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Abstract—Happens-before detectors are precise but can be too [10], [11], [12], [13], [14], [15], [16] produce false negats
conservative to detect certain data races in repeated testins as  put can be precise or imprecise. This work presents a new
they are sensitive to thread interleaving. By making the oppsite dynamic race detector that combines a new lockset analysis

tradeoffs, lockset detectors can detect more races but areoh ith h bef Vsis i | by | ieq th
precise (by reporting false positives). For both types of dectors, wi appens-before analysis In a novel way Dy leveraging

happens-before detectors run more slowly as they use expeves recent advantages made in thesfFTRACK work [12].

vector clocks. Existing hybrid race detectors (combining dckset

and happens-before) alleviate some of the limitations in kb A. Related Work

analysis techniques at the cost of additional analysis ovieead. There are a number of dynamic detectors reported, with

Recently, due to RASTTRACK, epoch-based happens-before i
and lockset detectors now exhibit comparable performancelt locksetand happens-beforssitting at the two ends of the

is the time to rethink how to design a hybrid race detector to SPectrum. Lockset race detection, as exemplified BASER

balance precision and coverage, by leveraging the lightwghtness [9], analyzes a program by enforcing a locking discipline

of epoch clocks. AcuLock is the first such a solution. and reports a race if two threads access a shared memory
AccuLock analyzes a program by reasoning about the subset |qcation without holding a common lock. Lockset detectaes a

of the happens-before relation observed with lock acquireand . . . . .
releases excluded, thereby reducing its sensitivity to tkead inter- insensitive to thread interleaving and run with low perfaroe

leaving. When such a weaker happens-before relation is vialed, ©Overhead, but are imprecise (by reporting false posities)
AccuLock applies a new efficient lockset algorithm to enforce a cause they ignore the ordering of events in program exausitio
lock-based synchronization discipline by distinguishinghe locks Happens-before race detection tracks the happens-before
protecting reads and writes. The key motivation behind is to relation, a casual relationship induced by program order an

ensure that AccuLock can improve happens-before detectors o - g
by discovering also data races in alternate thread interle@ings synchronization order during an execution, represented us

when analyzing one program execution while limiting false NG vector clocks (V_CS) [17]_- Happens—befqre detectors are
warnings thus incurred in a controlled manner. In addition, sensitive to thread interleaving and dynamically sound and
AccuLock achieves these objectives by maintaining comparable precise for one particular execution only. Earlier exammple
performance as FASTTRACK, the fastest happens-before detector. j,¢|ude TRADE [14] and DuIT* [18]. VCs are expensive to

All these properties of AccuLock are validated and con- . L
firmed by comparing it against six other detectors, all imple implement, both in time and space. RecentigSFTRACK

mented in Jikes RVM using 11 benchmark programs. [12] has reduced most VC-based operations frOfn) to
O(1), wheren is the number of threads, i.e., size of a vector
|. INTRODUCTION clock, by using scalar clocks callepochsvhenever possible.

The ubiquity of multicore processors is clearly increasinip their implementation [12], £STTRACK achieves about the
software complexity by driving the need for multithreadedame performance as the lockset detecten&ER at the
applications. Adata raceoccurs in a multithreaded programexpense of being dependent on thread interleavirg.ER
when at least two different threads access the same memid§] lowers its overhead by applying statistical sampling.
location without an ordering constraint enforced betwden t Goldilocks [20] captures the happens-before relationgiain
accesses, such that at least one of the accesses is a writeufdified lockset containing locks, threads and volatile atalgs.
Data races themselves are not necessarily errors; but fheyAlthough it is dynamically sound and precise, the overhdad o
ten introduce serious hard-to-find, crash-causing coragy- traversing its global synchronization list is much highean
related software defects. Therefore, tools for automattedt FASTTRACK in a high-performance JVM, as shown in [12].
tion of data races are invaluable. In the pre-RSTTRACK era, there were two kinds of at-

Ultimately, data races should be detected with a rangempts on combining lockset and happens-before race detec-
of tools used in stages, including both static and dynantion to detect data races. One is to use the lockset infoomati
detectors. Static analysis techniques are (staticallyh@qg2], to improve the efficiency of VCs, as in MTIRACE [18],

[31. [4], [5], [6], [7] but imprecise (by producing many fas by limiting VC operations to accesses to a shared location
positives). In contrast, dynamic analysis techniques [, with an empty lockset. The other is to use the happens-before
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(@) Race (A, B)always re-| (b) Race (A, B)alwaysreported| (c) Race (A, B) reported by (d) A false positive, (A, B),always re-
ported by AccuLock but| by AccuLock but possibly by | AccuLock if and only if | ported by AccuLock butneverby FAST-
possibly by FASTTRACK. | FASTTRACK. reported by BSTTRACK. TRACK, caused by shared channels [21]

Fig. 1. Anillustration of the design philosophy behindc@&uLock compared to ESTTRACK given thesame thread interleaving

information to reduce false positives in a lockset detelier numbers of threads in the same program;

ERASER “HYBRID” [21] does this by reporting the same true 3) To limit false positives incurred in a controlled manner;
positives as EASERWhile RACETRACK [10] may reportless 4) To achieve comparable performance asSTIRACK

to trade precision for efficiency. However, these earlidorig/ with more or less the same memory overhead.

detectors are often (significantly) slower than lockset andrpe motivations for these objectives are discussed below. T
happens-before detectors as VCs are expensive to maintgigiivate Objective (2) for now, we have testedsFTRACK

The only exception is that RLETRACK has about the same 4 our implementation and the version afdR [19] with
performance as RASER but is less precise. These results argg sampling rate set as 100%) oral an from DaCapo.

validated by their authors, partly in the&TTRACK work [12]  pagtTRACK reports a particular race, as discussed in Sec-

and more extensively in our experiments. tion V-B1, depending on thread interleavings caused bygusin
Independently, HREADSANITIZER [22] has also recently yarying numbers of threads. For examplasFTRACK never

been designed to combine lockset and happens-before s the race in 500 runs tested when the number of threads
dynamically detect data races. However, it differs from-A s'g put AccuLock catches it in all 500 runs.

CULOCK in two key aspects. First, HREADSANITIZER still
uses V(.:S to reason about happens-before whiteLock TRACK but with this new set of design objectives to meet.
adopts lightweight epochs. SecondjREADSANITIZER keeps . icall nd and precise since it
track of multiple locksets for concurrent writes to a shared FASTTRACK s dynamically sou ) p}b i
location to increase its chances in detecting races caysteth USES the true happens-before relation, denoted induced
multiple protecting lock idiom while AcuLock maintains PY Program order and synchronization order. In Figure 1,
only the lockset for the last write. However, according te thFASTTRACK will report a race betwees and B in (a}?band
authors of HREADSANITIZER [22], such races rarely occur(C) if T2 acquires locki; before T1 does sinceB — A
in real-world programs. Due to the above two differencedoes not hold, but chooses to be silent (in order to be 100%
THREADSANITIZER suffers no less analysis overhead thaflynamically preci}s;e) if the lock acquisition order is resest,
earlier hybrid detectors such asyBRID and MULTIRACE. in which caseA =% B holds. In (b), RSTTRACK does not
(Using caching in VC-based detectors can speed up only soragort the racy pairA, B) when the thread interleaving is either
VC operations as caching is not overhead-free and all Vi — T2 — T3 or T3 — T2 — T1. In (d), FASTTRACK will
operations on cold and conflict cache misses are@fill).)  never report a race. This last example provides an abstracti
. of shar ed channel s [21], in which accesses thannel

B. Overview of the Idea are synchronized but accesses to the transmitted datgattfee.

1) Motivation: Due to FASTTRACK, an epoch-based nodes in the two lists) need not be.
happens-before detector has nearly closed the perforngapce AccuLock achieves the four design objectives by (1) using
with a lockset detector. It is the time to reconsider how tgccu=hb, = thread-interleaving-less-sensitivaibset of 2,
design a dynamic detector that combines happens-before g@Rghined with all lock acquires and releases excluded and
lockset to obtain improved precision and coverage, under {p) applying a new lockset algorithm that distinguishes the
conditions that the detector achieves comparable perftcea|ocks protecting reads and writes when enforcing a locking
and limits the number of false positives reported compaved discipline. By comparing with KSTTRACK in Figure 1,

2) Solution: AccuLock leverages the framework oRBT-

FASTTRACK. AccuLock is the first such a solution. AccuLock always reports the races in (a) and (b) since the
The four key design objectives foratuLock, as illus-  two unordered accessésandB in each case are not protected
trated in Figure 1 and explained below, are as follows: by a common lock (to satisfy Objectives (1) and (2)). In (c),

1) To increase coverage of data races in a happens-befetéch provides an abstraction of multiple protecting lacks
detector by detecting also races in alternate thread intérecuLock behaves exactly the same assFTRACK (to
leavings when analyzing a particular program executioachieve Objective (4)). Otherwise, any lockset algorithaym

2) To reduce the sensitivity of a happens-before detectortiave to use sets of sets of locks instead of just sets of locks
thread interleaving caused also due to the use of varyiffy p. 409] (to satisfy Objective (3)), but this can be castly



In addition, AccuLock also tries to fulfill Objective (4) by describe how ESTTRACK uses epoch clocks to reduce most
leveraging the lightweight epoch representation®6f-—"% to  O(n) VC operations ta)(1) (Section I1-B). Finally, we review
provide constant-time fast paths for most reads and writesthe basic IOCKSET algorithm and touch upon HASER the
program order, as inASTTRACK and by avoiding)(n) vector classic lockset algorithm, on which many others are based
clock operations on lock acquires and releases (due to the (8ection II-C).

accu—hb hb
of rather than—). In (d), ACCULOCK reports @ A vCs and VC-based Happens-Before Detection

potential race b_etweeA and B 1o the data tra_trjsmltt_ed Va8 v/ detectors soundly and precisely track the (true) happens

the channel, which turns out to be a false positive (dlscmj/erb ; lation™ which is th g | fits (i

only by further analysis), but&5TTRACK does not (as it only efore relation—, which is t. e transitive closure o . its _(mtra-
thread) program order and (inter-thread) synchronizairoler

reports a race actually seen). ) e .
pNote that neither EsyTTRAc)K nor AccuLock understands (mduce(_d by, e.9., forks, lo'r.ls’ lock acquires a_md .rele)aﬁs
rforming dynamic analysis on all synchronization, read a

the semantic differences among all the four cases (not RG! _ .
mention shared channels, in particular). write operations, they detect concurrent variable acseasd

report a data race if one is a write.
Definition 1 (-Races) A potential data race detected between A vector clockV C : Tid — Nat records a clock for each
two concurrent accesses to a locatioim a program execution thread in the program. VCs are partially orderéd) (point-
is called af)-raceif they do not access with a common lock wise with a minimum elemer(, ...,0) and a join operation
(i.e., with the set of common locks beirfly in the execution. (L), which is defined to be a point-wise maximum.

We argue thaf)-races such as the one illustrated in Fig- 1) S_ynchronization OperationsA_ccessgs to _synchroniza-
ure 1(d) should be flagged for further analysis due to tﬁ'(?n objects fhreads locksandvolatile variablesin J_ava_) are
detrimental effects of data races on the reliability of fault W8S ordered and never raced. Each synchronizationtobjec
threaded software. Alternatively, such false positives ba has its own clock. Each threddeeps a vector clocky such

eliminated with user annotations so that the missing happe att for an%{ threzdf[,htflehentryct [Qﬂ rfe cor?hs the cloctk for thte;
before relationship is thus established [21]. ast operation o at happens before the cufrent operation

By using the new lockset algorithm proposed;@uLock of threadt. Similarly, the analysis maintains a vector claCk

is expected to report usualfiyraces in real code. In fact, in the(cfl’_)hfeosree\?éi lgf;lu(eda;tgg%ﬁtie r:/:rzlrizlij;tion operations that
absence of multiple protecting locks, as is common in peacti P Y P

hb
all races reported by @cuLock aref-races (Theorem 3). In &fféct—. For example, when a threddreleases lock, the
our experiments, all races reported bg@uLock for 10 out @nalysis updateg’, with C; (by copying the contents of’;

of the 11 benchmark programs used @seaces. into C;) and then increments the enttyin ¢'s vector clock.
o When a thread subsequently acquires lodk the analysis
C. Contributions updates’; to beC; U Cy, since all subsequent operationstof

« We introduce a new dynamic race detectogdLock, happen after that release operation. Obviously, a join pyco
with all properties discussed in Section I-B (Section Il)takesO(n) in time and space.
We provide a new lockset algorithm that enables a 2) Variable Reads and WritesFor each shared variable,
seamless integration of the lockset and happens-befbfe, memory locationz, which can be an object field or
mechanisms to achieve a fine balance between precisfgh object itself depending the level of granularity usee, th
and coverage of data races reported_ analySiS keepS two vector ClOCka and Wx, such that the

« We have implemented @cuLock and six other dynamic entries R, [t] and W, [t] record the clock values of the last
detectors, RASER [9], DJiT+ [18], RACETRACK [10], read and write tar by threadt, respectively. At each read,
MULTIRACE [18], “HYBRID” [21] and FasTTRAck [12]  the analysis checks that prior writes happen before theeotirr
in Jikes RVM and validated dcuLock’s fulfilment of threadt's VC, Cy, by verifying W, C C; and then updates
its design objectives using 11 benchmarks, the largds[t] with Ci[t]. At each write, the analysis checks for data
Java programs ever used as a collection in the dynani@es with prior reads and writes by verifyiig, © C; and
analysis literature (Section IV). R, C C; and then update®’,[t] with C;[t]. Again, all these

« We have analyzed all these detectors (in terms of pdfappens-before checks takdn) time each.
formance, memory requirement, precision and coverageg) Epochs andFASTTRACK
to provide insights for further studies (Section V). In
particular, AccuLock is capable of finding more data
races than ESTTRACK when looking for()-races while

FASTTRACK has reduced mosO(n) VC operations to
O(1), by exploiting the following insights: (1) In a race-free

. . b
maintaining comparable analysis overhead. program, all vyrltes to a variable are totally orderedjéy, and
on encountering a write, all previous reads must happenéefo
Il. BACKGROUND the write by 2%, and (2) the analysis must keep track of all

We first review vector clocks (VCs) and how a gen&pig:) concurrent reads since they potentially race with a subegqu
(time and space) VC-based happens-before detector worksite. As a result, ESTTRACK replaces the write vector clock
where n is the number of threads (Section 1I-A). We ther¥, with an epochc@t, which records the clock value at



Algorithm 1 Read [RSTTRACK]: threadt reads variablec ~ Algorithm 3 Access [LOCKSET]: threadst reads or writes

if R, # epoch(t) then {If same epoch, no actign L; < set of locks held now
check W, < Cy if = is a readthen
if |Rz] =1A R, < Cy then Ly — Ly U{readers_lock}
R, < epoch(t) {Overwrite read map end if
else CLy — CLyN L {Initialized with set of all lock$
Ry [t] — C:[t] {Update read m3p checkCL, =0 {Check for racep
end if
end if
- _ - - C. Locksets andERASER
Algorithm 2 Write [FASTTRACK]: threadt writes variablex ) ) ) o
if 1, # epoch(t) then {If same epoch, no actign ~ 1he ba_SIC _|.OCKSET algo_rlthm_, as _deplc_ted in F|gqre 3,
check W, < Ct detects violations of a locking discipline without congsidg
if |[Rz| < 1 then the happens-before informationockSET requires that every
els(;heCK Re < Gy shared location be protected consistently by at least one
check Ry C Gy {O(1) amortized tim common lock on each access (read or write) to it. .
end if For each thread, L; holds the set of all locks acquired
R, — empty by t at any time. For each shared locationthe candidate
W «— epoch(t) {Update write epoch set CL,, records the set of all locks, known axksef that
end if have consistently protected every accesszt®o far. The

use of a “fake lock” in [18], denotedeaderslock, serves

to suppress false warnings on concurrent reads taithout
which threadt performed the last write te@. When reads are holding a common lock. However, any later write towill
ordered byﬂ, FASTTRACK uses an epoch for the last readcausereaderslock to be removed fronC'L,.

Otherwise, it uses VCs for reads. By ignoring 2, LocksET may result in excessive false
Some notations are introduced and used later in presentpgitives. To alleviate this, ®ASER uses a state machine to
our AccuLock algorithm. The functiorepoch(t) is a short- handle unsoundly thread-local and read-shared data. lor th
hand forcQt, wherec = Cy[t]. In addition,c@Qt < VC iff reasons regarding the unsoundness, we refer the readdr to [9

¢ < VC[t], whereVC is a vector clock.
For comparison purposes later withcgauLock, Algo- I1l. AccuLock
rithms 1 and 2 show the core part oA$TTRACK in handling

) . . We describe our AcuLock algorithm that detects data
reads and writes but is formulated more compactly accordi

Pes dynamically by taking advantage of the lightweight

to [19]. In [19], read epochs and VCs are unified intoead . ccu—hb ; .
map which maps zero or more threads to clock values. ThLFSE,)OC.h representation of——— (a thread-interleaving-less-

. hb . ..
a read map is an epoch if it has one entry, the initial state§§NSitive subset of=) and by also deploying an efficient
epoch0@t if it has zero entries, and a VC otherwise. yet more precise new lockset algorithm (thamdkSET).

Following [12], gray shading indicates operations that takEhiS combination enables GCULOCK to achieve a better
O(n) time each, where: is the number of threads. coverage of data races thandT TRACK and a better precision

At a read, RSTTRACK does nothing if the read maf, than ERASER ACCULOCK achieves these objectives as well

is an epoch equal to the current thread's time. Otherwid® the others about maintaining comparable performance as

it checks whether the last write races with the current rea@'fﬁsrrRACK and limiting its data races reported to be mostly

Finally, it either replaces®?, with an epoch ifR, is an epoch V-Taces (Definition 1), as discussed in Section I-B,
and happens before the current read or updBtgs ¢ entry. _Algorlthr_ns 4 — 13 give the al_gonthmlc core ofcRULOCK,

At a write, FASTTRACK also does nothing if the variable’s With Algorithms 10 and 11 being &cuLock's counterparts
write epoch is the same as the thread’s epoch. Otherwise®fit ASTTRACK'S Algorithms 1 and 2.
checks to see if the current write races with the last write. 1N€ notations,epoch(z) (the current epoch of thread),
Finally, it checks for races with prior reads and clears tregr ~ (0N an epoch and a VC) and (on two VCs), as in
map. In RSTTRACK, the read map is cleared this way becaude®STTRACK, and L, as in LOCKSET, are used as before.
for each prior read in the read map, one of the followin]g Below we introduce the components ofcAuLock by
statements holds: (1) it races with the current write, inalghi functionality. We explain the design decisions and traf$eof
case, the race has been detected and reported, or (2) itrisapp@@de in order for ACuLOCK to meet its }‘295'9“ objectives.
before the current write, in which case, both accesses do &ection llI-A discusses how to track““—=". Section III-B
race. The shaded check tak@$|R.|) < O(n) time but it is describes how AcuLock approximates the lock-subset con-
amortized over the lasR, | analysis steps that take(1) time  dition [18], [21] to both eliminate some redundant race disec
each. By being able to clear the read mapsFTRACK can and catch more data races thansFTRACK. Section I1I-C
adaptively switch between epochs and VCs so that the numpentains the key contribution of the work. It describes how

aqccu—hb

of O(n) VC operations is greatly reduced. AccuLock detects data races by combining—— and



our new lockset algorithm. Section I11-D characterizesdaga Algorithm 4 Acquire: threadt acquires lockm

races reported by écuLock with respect to ESTTRACK. Ly — Ly U{m}
. accu—hb
A. Tracking Algorithm 5 Release: thread releases lockn

Like all happens-before detectors,c8uULOCK keeps a ~ , — Li—{m
vector clockC; for every thread. However, AccuLocK uses  Ci[t] « Ci[t] + 1
these vector clocks to track’™“~" rather than’%.

In Algorithms 6 — 9, AccuLocKk tracks the inter-thread Algorithm 6 Fork: threadt forks threadu
synchronization order induced ifyor k, j oi n, noti fy and L, + set of all possible locks
noti fyAl |l as in Java as well as the intra-thread prograrn C, — C. U C;
order by incrementing clock'’s ¢ entry orC,’s u entry. Note  C:[t] «— Cift] +1
that lock acquires and releases in Algorithms 4 and 5 do not

affect the synchronization order. However, in a lock redgeasAlgorithm 7 Join: threadt joins threadu
the clock of thread is incremented merely to facilitate the  _ - ¢,
lock-subset optimization described in Section 111-B. Culu] — Culu] + 1
The shadedO(n) VC operations for tracking the syn-
chronization order induced bfork, joi n, notify and Algorithm 8 Notify: threadt notifies threads

noti fyAl I are needed in all happens-before detectors

However, these events happen infrequently compared to loc

acquires and releases, which are trackedim) time and

space in RSTTRACK but ignored in ALCULOCK. _ : _
As for volatile reads and writes, there are two choicee‘lgor'thm 9 NotifyAll: thread ¢ wakes up all waiting threads

depending a client's need for a particular program. If Algo- for all threadsu waiting for threadt do

rithms 12 and 13 are incorporated, thec@uLock behaves Cu = Cu UGy

) i i d f
exactly as BRSTTRACK by including the effects of volatile gr:[t] ‘2 Celt] + 1

Cy +— C,UC
Celt] — Ceft] +1

variables on-%““~"*, " Otherwise, AcuLock proceeds by
treating volatile variables just as lock objects. Algorithm 10 Read: thread reads variables
i i - iti if epoch(t) & { R [t].epoch, Wy .epoch} then {If same epoch, no actign
B. Approximating the Lock-Subset Condition PO [;](-BPOEh J }epocm) } oot reag aooah
Traditionally, the lock-subset optimization [18], [21]rges R |t]lockset «— Lt {Update read locksgt

if Wy.epoch X Ct then
check Rz [t].lockset N Wy .lockset = () {Check with prior writg

Definition 2 (Redundant Accesses)et there be two accesses enc??fd i

a andb to the same shared locatiearmade by the same thread:

We say thab is redundantwith respect taz if (1) a andb are Algorithm 11 Write:
both readsa andb are both writes, or is a write andb is a

to reduce the number of accesses participating for race&kshec

threadt writes variablex

read, and (2)'s lockset is a subset dfs lockset. " eup ?/(\222(292&0})1/\} #I'?ﬁotck?e;hen {if same epoch, no actign
Thus, a future access tothat races withh must also race Wy lockset «— W, .lockset N L

with a. As a resultp can be ignored in race detection. els‘;heCsz-ZOCkset =0 {Check with prior writ¢
El|m|qat|ng all redundant checks would be counter- Wi lockset — Ly {Update write locksdt

productive as subset operations are costizCALOCK ap- end if

proximates the lock-subset condition so that an elimimatib Wa.epoch — epoch(t) {Update write epoch

some redundant accesses serves to both bring a performancefor all threadst’ in read mapR., do {O(1) amortized tim¢

gain and increase the number of data races detected. if Ra[t'].epoch £ Cy then

Note that in Algorithms 4 and 5, the vector clo¢k in en‘éhSCkR”[t J.lockset 0 Ly =0 {Check with prior reads

threadt ticks only at a lock release but not at a lock acquire.  onq for
Thus, the results stated in Lemmas 1 and 2 are immediate. R, — empty {ClearR.}

Lemma 1 (Redundant Reads) et P, be the epoch of a prior end i

access (read or write) ta. If P, = epoch(t), then a future Algorithm 12 Volatile Read:
read atepoch(¢) is redundant (w.r.t. the prior access). :

thread reads volatile variable:

i i Ct — Ct L Cx
Lemma 2 (Redundant Writes)Let P, be the epoch of a prior

write to z. If P, = epoch(t), then a future write aepoch(t)
is redundant (w.r.t. the prior write)

Consider thread'1 in Figure 1(a). If P, represents epoch
of the first read tox in the code, then the second readktis

Algorithm 13 Volatile Write:  threadt writes volatile variabler

Oy < © LT,
Colt] — Cit] + 1




COdI?)Cirk] f‘ Thread COdE)éE la Thread write to z among all threads (with some redundant writes
—x wm to 2 being removed by Lemma 2).
lock l» lock I2 1) Write-Read RacesAt a read in a thread, as shown
= >|< ‘ X =| ‘ in Algorithm 10, AccuLock does nothing if the current read
unlock i unlock i is redundant (Lemma 1). Otherwisec8uLocK records the
lock I3 lock I3
= x X = epoch and lockset of the current readiy, for thread¢, by
unlock I3 unlock I3 overwriting the prior read, if any. As a resulR, keeps the
unlock I unlock Iy (epoch, lockset)'s for all concurrent reads to to be checked
(a) Lemma 1 (b) Lemma 2 for races with a later write ta.
Fig. 2.  An illustration of the nonnecessity of the lock-sefosonditions If the current read is not ordered with the last write made
stated in Lemmas 1 and 2 to enable for the lock-subset oftioiz at Wx.epoch, then AccuLock checks to see if the current

read races with one of the prior writes implicitly represeht

redundant by Definition 2 (with respect to the first) and ald®Y their common lockset iV, lockset. A data race warning
by Lemma 1 as both are in the same epoch. Consider thréggeported when the current read and one of the prior writes
T1 in Figure 1(c). The second read 1o is not redundant &r€ Mot protected by a common lock.

(with respect to the first read to) and also concluded so by ~2) Write-Write and Read-Write Racesit a write in a
Lemma 1 as both reads have different epochs. threadt, as in Algorithm 11, AcuLock does nothing if

However, the lock-subset condition in either lemma i€ current write is redundant by Lemma 2. Otherwise: A

sufficient but not necessary, as illustrated in Figure 2. Tg’LOCK checks for a potential race with a prior write. If
see why the condition in Lemma 1 is not necessary, consid8f current write Va[‘,?b the last write made Jat,.cpoch are

the code sequence executed in a thread given in Figure 2)ordered (by————), AccuLock updatesW,.lockset

The last two reads are redundant with respect to the first 8)d reports a race (between the current write and one of the
Definition 2. However, in &ACULOCK, the first read shares thePrior writes) whenW, .lockset becomes empty. If both writes
same epoch as the second but that epoch is different from @@ ordered, then the current write happens after the last on
epoch of the third read. SodcuLock can ignore the second (by 2t In this caseW, .lockset is reset tol,, i.e., the

but must analyze the third. The nonnecessity of the loclssublockset protecting the current write. In either caB,.epoch
condition in Lemma 2 is illustrated similarly using Figurgp®.  is updated with the current epoch (for the current write).

In summary, ACULOCK removes some redundant accesses Afterwards, AccuLock checks for races by looping over
in O(1) time in order to keep its performance comparabiell reads inR, that happen concurrently with the current write
as FASTTRACK. How such redundancy elimination also helpprotected by the lockseL; (W.r.t. M). As in Algo-
AccuLock detect more races will be clear below. rithm 2 of FASTTRACK, this for loop takesO(|R.|) < O(n)

time but is amortized over the lasR,| analysis steps that
wecu—hb take O(1) amortized time each, using the efficient lockset

We are now ready to introduce our new——-aware jmplementation [9], [10]. If no races are detected, the entrr
lockset algorithm and examine howcAuLOCK applies it to hb

X write happens after all reads iR, (in the sense of—). In
detecth})hree kinds of data races for concurrent accesses (V\both cases (whether the current write races with any prim re
accu—

_ ): write-read (a write concurrent with a later read),oy not), R, is cleared. We rese®,, this way in order to ensure
write-write (a write concurrent with a later write) amdad- 5t AccuLock and FARSTTRACK can be on a par in terms
write (a read concurrent with a later write). ~ of analysis overhead incurred. As a result, some races dause
~ The core part of ACULOCK for race detection is given py the multiple protecting locks idiom may go undetected but
in Algorithms 10 and 11. As in OCKSET, L; holds the set {hese are rare according to [22] and our experiments.

of all locks acquired by thread at any time, according 0 3) Examples:Let us revisit the four examples in Figure 1.
Algorithms 4 and 5. &cuLock maintains the following two

metadata structures for each shared locatipn
e R, is a read map that maps zero or more threads to
(epoch, lockset) pairs for all concurrent reads to(w.r.t.

C. Detecting Data Races

Figure 1(a). SupposeTl acquires locki; beforeT2. In
this case, ESTTRACK will not find the race between
A andB. At the first read tox in T1, ACCULOCK
stores the current epoch and the empty lockset for the

Lcculby with at most one read from each thread. For read intoR,[T1] so thatR,[T1].lockset = (). The
each thread, R..epoch is the epoch for the last non- second read is redundant and thus ignored. When
redundant read in thread (with some redundant reads the write in T2 is analyzed, its protecting lockset
to « being removed by Lemma 1) anfdl,.lockset is the is Ly = {l1}. (S0 W,.lockset is updated to be
lockset protecting: in thread:t. {l:}.) AccuLock detects the raceA( B) because

o W, is a single(epoch, lockset) pair, whereW, lockset R.[T1).lockset N Ly = (), implying thatx is not
records the lockset far that has consistently protected consistently locked by a common lock.

accu—hb
_—

all concurrent writes tar (wW.r.t. ) so far and If the lock acquisition order is reversedCAULOCK
W,.epoch gives the epoch for the last non-redundant will also succeed in detecting the same data race.



Figure 1(b). AccuLock can detect the race betwedn Theorem 1(Compared with IOCKSET). ACCULOCK reports
andB in all six interleavings but KSTTRACK fails no more data races thahoCKSETIin any thread interleaving.

with T1 — T2 - T3 and T3 — T2 — TI1. .
Consider 71 — T2 — T3. The two reads in Proof: Let M, (My) be the set of shared memory

T1 and T2 are concurrent by2es=" (but not locations checl:cecgj% races bycAuLock (LockseT). Due

hb to the use of——— (and also% in Algorithm 11) in
by —), R, records the epochs and locksets fo/'&ccumcx then M, C My holds. For anyz € M,, if
the two reads so thaR,[T1].lockset = {l2} and ' o = - yr @
el AccuLock detects a race te, so will LOCKSET, because
Rz[T2].lockset = {l1,12}. At the later write inT3, P .
AccuLock distinguishes reads and writesidut LOCKSET
L; = {l1} holds. AccuLock detects the race as the I
does not when finding the common locks held for ]
accessedA and B are not protected by a common
lock However, AccuLOCK may report some (real) data races that
Figure 1(c). AccuLock behaves exactly asaBTTRACK ERASER does not since the latter is unsound in its handl_mg
. . . f thread-local and read-shared data. A formal comparison
in order to be fast and avoid false warnings etween the two can be involved and is thus omitted
explained below. Both detectors regard the two reads W . Involv IS Thus omitted.
AccuLocCK misses no races detected bysF TRACK when

to x in T1 as happening in program order. T2 ) . . .
acquires lockl; beforeT1, both detectors will dis- looking for more in alternate thread interleavings.

cover the raceA, B). If the lock acquisition order is Theorem 2 (Compared with ESTTRACK). Consider a fixed
reversed, both detectors keep only the second reaggram execution (with the same thread interleaving). If
(lines 4 and 6 in Algorithm 1 and lines 2 and 3 iNFASTTRACK reports a pair of racy accesses on a shared
Algorithm 10). So both will miss the race. locationx during this executionAccuLock will also report
Figure 1(d). AccuLock detects this-race similarly as a (not necessarily identical) pair of racy accesseson
in Figure 1(a), except that it is a false warning, .
confirmed later only by the programmer or other Proc_)f: Le_t there be_ a racy pgl(ra,b) on « from FAST-
means. However, ASTTRACK does not. TRACK (implying t}gat eithera or b is a write). Iﬂsgbandb
4) AccuLock’s Lockset MechanismAccuLOCK aims to are not ordered by, and consequently, not by - Let

find more data races thanASTTRACK by being mindful a’ (b') bea (b) or an earlier non-redundant access in the same

. . . . epoch. Being racy by ASTTRACK, a andb are not protected
about alternate thread interleavings when analyzing angiv; , , .
%{ a common lock. Nor are’ andb’ according to Lemmas 1

program execution. It must do S0 py maintaining (.:omparabanol 2. So(a’, ') is racy by ACCULOCK. .
performance asASTTRACK and limiting false warnings in a : :

: . : In the absence of multiple protecting lockscé&uLock
controlled manner. Thus, &cuLOCK is designed to miss a reports only the potential races that it is designed to find
data race (known later by further analysis) that is repobigd P y P 9 '
LocksET or ERASER if detecting the race only causes it toTheorem 3 (()-Races) Suppose each location is protected by
be buried in a flood of accomplishing false warnings. a fixed lock (or none). TheAccuLoCK reports onlyf-races.

Therefore, ALcuLOCK exploits the program order included .
_ accu—hb e Proof: Suppose that BcuLOoCK detects a pair of racy
in ———— to mimic FASTTRACK whenever necessary. In Al-

ithm 10 onlv the last dundant read i hth C&ccesses to a shared location. Then one of the two accesses
gorithm U, only the last hon-redundantread in €ach Inr€ady, o ot pe protected by a common lock using a simple case

recorded inR... In Algorithm 11, only the last non—redundantanalysis_ The rest of the proof follows from Definition 1m

write among all threa@s is recorded v, and in ?Sfj_'}:bon In the presence of multiple protecting locks, however, as
on seeing two writes in a row that are ordered6Y=—=, shown in Figure 1(b), ACULOCK may report false warnings

ACCULOCK resets W.lockset 10 Ly (line 6). MOIOVEr, that are notf-races, just like IDCKSET and ERASER As
AccuLock also exploits implicitly the synchronization ordergiscyssed in [9, p. 409], all such false warnings can be adbid

induced by lock acquires and releases by cleafgat each 1y sing sets of sets of locks instead of just sets of lock&lwh
write to = to improve both time and space efficiency. This i?nay be costly in practice (if used improperly).
because the current write either races with some of the priorcgnsider a program given in Figure 3 that is adapted from
reads inR, or happens after all of them in the sense &%. Figure 1(c) so that (1) the first read %oin T1 is now a write
Finally, by distinguishing the locks protecting reads antte® instead, and (2) the write t® in T2 is guarded by not only
usingR, andW,. and approximating the lock-subset condition, but alsol,. Suppose that the write ii2 is made between
efficiently, AccuLock performs the amortized (1) lockset the two accesses ifil in the modified program. After the two
operations in théor loop of Algorithm 11 only infrequently, writes, W,.lockset = {I,}. At the read inT1, AccuLock
i.e., on a write wherR,, hasO(n) entries. will report a false warning, 4 B) for x, since its lockset
is Ry[T1].lockset = {l1}, implying that R.[T1].lockset N
W, .lockset = (). This false warning is not afl-race as the
We give a few properties aboutc&uLocCK to show its second read il and the write inT2 are protected by the
fulfilment of our design requirements. We supplement thleck /;.
analysis by providing experimental evidence in Section V.  The lockset intersectioV,.lockset «— W,.lockset N Ly,

D. Characterizing Data Races



Thrial‘d 1L Thread 12 B. Instrumentation

ocC

X = ’ :8gt 2 There are two dynamic compilers to translate Java bytecode
unlock I- x=® into native code in the Jikes RVM. Thieaselinecompiles
lock iy unlock L each method initially when it first executes. When a method
:n)l(ogll unlock I becomedot, the optimizingcompiler recompiles it at succes-

sively higher optimization levels. Our implementation rifies
Fig. 3. An illustration of a false warningA( B) that is not anfl-race.  hoth compilers to add instrumentation to at each intergstin

program point, such as a synchronization operation, read or
write. Only the application code of a program loaded at run
performed in Algorithm 11 is the culprit for such false warnlime iS instrumented. In the optimizing compiler, we use
ings. However, it trades off such imprecision for efficiencytS Mostly static intraprocedural escape analysis to fitier
In practice, however, for the 11 benchmarks used in offfréad-local accesses.

experiments, ACULOCK reports only a few noff-races. C. Reporting Races

All detectors report at most one race for each field moni-
tored. The racy pairs reported for a shared location by miffe
detectors may be different.

IV. IMPLEMENTATION

We have implemented @cuLock and six other dynamic
race detectors all in the Jikes JVM. The six other detectors V. EXPERIMENTAL EVALUATION
are: ERASER [9] (a well-known imprecise detector based . . . . —
on LOCKSET), RACETRACK [10] (an imprecise hybrid lock- We validate the f_ulﬂlr_nent 9f Its _deS|gn objectlv_es by A
set/VC detector), “NBRID” [21] (a hybrid Lockset/VC de- CULOCK by comparing it against six other dynamic detectors

tector), Dot [18 high-perf VC-based detect using ;1 _benchmarks, the largest programs ever used as a
&EET?RACE [EB]] ((: h;?brige[g(r;r;sir;/ﬁ;ﬁ d(?tseitor)e Z(r:]gr)éollectlon in the literature. Our results show that@uLock

FASTTRACK [12] (the fastest happens-before detector). is capable of reporting more (real) data races thasTr

X . . . TRACK, while maintaining comparable analysis overhead (in
To ensure reliable comparisons, all algorithms were imple-

mented on top of BPTY as similarly as possible in Orderperformance and memory overhead) and limiting the data

races reported to be mosftlyraces (Definition 1). In addition,
to reuse the same data structures such as vector clocks amgeh : o
. ) neither of the other detectors meets all our design obgstiv
locksets. BMPTY performs no analysis and is used to measure
the instrumentation overhead at compile time as well as the Methodology

overhead of associating metadata with each monitored bbjecl) Platform: We performed all experiments on a 3.0GHz

and synchronization object at run time). It is implemented .o ~ore Intel Xeon machine running Redhat Enterprise
inside the Jikes RVM (version 3.1.0), a high-performanq_ nux 5 (kernel version is 2.6.18) with 16GB of memory.
Java-in-_J_ava yirtual mach_ine. Jikes RVM's performance Is 2) Benchmark ConfigurationWe have selected 11 bench-
competitive with commercial VMs as of November 2009. 515 that expose different runtime structures and pattern

in the following way. We have used all four multithreaded
A. Metadata programs in the latest release of tlaCapo benchmark

There are three kinds of metadata foc@uLock concern- SUte ©.12-bach) [23] that can compile under the Jikes
ing reads/writes, VCs and locksets. We handle the first two 3¥M: X2l an, a test tool for the xerces library to transform

in PACER [19] and the last as in BASER[9] and RACETRACK XML documgnts into HTML| usearch, a benchmar.k using
[10]. | ucene to index a set of documentsyr or a, a simula-

) tor running AVR microcontrollers, andunf | ow, a render

« Two wordsare added to the header of each object. Thgqcessing images using a ray-tracing algorithm. We also
first word points to the read/write metadata for eacpq|,de the two multithreaded programs in an older versibn o
instrumented fields: R, andW,. The second points to DaCapo (version2006- 10- MR2): hsql db, a JDBCbench-
the synchronization data, i.e., its VC for a synchronizatiq; o in-memory benchmark anecl i pse, a (non-GUI) JDT
object. Similarly, a word is added per static field foherformance test tool for the Eclipse IDE. The other five
read/write metadata. If volatile variables are handled lyonchmarks ardedc, a tool to access astrophysics data from
applying Algorithms 12 and 13, a word per (object Ofyiernet [11],mt r t , a multithreaded ray-tracing program from
static) volatile field is also added for synchronizatiogpgc JVMO8] spi der, a highly configurable and customiz-
metadata. . able web spider engine [24§ache4j , a cache system for

« Asin ERASERand RACETRACK, a lockset table is used jo.4 opjects with a simple API and fast implementation [25],
to record all distinct locksets ever created and to |dent|f3(ndj cs, a distributed caching system [26].
a lockset uniquely by its ir!dex into the table_. L_ookups in For the sixDaCapo benchmarks, the inputs with default
the table are lock-free while inserts are serialized. sizes were used (as some of these benchmarks run out of

The other six detectors are implemented similarly. memory on larger sizes). Fott r t , the largest input size was



#Instrumented Times (Slowdowns) #Race Warnings

S 3] S X 5 ) % >

< e < 9 < P < 9

1 o ) [ o o x | | g o4 4 o

Base| ¥ | 4 3 z |+t | FlEI3[8]l%]|lz]| + F = 3

Size |#Classes#Methods Time| £ < Q @ S| 3282128 £ 5 @ 3

Program|| (LOC) | Loaded|Compiled #Threads|(secs) W I} 14 I a = [y < w |l e | x a b3 [y <
xalan || 265,897] 360 | 2,199 64 465|234 481 | 459 | 10.19] 14.1] 14.2]| 5.58] 6.03|] 24 | 24 | 24 | 6[16] | 6[16] | 6[16] | 36[29]
lusearch|| 110,960{ 100 505 64 6.89|2.05| 4.26 | 3.76 | 5.04 | 6.24| 6.37| 3.84| 3.75|| O 0 0 1[12] | 1[12] 1[12] 1[12]
hsqgldb 148,481 113 1,012 16 2.7413.36| 7.82 | 7.78 | 15.92| - - | 7.7318.24| 9 6 5 - - 3[4] 3[4]
eclipse || 165,366] 1,230 9,580 16 27.1|3.06( 10.06| 10.24| 18.4 - — [9.29]9.62]|[ 139| 53 | 87 - - 17[3] 67[30]
avrora || 136,756] 397 1,785 6 13.6[1.69| 355] 3.48 | 466 | 45[452[323] 34 37| 2 3 3 3 3 A[1]
sunflow || 108,962 121 986 16 5.56|5.05| 41.27| 41.67| 102.8| 79.6| 80.1| 54.1| 51.9|| 4 3 4 19[7] | 19[7] 19[7] 19[24]
mtrt 11,317 38 243 20 153273 495 | 483 | 8.31|15.8|15.8(4.81(4.88] 12 6 5 6[1] 6[1] 6[1] 6[1]
cache4j 5,061 9 65 64 49.1]1.32| 229 | 2.24 | 3.69 | 4.27] 4.28]| 247|247 1 1 1 2 2 2 2
jcs 66,944 70 364 64 3241 17| 40 | 3.83| 871 (8.03]|7.92|4.69|4.83|| 3 3 3 3 3 3 5[3
hedc* 24,924 38 140 30 1.2411.06| 1.07 | 1.08 | 1.07 | 1.08| 1.08| 1.08| 1.09|| 2 0 1 3[2] 1 3[2] 3[2
jspider* || 18,826 | 304 | 1,630 15 |[33.4[1.05| 1.08 | 1.08 | 1.07 | 1.08| 1.08| 1.07| 1.08|| 8 | 2 | 6 | 7[4] | 7[4] 7[4] 714

[Average]] [ [ [ I [26] 9.2 | 9.1 | 20.0]18.9]19.0] 10.3] 10.9] 239] 100] 139 [ 92[42] ] 88[42] | 119[49] 257[130]]
TABLE |

BENCHMARK RESULTS THE TWO MARKED WITH ‘* ARE NOT COMPUTEBOUND AND ARE THUS EXCLUDED WHEN COMPUTING AVERAGE SLOWDOWIS.
DJITT AND MULTIRACE RAN OUT OF MEMORY ONHSQL DB AND ECLI PSE DUE TO THE4GB HEAP LIMITATION IN JIKES JVM. THE WARNINGS INSIDE
THE BRACKETS ARE GENERATED IF CLASS INITIALIZERS AND OBJECTONSTRUCTORS ARE ALSO INSTRUMENTEDIN EACH OF THE“#RACE
WARNINGS” COLUMNS, THE “AVERAGE” REPRESENTS THE TOTAL NUMBER OF WARNINGS REPORTED BY THAT DECTOR.

enabled with the option-“s100”. For j spi der, it was set both HyBRID and RACETRACK suppress “initialization warn-
up to run on a randomly chosddRL using googl e. For ings” using ERASERs unsound state machine in handling
cachedj andj cs, their benchmark inputs were used. thread-local and read-shared data. To achieve an apples-to
3) Computing Time and Space Overhea@ibese measure- apples comparison with the other four detectorsyiTD,
ments are the average of 10 runs. The time spent on analyzZMgLTIRACE, FASTTRACK and ACCULOCK, class initializers
a program by a detector does not include the time for recgrdiand object constructors are not instrumented. Otherwite, a
and printing the stack traces for each racy pair of accesseiialization warnings reported are given inside the keds.
reported. The benchmarks marked with " in Table | are not Here are some observations about the following four detec-
compute-bound and are excluded when computing the average when compared to @cuLock directly or indirectly:
performance slowdown for a detector.
4) Counting Race WarningsDynamically detecting races
is challenging as some races occur infrequently. For each
program, we report all distinct warnings found in the 10 runs
by a detector to ensure a reliable comparison with others.
5) Analysis ConfigurationAccuLoOCK provides a number
of analysis switches, controlling whether to analyze mgmor
locations at the level of fields or objects, whether to datish
the elements of an array or not, and whether to include the

. . . gccu—hb
events of volatile reads/writes Hg—’ or not. below, MULTIRACE may miss real races and report
Du_e to space I|m.|tat|0ns, we will rest.nct ourselves fco false warnings, as already discussed in [12].
the fine-grain analysis performed at the field level. Vodatil HYBRID. This detector uses what is similar €=, to
variables are handled by Algorithms 12 and 13. Finally, all fil.ter out some potential races frorrREsaEthhat are
array elements are individually monitored. P

accu—hb . . . .
We used the default generational mark-region collecton wit ordered by———. While being effective in some
the options as Xmx4000M - X: processors=al | .

DJITT. Like FASTTRACK, AccuLOCK is faster than DITT,
which always reports the same warning ass¥
TRACK as both differ only in how the happens-before
relation is represented (by VCs vs. VCs + epochs).

MULTIRACE. This detector has about the same overhead
and behaves exactly the same as1 except that
only accesses with an empty lockset concluded by
ERASER are checked using VC operations. Due to
ERASERS unsound state machine used as discussed

programs, such ascl i pse andavr or a, HYBRID
can be up to & (in sunf | ow) slower than RASER

B. Results and Analysis and inherits the same imprecise state machine from
Table | lists the size, the number of classes, the num- ERASER The aggressive lock-subset optimization

ber of methods, the number of threads and uninstrumented [18], [21] used in HBRID for removing redundant

running times for each program examined. In addition, the accesses can be expensive for some programs.

“Instrumented Times” columns show the running times of RACETRACK.By making the opposite tradeoff asvHRID,
each program under each of the detectors, reported as the this detector runs as fast aRESER but can be very

ratio to the uninstrumented running time. The variations in imprecise since it starts looking for races on a mem-
slowdowns for different programs are common for different ory location only after it has “observed” some racy
dynamic detectors. The “#Race Warnings” columns give the evidence or missed some racy accesses regarding

number of warning produced by each detector. LikeABER, the location. By comparing the “R&CETRACK” and



“FASTTRACK” columns tallying the warnings found frequently for races between a write and earlier concurrent
(even they may represent different warnings)), weeads than ESTTRACK (as shown in the “Exclusive” columns
find that RACETRACK often detects only a small sub-in the two tables) because lock acquire and release ordering
set of races detected byABTTRACK in a program events are ignored iH<<“~" (but included in"%). On the
(e.g., sunfl ow). On the other hand, @&cuLocK other hand, as shown in the “4VC Ops on Sync Objects”
detects all what ASTTRACK does (by Theorem 2 columns, AccuLock reduces significantly the number of
and in practice). O(n) VC operations on synchronization objects performed
Given the above discussions, it suffices to analyze our gy FASTTRACK. In j cs, nearly all synchronization events
sults by comparing AcuLock and FASTTRACK. Afterwards, are volatile reads. Such reduction can be more pronounced
we compare AcULOCK and ERASER only briefly. on affecting their relative analysis times when the number o
1) FASTTRACK Comparison: We first compare the instru- threads, increases.
mentation overheads incurred byw$TTRACK and Accu- In general, ALcuLoCK is slightly slower than ESTTRACK
Lock and then examine both detectors in terms of extra rageanalyzing a program when the number of lockset operations
conditions discovered by @cuLOCK. or the number of times the instrumented locations stay in the
a) Instrumentation Overheadstable | shows that A- Read-Shared state or both are relatively high (asxal an
cuLock has slightly higher analysis overhead (about 5.8% andhsql db). For the ray-tracing applicatiosunf | ow, Ac-
average more) thanABTTRACK, when implemented in the cuLock is faster RSTTRACK since ACCULOCK stays in the
same mPTY framework. Note that AcuLock is slightly same epoch more often. Note that@uLock needs to record
faster forl usear ch and sunfl ow. AccuLock achieves the lockset for each non-redundant read. For the two caching
such comparable performance by leveraging the lightweigigpplicationscache4j andj cs, the extra overhead incurred
epoch representation of VCs as indTTRACK and the fast by AccuLock over FASTTRACK is slightly higher inj cs
lockset operations as in FASER As shown in Table I, than cache4j as AccuLock stays in theRead-Shared
ERASER remains to be the fastest of all detectors evaluatedtate more often if cs. Finally, AccuLock is slightly faster
than FASTTRACK on | usear ch because the ratio of the

Memory Memory Overhead - P
Program (MB) ERASER | FASTTRAGK T ACCULGCK nu_mber _ofO(n) VC operations performed on synchrongnon
xalan 106.5 3.08 4.79 4.79 objects in ARSTTRACK to the number of lockset operations
lusearch 73.1 4.89 4.48 4.19 performed by AcuLock is relatively high.
hsqidb 94.1 6.84 6.87 6.9 . . .
adiipse 1565 551 539 554 b) Effe_ctlveness of Data Race DetectlohchQCK is
avrora 281 4.89 463 5 more effective than ASTTRACK in the sense that (1) it detects
sunflow 48.1 10.25 1.72 7.75 all real races reported byABTTRACK on every benchmark
::Tg:heq gi'i ggg 2'2‘21 ;"271 used (over 10 runs), as shown in the last three columns of
ics 59.7 5736 567 571 Table V, (2) it reports onI_y(Z)Traces in 10 out of the 11
hedc 19.7 1.42 1.43 1.46 benchmarks used, and (3) it finds more real races among the
jspider 378 128 1.28 1.28 extra race warnings reported (relative tasF TRACK).
Average 66.0 451 4.44 4.47 .
By Theorem 2, AcuLock always finds a superset of races
TABLE Il found by FASTTRACK given the same thread interleaving.
COMPARING MEMORY OVERHEAD, WHICH IS THE RATIO OF THE This condition may or may not hold in two separate runs

MAXIMUM HEAP SPACE USED DURING ANALYSIS TO THE MAXIMUM HEAP

for the two detectors. However, this theorem holds for the 11
SPACE USED UNDER UNINSTRUMENTED EXECUTION

benchmarks used in our experiments (as shown by Column
“_F” in Table V), as ACCULOCK uses—““““~", "which is

Table Il shows that ACULOCK has more or less the saméess sensitive to thread interleaving tha#.
memory overhead asaBTTRACK. Compared with EASER We have analyzed the extra warnings reported mci-
both detectors also have similar memory requirements.  LOCK (in the “+-F” columns) forxal an, ecl i pse, avrora
Both AccuLock and RSTTRACK keep the same setandj cs using sets of sets of locks instead of just sets of locks
of instrumentation states for a locatian There are three for 10 runs. Only three foecl i pse are found to be false
states for readsSame-Epoch, Exclusive when |R,| = 1 in warnings that are removable using sets of sets of lockshall t
FASTTRACK or |R;| =1 in AccuLock, andRead-Shared rest aref)-races (Definition 1), which are the potential races
when|R,| > 1 or |[R,| > 1. There are two states for writes:that AccuLock is designed to flag for further analysis, as
Same-Epoch andExclusive (with [W, | = 1 in FASTTRACK Mmotivated in Section I-B.
or [W,| =1 in AccuLock always). Let us examine thd)-races listed in the last column of
Table 11l gives the number of times each state is enterddble V. First of all, AccuLock and FASTTRACK report the
by all instrumented locations inABTTRACK and the number same set of real races in seven of the 11 programs tested,
of O(n) VC operations performed on synchronization objectshowing that AcuLock is usually precise by refraining from
Table IV presents similar statistics forcEUuLOCK, together reporting false warnings. We have manually analyzedjall
with those for lockset operations.c&uLock checks more races reported in three of the remaining four benchmarks,



-E/+E: fewer/more than EASER

-F/+F: fewer/more than ASTTRACK

FP: false positives (warnings) removable using sets of afeliscks

TABLE V
COMPARING DATA RACES REPORTED

xal an, avror a andj cs, as follows:

j cs.

Both are false warnings that warrant such further
analysis in order to eliminate all potential software
defects. One warning is related to unprotected ac-
cesses to the fieldcache of anj cs object. Both
are synchronized by an intervening user-defined bar-
rier followed by a lock acquire. The other is caused

- #INSTRUMENTATION STATES ENTE\I/?VED #VC OPS ON
Program EADS RITES SYNC OBJECTS
SAME EXCLUSIVE READ SAME EXCLUSIVE [O(n)]
EPOCH SHARED EPOCH [ [R:[=T1 [ [R[>1
xalan 0.43B 0.16B 43.3M 278M | 46.3M 4 8.94M
lusearch || 0.76B 0.11B 9.84M 0.23B | 49.2M 0 3.5IM
hsqldb 80.6M 0.13B 47430 1.85M | 24.8M 18 9.71IM
eclipse 3.3B 0.34B 99.8M 0.75B 0.14B 352 4.9M
avrora 0.82B 0.11B 5.03M 0.34B | 42.1M 0.1IM 3.8M
sunflow 1.2B 0.22B 2.36B 0.35B 0.35B 6 1642
mtrt 0.17B 3.0M 1.1IM 6.34M 18.5M 41 9626
cachedj || 29.5M 0.13B 9.5M 0 71.1M 65 44 8M
jcs 26.5M 0.14B 0.32B 29.2M 0.11B 66 0.22B
hedc 32712 37462 1717 7995 2312 0 528
jspider 0.65M 0.11IM 5984 0.26M 55633 11 4035
TABLE Il
STATISTICS ABOUT FASTTRACK ANALYSIS OPERATIONS
INSTRUMENTATION STATES ENTERED
#LOCKSETOPS
Program READS WRITES Sﬁ\’{‘g 8;5'5%’;‘_8
SAME READ SAME EXCLUSIVE
EPOCH EXCLUSIVE SHARED EPOCH [ TR =1 [ [Ra[> 1 [O(n)] LOOKUPS | INTERSECTS| INSERTS
xalan 0.45B 0.16B 22.3M 26.9M 46.IM 0.03M 131 0.28B 5.42M 0.02M
lusearch || 0.73B 0.14B 4.14M 0.23B 51.6M 65 0.85M 6.61M 446 1094
hsqldb 79.8M 0.14B 2.85M 1.74M 25.0M 0.02M 3.07M 0.14B 0.34M 2652
eclipse 3.38B 0.33B 11.7M 0.75B 0.14B 0.0IM 1.25M 23.4M 0.26M 8412
avrora 0.82B 0.11B 7.0M 0.34B 40.3M 0.22M 0.43M 8.27 3.6IM 10
sunflow || 2.85B 0.23B 0.87M 0.35B 0.35B 4 34 1.62M 498 18
mitrt 0.19B 3.94M 0.07M 7.92M 16.5M 42 27 1.61M 194 22
cache4] || 29.4M 61.1IM 79.9M 0 71.8M 0.02M 64 0.16B 14.6M 3
jcs 0.14B 87.5M 0.26B 29.2M 0.11B 1.42M 0.21B 533 0.21B 13
hedc 0.03M 0.03M 789 7746 2296 0 154 396 38 67
jspider 0.69M 0.11M 3746 0.28M 55633 20 1047 0.16M 16 240
TABLE IV
STATISTICS ABOUT ACCULOCK ANALYSIS OPERATIONS
Program || -E s T FEPTT b to the fieit t r of aCacheE! enent
FP T J-races FP T UTaces y accesses to the fieltt tr of aCacheEl emen
xalan 0 [0 19 00 30 object via object pooling, for the same reason as
'rf:(;g[)‘:h g 8 é 8 8 8 demonstrated in Figure 1(d). Both warnings can be
eclpse | 108 | 3 50 03 41 suppressed with user annotations t@GULOCK.
avrora_ %4 8 232 8 8 (1) How to automate detection of idioms such as object
Tt 5 0 1 0T 0 0 pooling and shared channels remains open.
cached] 8 8 % 8 8 g avr or a.This is a real race on some elements of an array
jcs . . . . .
hedc 0 7 0T 0 !\/Bdl untsTr ansm tte_r $Ti cker:transm ss-
Jspider 3 0 2 0] 0 0 i on.data, which is always detected by

AccuLock using both the default input (6 threads)
and the large input (26 threads). However, the race
is missed by ESTTRACK (and also by RCER [19],
another implementation of ASTTRACK with its
sampling rate set at 100%) when the default input is
used but is detected only with the large input, due
to its sensitivity to thread interleaving.

xal an. All these are false warnings on 26 object fields,

including the fieldm | ast Fet ched of an object
LocPat hl t er at or, due to the use of a shared
i terator pool, which is synchronized itself.
However, there is a real race on the figidattrs

of an objectEl emDesc that is detected in all 10
runs by AccuLock but only in 4 of the 10 runs
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before detector to allow a good balance between speed,
memory requirement, coverage and precision to be made.
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Fig. 4. Sensitivity of AcuLock and FASTTRACK to thread interleaving on  [2]
the racy accesses to the fietdat t r s of an objectEl enDesc in xal an.
(3]

[4]
by FASTTRACK, despite that the race is counted
for FASTTRACK in Table I. (Thus, this race is not [g)
included in the 30-races shown in the last column
for this benchmark.) Figure 4 demonstrates furthef!
that AccuLock is significantly less sensitive to (7]
thread interleaving thanASTTRACK in hunting this
race condition. In addition, in a separate experimenﬁs]
runningxal an with 8 threads for 500 runs,AST-
TRACK fails to detect the race in all the runs but
AccuLock succeeds in reporting it in all 500 runs. [

2) ERASER Comparison: While being the fastest among
all seven detectors compared in Table RASER is known [10]
to issue more warnings and also miss real races due to its
unsound handling of thread-local and read-shared data. [11]

Looking at Table | again, RASER does not produce many
false warnings compared toc&uLOCK in a few benchmarks.
This is because BRASER has succeeded in suppressing uri3]
soundly many false warnings fromdckseT (not given in [14]
here). However, AcuLockK has eliminated them soundly.

Table V also gives the extra race warnings reported by
AccuLOCK relative to ERASER in the “+E” columns. Ac- [19]
cuLOCK happens to also report only three race warnings th[@g]
are not)-races (forecl i pse). In addition, RASER did not
report the two real races found bycauLock discussed above [17]
in avrora andxal an. Finally, we list the number of real |15
races missed by BASER but found by both ESTTRACK and
AccuLock for the 11 programs in the order in which they
appear in Table I: 2, 0, 3, 14, 3,4, 7, 3, 2, 0 and 5. [19]

[12]

VI. CONCLUSION

This paper presents a new dynamic race detector that
detect more data races thanSFTRACK, the fast happens-
before detector, while maintaining comparable perforneaas [22]
FASTTRACK. The key innovation is to leverage the IightweighbS]
epoch representation of vector clocks imsFTRACK and
deploy a new lockset algorithm to achieve a fine balan&l
of coverage and precision in race detection. These des'gé]
objectives are met as validated againssFTRACK and six
other dynamic detectors using 11 benchmarks.

The basic idea behind @&cuLock is not tied to RST-
TRACK; it can be incorporated into any future faster happens-

[20]

[26]
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