3 0 0 0 0 0
eclipse 108 3 50 0 3 41
avrora 34 0 3 0 0 1
sunflow 0 0 22 0 0 0
mtrt 5 0 1 0 0 0
cache4j 0 0 1 0 0 0
jcs 0 0 2 0 0 2
hedc 1 0 4 0 0 0
jspider 3 0 2 0 0 0

-E/+E: fewer/more than ERASER -F/+F: fewer/more than FASTTRACK

FP: false positives (warnings) removable using sets of setsof locks

TABLE V
COMPARING DATA RACES REPORTED.

xalan, avrora andjcs, as follows:

jcs. Both are false warnings that warrant such further
analysis in order to eliminate all potential software
defects. One warning is related to unprotected ac-
cesses to the field_cache of an jcs object. Both
are synchronized by an intervening user-defined bar-
rier followed by a lock acquire. The other is caused

by accesses to the fieldattr of aCacheElement
object via object pooling, for the same reason as
demonstrated in Figure 1(d). Both warnings can be
suppressed with user annotations to ACCULOCK.
How to automate detection of idioms such as object
pooling and shared channels remains open.

avrora.This is a real race on some elements of an array
Medium$Transmitter$Ticker:transmiss-
ion.data, which is always detected by
ACCULOCK using both the default input (6 threads)
and the large input (26 threads). However, the race
is missed by FASTTRACK (and also by PACER [19],
another implementation of FASTTRACK with its
sampling rate set at 100%) when the default input is
used but is detected only with the large input, due
to its sensitivity to thread interleaving.

xalan. All these are false warnings on 26 object fields,
including the fieldm_lastFetched of an object
LocPathIterator, due to the use of a shared
iterator pool, which is synchronized itself.
However, there is a real race on the fieldm_attrs
of an objectElemDesc that is detected in all 10
runs by ACCULOCK but only in 4 of the 10 runs
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Fig. 4. Sensitivity of ACCULOCK and FASTTRACK to thread interleaving on
the racy accesses to the fieldm_attrs of an objectElemDesc in xalan.

by FASTTRACK, despite that the race is counted
for FASTTRACK in Table I. (Thus, this race is not
included in the 30∅-races shown in the last column
for this benchmark.) Figure 4 demonstrates further
that ACCULOCK is significantly less sensitive to
thread interleaving than FASTTRACK in hunting this
race condition. In addition, in a separate experiment
runningxalan with 8 threads for 500 runs, FAST-
TRACK fails to detect the race in all the runs but
ACCULOCK succeeds in reporting it in all 500 runs.

2) ERASER Comparison: While being the fastest among
all seven detectors compared in Table I, ERASER is known
to issue more warnings and also miss real races due to its
unsound handling of thread-local and read-shared data.

Looking at Table I again, ERASER does not produce many
false warnings compared to ACCULOCK in a few benchmarks.
This is because ERASER has succeeded in suppressing un-
soundly many false warnings from LOCKSET (not given in
here). However, ACCULOCK has eliminated them soundly.

Table V also gives the extra race warnings reported by
ACCULOCK relative to ERASER in the “+E” columns. AC-
CULOCK happens to also report only three race warnings that
are not∅-races (foreclipse). In addition, ERASER did not
report the two real races found by ACCULOCK discussed above
in avrora andxalan. Finally, we list the number of real
races missed by ERASER but found by both FASTTRACK and
ACCULOCK for the 11 programs in the order in which they
appear in Table I: 2, 0, 3, 14, 3, 4, 7, 3, 2, 0 and 5.

VI. CONCLUSION

This paper presents a new dynamic race detector that can
detect more data races than FASTTRACK, the fast happens-
before detector, while maintaining comparable performance as
FASTTRACK. The key innovation is to leverage the lightweight
epoch representation of vector clocks in FASTTRACK and
deploy a new lockset algorithm to achieve a fine balance
of coverage and precision in race detection. These design
objectives are met as validated against FASTTRACK and six
other dynamic detectors using 11 benchmarks.

The basic idea behind ACCULOCK is not tied to FAST-
TRACK; it can be incorporated into any future faster happens-

before detector to allow a good balance between speed,
memory requirement, coverage and precision to be made.
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