
An Efficient Heuristic for Instruction Scheduling on
Clustered VLIW Processors

Xuemeng Zhang Hui Wu Jingling Xue

School of Computer Science and Engineering
The University of New South Wales

{xuemengz, huiw, jingling}@cse.unsw.edu.au

ABSTRACT
Clustering is a well-known technique for improving the scal-
ability of classical VLIW processors. A clustered VLIW pro-
cessor consists of multiple clusters, each of which has its own
register file and functional units. This paper presents a novel
phase coupled priority-based heuristic for scheduling a set of
instructions in a basic block on a clustered VLIW processor.
Our heuristic converts the instruction scheduling problem
into the problem of scheduling a set of instructions with a
common deadline. The priority of each instruction vi is the
lmax(vi)-successor-tree-consistent deadline which is the up-
per bound on the latest completion time of vi in any feasible
schedule for a relaxed problem where the precedence-latency
constraints between vi and all its successors, as well as the
resource constraints are considered. We have simulated our
heuristic, UAS heuristic and Integrated heuristic on the 808
basic blocks taken from the MediaBench II benchmark suite
using six processor models. On average, for the six processor
models, our heuristic improves 25%, 25%, 33%, 23%, 26%,
27% over UAS heuristic, respectively, and 15%, 16%, 15%,
9%, 20%, 8% over Integrated heuristic, respectively.

Categories and Subject Descriptors: C.1.1[Processor
Architectures]: Single Data Stream Architectures - RISC /
CISC, VLIW architecture; D.3.4 [Programming Languages]:
Processors - Compilers; Optimisation

General Terms: Algorithms, Performance

Keywords: Clustered VLIW Processor, Instruction Schedul-
ing, Inter-instructional Latency, Inter-cluster Communica-
tion Latency

1. INTRODUCTION
A Very Long Instruction Word (VLIW) processor consists

of multiple functional units. All the functional units share
a single register file. At each processor cycle, multiple in-
structions are issued and executed in parallel on different
functional units. All the instructions are scheduled at com-
pile time. Hence, an optimising compiler plays a key role to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0713-0/11/10 ...$10.00.

employ Instruction Level Parallelism (ILP) [1]. The objec-
tive of an optimising compiler is to schedule the instructions
of a program such that the execution time of the program
is minimised. As a result, the compiler needs to schedule as
many instructions as possible at each cycle. Nevertheless, a
large amount of ILP puts immense pressure on the proces-
sor’s registers and bypass network.

A major problem with the classical VLIW processors is
that a single register file hampers the scalability of the pro-
cessor. Clustering is an efficient technique for improving
the scalability of VLIW processors. In a clustered VLIW
processor, the single register file is split into multiple reg-
ister files with fewer registers and ports. Each cluster has
its own functional units and local register file. Clusters are
connected by an inter-cluster communication network [2].

Instruction scheduling for clustered VLIW processors be-
comes more challenging as there are additional inter-cluster
communication constraints. If an instruction executed on
a cluster needs the result produced by another instruction
executed on a different cluster, the compiler needs to take
into account the communication latency between these two
clusters when scheduling these two instructions.

In this paper, we propose a novel priority based heuris-
tic for scheduling a set of instructions in a basic block on
a clustered VLIW processor. Our heuristic converts the in-
struction scheduling problem into the problem of scheduling
a set of instructions with a common deadline. The prior-
ity of each instruction vi is the upper bound on the lat-
est completion time of vi in any feasible schedule for a re-
laxed problem where the inter-instructional latency between
vi and all its successors, as well as the resource constraints
are considered. Given a basic block, the time complexity
of our heuristic is O(ne), where n is the number of instruc-
tions in the basic block, and e is the number of edges in
the precedence-latency graph. Our simulation results show
that our heuristic performs significantly better than UAS
heuristic [3] and Integrated heuristic [4].

2. RELATED WORK
The problem of scheduling a set of instructions in a ba-

sic block executed on a clustered VLIW processor such that
the execution time of the basic block is minimised is NP-
complete even if the processor has only one cluster [5]. A
number of heuristics have been proposed. All the previ-
ous heuristics can be classified into two main categories,
the phase decoupled approach and the phase coupled ap-
proach. The phase decoupled approach [6–8] partitions in-
structions into clusters before scheduling the instructions,

which suffers from the phase ordering problem as parti-
tioning is performed without knowing the conflicts of re-
sources and the final schedule. As a result, it may introduce
unnecessary inter-cluster communication, and impose more
constraints on the subsequent scheduling. The phase cou-
pled approach [3, 4, 9–12] combines cluster assignment and
scheduling into a single phase, which can avoid the phase
ordering problem.

The Bulldog compiler [6] is the first study of instruc-
tion scheduling on a clustered VLIW processor. It uses a
two-phase approach that separates cluster assignment from
scheduling. The first pass assigns each instruction to a clus-
ter using Bottom-Up Greedy (BUG) algorithm, and the sec-
ond pass uses list scheduling [13] to construct a schedule
that respects the cluster assignments. BUG uses the depth-
first search and a latency-weighted depth priority scheme. It
tries to put the instructions on the critical path on the same
cluster so that inter-cluster data transfer latency can be min-
imised. Unfortunately this approach leads to the phase or-
dering problem as the BUG can not know the utilisation of
functional units and inter-cluster data path. As a result, it
can not fully utilise the machine resources to minimise the
execution time of a basic block.

Lapinskii et al. [8] propose an effective binding algorithm
for clustered VLIW processors. They use a three-component
ranking function to determine the order in which each in-
struction is considered for binding:

1. As late as possible (ALAP) scheduling time of the ins-
truction.

2. Mobility of the instruction, which is ALAP scheduling
time of the instruction minus as early as possible (AEAP)
scheduling time.

3. Number of successors of the instruction.
They compute the cost of binding an instruction to a

cluster by a cost function that takes into account the data
transfer penalty, resource and bus serialisation penalty. The
problem with this algorithm is that the assignment of in-
structions to clusters prior to the scheduling phase can not
get the exact information of load on resources and buses.

The Unified Assign and Schedule (UAS) heuristic [3] com-
bines cluster assignment and scheduling into a single unified
phase. The outer loop of the heuristic uses a list sched-
uler [13] to fill the instructions into the schedule cycle by
cycle, and the inner loop considers each possible cluster as-
signment for each instruction. Each cluster is checked in
priority order to see if it has a free functional unit for the in-
struction. Five different priority functions are investigated:

1. None: The cluster list is not ordered.
2. Random Ordering: The cluster list is ordered random-

ly.
3. Magnitude-weighted Predecessor (MWP): An instruc-

tion is placed into a cluster where the majority of its input
operands reside.

4. Completion-weighted Predecessor (CWP): This gives
priority to the cluster that will be producing source operand
later.

5. Critical-Path in Single Cluster using CWP Heuristics
(CPSC): The CWP heuristic is used but instructions on the
critical path are forced to be assigned to the same cluster.

Once a cycle is scheduled, it will be never revisited. There-
fore, the inter-cluster data movement can not be inserted
into earlier cycles that are already scheduled, to reduce the
delay of data movement and utilise the free resources.

Nagpal et al. [4] propose an effective heuristic that inte-
grates temporal and spatial scheduling. The heuristic utilises
the exact knowledge of available communication slots, func-
tional units, and load on different clusters as well as fu-
ture resource and communication requirements known only
at schedule time. The heuristic extends the standard list
scheduling algorithm and uses a three-component ordering
function to order the ready instructions as follows:

1. Mobility of the instruction.
2. The number of different function units capable of exe-

cuting the instruction.
3. Number of successor instructions.
Once an instruction is selected for scheduling, a cluster

assignment decision is made as follows:
1. The chosen cluster should have at least one free resour-

ce of the type needed to perform this instruction.
2. A communication model is proposed to select a cluster

based on the number of snoops in the current cycle, number
of future communications required, as well as number of copy
instructions in the earlier cycle.

A major problem with all the previous priority-based ap-
proaches is that they do not consider the processor resource
constraints when computing the priority of each instruction.
As a result, the priorities may be biased and may not reflect
the relative importance of each instruction. Our heuristic is
the first one that takes into account the processor resource
constraints when computing the priority of each instruction.

There are a number of papers that study the problem of
effectively scheduling loops on clustered VLIW processors
by using software pipelining and modulo scheduling tech-
niques [11, 12, 14–17]. The primary objective of software
pipelining and modulo scheduling techniques is to efficiently
overlap the different iterations of an inner-most loop.

3. INSTRUCTION SCHEDULING ON CLU-
STERED VLIW PROCESSORS

3.1 Processor Model and Definitions
A target clustered VLIW processor has m identical clus-

ters, C1, C2, . . . , Cm. Each cluster has a set of functional
units of different types. Each instruction can be executed
only on a functional unit of the same type. The target pro-
cessor is fully pipelined, i.e, the execution of each instruction
takes only one processor cycle. For ease of descriptions, we
assume that all the clusters are fully connected 1, i.e., the
inter-cluster communication latency is a constant c between
any two clusters. If instructions vi and vj are executed on
different clusters and vj needs the result of vi, a copy in-
struction, executed on vi’s cluster, is required to transfer
the result from vi’s cluster to vj ’s cluster. The copy instruc-
tion, denoted by copy , also takes one cycle.

A basic block is represented by its precedence-latency gra-
ph which is a weighted DAG (directed acyclic graph) G =
(V,E,W), where V = {v1, v2, . . . , vn: vi is an instruction},
E = {(vi, vj) : vj is directly dependent on vi}, and W =
{li,j : (vi, vj) ∈ E, li,j is the inter-instructional latency be-
tween vi and vj}. An inter-instructional latency may exist
between two instructions with a precedence constraint due
to the pipelining architecture and off-chip memory latency.
Fig. 1 is an example of a basic block with 12 instructions

1Our scheduling heuristic is also applicable to heterogeneous
clusters and arbitrary communication network.

Figure 1: The weighted DAG

from v1 to v12.
The instruction scheduling problem studied in this paper

is described as follows. Given a basic block represented by a
weighted DAG G = (V,E,W), find a valid schedule σ with
minimum length satisfying the following constraints:

1. Resource constraints: 1) each instruction can be exe-
cuted only on a functional unit of the same type; 2) At any
time, only one instruction can be executed on each func-
tional unit.

2. Precedence-latency constraints: For each (vi, vj) ∈ E,
if vi and vi are on different clusters, σ(vi)+2+c+lij ≤ σ(vj)
holds; otherwise, σ(vi) + 1 + lij ≤ σ(vj) holds.

Given two instructions vi and vj , if there is a directed
path from vi to vj , then vi is a predecessor of vj and vj is a
successor of vi. Especially, if (vi, vj) ∈ E, then vi is an im-
mediate predecessor of vj and vj is an immediate successor
of vi. If instruction vi has no immediate predecessor, vi is a
source instruction. If instruction vi has no immediate suc-
cessor, vi is a sink instruction. An instruction vi is a sibling
of an instruction vj if vj is an immediate predecessor of an
immediate successor of vi. Throughout this paper, all the
successors of an instruction vi are denoted by Succ(vi) and
the number of elements in a set U is denoted by |U | .

Definition 1. Given a DAG G = (V,E) and an in-
struction vi ∈ V , the successor tree of vi is a directed tree
T (G, vi) = (V ′, E′), where V ′ = {vi} ∪ Succ(vi) and E′ =
{(vi, vj) : vj ∈ Succ(vi)}.

In a weighted DAG G, if there is a directed path Pij from
vi to vj , the weighted path length of Pij is the sum of its
constituent edge weights and the number of instructions in
Pij , excluding the two end instructions vi and vj . The max-
imum weighted path length from vi to vj , denoted by l+ij , is
the maximum of the weighted path lengths of all the paths
from vi to vj .

Definition 2. Given a weighted DAG G = (V,E,W),
an instruction vi ∈ V and an integer k, the k-successor tree
of vi is a subgraph ST (G, k, vi) = (V ′, E′,W ′), where V ′ =
{vi} ∪ {vj : vj ∈ Succ(vi)}, E′ = {(vi, vj) : vj ∈ Succ(vi)}
and each edge weighted l′ij in W ′ is l′ij = l+ij if l+ij < k;

otherwise, l′ij = k.

Fig. 2 is an example of 4-successor tree of v3 in Fig. 1. Given
a problem instance P : a set of instructions in a basic block
represented by a weighted DAG and a clustered VLIW pro-
cessor M , we define a new problem instance P (d) as follows:

Figure 2: The 4-successor-tree of v3

the same set of instructions as in P with a common deadline
d and the same VLIW processor M . Conceptually, d can be
any number. In order not to produce negative start time for
any instruction, we select d to be n ∗ c ∗ lmax, where n is the
number of instructions, c the inter-cluster communication
latency, and lmax the maximum inter-instructional latency.
A valid schedule for the problem instance P (d) is a feasible
schedule if the completion time of each instruction is not
greater than the common deadline d.

Let lmax(vi) denote the maximum latency between vi and
all its immediate successors. Next, we define the lmax(vi)-
successor-tree-consistent deadline of an instruction vi.

Definition 3. Given a problem instance P (d), the lmax(
vi)-successor-tree-consistent deadline of an instruction vi,
denoted by d′i, is recursively defined as follows. If vi is a
sink instruction, d′i is equal to the common deadline d; oth-
erwise, d′i is the upper bound on the latest completion time
of vi in any feasible schedule for the relaxed problem instance
P (vi): a set V ′ = {vi}∪Succ(vi) of instructions with prece-
dence and latency constraints in the form of the lmax(vi)-
successor tree ST (G, lmax(vi), vi), deadline constraints D′ =

{d
′′
j : vj ∈ V ′ and d

′′
j is the deadline of vj in P (vi) and

(d
′′
j = d

′
j if j 6= i or d

′′
j = dj if j = i)}, and the same clus-

tered VLIW processor P . Formally, d′i = max{σ(vi) : σ is a
feasible schedule for P (vi).}

In our scheduling heuristic, the priority of each instruction vi
is its lmax(vi)-successor-tree-consistent deadline which con-
siders both precedence-latency constraints and resource con-
straints. As a result, it represents the relative importance of
vi more accurately than the deadline derived only from the
precedence-latency constraints.

3.2 Computing the lmax(vi)-Successor-Tree Co-
nsistent Deadline

Our heuristic consists of three major steps. Firstly, it
schedules all the successors of the instruction vi in the lmax(
vi)-successor tree as late as possible. If two instructions have
the same deadline, the instruction with a larger latency will
be scheduled first. Then, it finds the successor with the
most impact on vi’s latest start time without considering
inter-cluster communication latency. vi will be tentatively
scheduled on the same cluster as this successor in order to
make vi’s start time as late as possible. Secondly, it com-
putes the tentative latest start time of vi by considering the
communication latency between vi and all the successors
which are not on the same cluster as vi. Thirdly, it tries to
re-schedule the successors, which are not on the same cluster
as vi, on the same cluster as vi to make vi’s start time later
than its tentative start time.

Given two instructions v and w, let Lv,w be the latency
between v and w in the lmax(vi)-successor tree. The pseudo

code of our algorithm for computing the lmax(vi)-successor-
tree-consistent deadline is shown as follows.

Algorithm Computing the lmax(vi)-successor-tree-consistent
deadline

Input A weighted DAG G that represents a basic block;
an array V of all the instructions;
a clustered VLIW processor M ;

Output The lmax(V [i])-successor-tree-consistent deadline of
each instruction V [i];

begin
sort V in topological order;
for i = |V | − 1 to 0

/* Step 1 */
if V [i] is a sink instruction

the lmax(V [i])-successor-tree-consistent deadline of
V [i] = d;
continue ;

construct the lmax (V [i])-successor tree T of V [i];
let S be an array of Succ(V [i]) in T ;
sort S in non-increasing order of deadlines;
sort all the instructions in S with the same deadline
in non-increasing order of their latencies in T ;
for j = 0 to |S| − 1

schedule S[j] on an idle functional unit as late as
possible;
F [S[j]] = the start time of S[j] ;

/* Step 2 */
let a be an integer in [0, |S| − 1] satisfying
F [S[a]]− LS[a],V [i] = min{F [S[j]]
−LS[j],V [i] : j ∈ [0, |S| − 1]};
let C′ be the cluster on which S[a] is scheduled;
let S′ be the subset of Succ(V [i]) not scheduled on C′;
D′ = F [S[a]]− LS[a],V [i] − 1;
for c = 0, · · · , |S′| − 1]

I[S′[c]] = F [S′[c]]− LS′[c],V [i];
D′ = min{I[S′[c]− c− 2, D′};

/* Step 3 */
sort S′ in non-decreasing order of I;
let p be the number of functional units on each cluster;
for k = 0 to min{|S′| − 1, c ∗ p}
/* check if S′[k] can be moved to cluster C′ */

let A be an array containing S′[k] and all the
instructions scheduled on C′;
sort A in non-increasing order of deadlines;
sort all the instructions in A with the same deadline
in non-increasing order of their latencies in T ;
for j = 0 to |A| − 1

schedule A[j] on an idle functional unit of C′

as late as possible;
F [A[j]] = the start time of A[j] ;

t1 = min{F [vj]− Lvj ,V [i] − 1 : j = 0, · · · , |A| − 1

and vj is scheduled on C′};
t2 = min{F [vj]− Lvj ,V [i] − c− 2 : j = 0, · · · , |A| − 1

and vj is not scheduled on C′};
if min{t1, t2} > D′

move S′[k] to C′;
D′ = min{t1, t2};

computing the latest start time s[i] of V [i];
the lmax(V [i])-successor-tree-consistent deadline of
V [i] = s[i] + 1;

end

In order to maximise the start time of vi, our algorithm
checks if an instruction in S′ can be moved to cluster C′.
Next, we prove that at most the first c ∗ p instructions in S′

need to be checked. Let tmax be the latest start time of vi
computed in Step 2. It is easy to see that the latest start

time of vi can be increased by at most c cycles. Therefore,
at most the first c ∗ p instructions in S′ need to be checked.

Example 1: Consider the basic block shown in Fig. 1.
Assume that inter-cluster communication delay c is 2 cycles.
The common deadline of all the instructions is 12 ∗ 2 ∗ 4 =
96. The target clustered processor has two identical clus-
ters C1 and C2. Each cluster has one ALU unit and one
load/store unit. Assume that our algorithm has computed
d′i(i = 6, 7, 8, 9, 10, 11, 12), where d′6 = d′7 = d′8 = 94, d′9 =
d′10 = 95, and d′11 = d′12 = 96,. Next, we show how our algo-
rithm computes the lmax(v3)-successor-tree-consistent dead-
line d′3. Recall that d′3 is the upper bound on the latest
completion time of v3 in any feasible schedule for the re-
laxed problem instance P (v3), where the 4-successor tree
of v3 is shown in Fig. 2. Firstly, our algorithm schedules
all the successors of v3 as late as possible based on their
lmax(vi)-successor-tree-consistent deadlines and latencies in
the relaxed problem instance P (v3). The schedule is shown
in Table 1a. Secondly, our algorithm finds the tentative
latest start time of v3 with respect to the previous sched-
ule and inter-instructional latencies as well as inter-cluster
communication latency. The tentative latest start time of
v3 is 85, as shown in Table 1b. Lastly, our algorithm checks
if vi(i = 8, 10, 12) can be moved to the cluster C1 so that
the resulting latest start time of v3 can be increased. As a
result, v8 is moved to the cluster C1, increasing the resulting
latest start time of v3 by one cycle. The final schedule for
computing the lmax(v3)-successor-tree-consistent deadline is
shown in Table 1c. From the schedule shown in Table 1c,
we get d′3 = 87.

The lmax(vi)-successor-tree-consistent deadline of each in-
struction vi is shown in Table 2. For comparison, the priori-
ties of all the instructions in Example 1 using AEAP schedul-
ing time, ALAP scheduling time, instruction mobility, num-
ber of successors are also shown in Table 2.

Next, we analyse the the time complexity of our algorithm
for computing all the lmax(vi)-successor-tree-consistent dead-
lines.

Theorem 1. Given a basic block, the time complexity of
our algorithm for computing all the lmax(vi)-successor-tree-
consistent deadlines is O(ne), where n is the number of in-
structions in the basic block, and e is the number of edges in
the precedence-latency graph.

Proof. The time complexity of one iteration of the outer
for loop is dominated by the following parts:

1. Constructing the lmax (V ′[i])-successor tree T of V ′[i].
It takes O(e) time.

2. Sorting S. We can sort all the instructions of the basic
block before the outer for loop. As a result, it takes
O(n) time to sort S.

3. The first inner for loop and the second inner for loop.
Both for loops take O(n) time.

4. The third inner for loop. Sortings take logn time as
only one instruction is added to the set of instructions
scheduled on cluster C′. As a result, it takes O(n)
time to check if the instruction S′[k] can be moved to
cluster C′. The maximum number of instructions to be
checked, i.e., the number of iterations of the inner-most
for loop, is c∗p, where c is inter-cluster communication

Time 85 86 87 88 89 90 91 92 93 94 95 96
L/S on C1

ALU on C1 v6 v7 v9 v11
L/S on C2

ALU on C2 v8 v10 v12

(a) Step 1

Time 85 86 87 88 89 90 91 92 93 94 95 96
L/S on C1 v3 copy
ALU on C1 v6 v7 v9 v11
L/S on C2

ALU on C2 v8 v10 v12

(b) Step 2

Time 85 86 87 88 89 90 91 92 93 94 95 96
L/S on C1 v3 copy
ALU on C1 v8 v6 v7 v9 v11
L/S on C2

ALU on C2 v10 v12

(c) Step 3

Table 1: Comptuting the lmax(v3)-successor-tree-consistent deadline

Table 2: Priority of each instruction vi

Instruction v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
AEAP 0 0 0 0 5 5 5 6 6 6 7 7
ALAP 2 2 2 2 7 7 7 8 8 8 9 9

Instruction Mobility 2 2 2 2 2 2 2 2 2 2 2 2
Successor Number 2 2 3 2 1 1 1 2 1 1 0 0

lmax(vi)-successor-tree-consistent Deadlines 88 88 87 87 93 94 94 94 95 95 96 96

latency and p is the number of functional units in each
cluster. Since both c and p are very small, c ∗ p can be
considered as a constant. Hence, this nested for loop
takes O(n) time.

Therefore, the time complexity of our algorithm isO(ne).

3.3 Instruction Scheduling Heuristic
In our scheduling heuristic, the priority of each instruc-

tion vi is its lmax(vi)-successor-tree-consistent deadline. A
smaller deadline implies a higher priority. Our heuristic
schedules instructions in non-decreasing order of their dead-
lines and tries to schedule the immediate predecessors of
each instruction on the same cluster without delaying this
instruction, in order to reduce the inter-cluster communica-
tion latency. Our heuristic works as follows:

At any time, it selects a ready instruction vi with the
smallest lmax(vi)-successor-tree-consistent deadline. An in-
struction vi is ready if both its inter-instructional latencies
and inter-cluster communication latency have elapsed. Two
cases are distinguished.

1. vi has a sibling that is already scheduled. Let vj be the
immediate successor of vi satisfying the following con-
straints: a) One immediate predecessor of vj is already
scheduled. b) vj has the smallest lmax(vj)-successor-
tree-consistent deadline among all the immediate suc-
cessors of vi having an immediate predecessor already
scheduled. Consider the following two cases:

(a) There are two clusters Cs and Ct such that the
start time of vj is minimised if vi is scheduled
on either cluster Cs or cluster Ct, where the start

time of vj is the time at which vj can be scheduled
immediately after vi is scheduled. In this case,
schedule vi on a cluster as early as possible.

(b) Such clusters Cs and Ct do not exist. Schedule
vi on a cluster such that the start time of vj is
minimised, where the start time of vj is the time
at which vj can be scheduled immediately after
vi is scheduled.

2. vi is a sink instruction, or vi does not have a sibling
that is already scheduled. In this case, schedule vi on
a cluster as early as possible.

The reason that our scheduling heuristic distinguishes be-
tween Case (a) and Case (b) is that vj may not be sched-
uled immediately after vi and other instructions scheduled
between vj and vi will affect the start time of vj . In this
case, scheduling vi on a cluster earlier may make vj start
earlier. Consider Example 1 shown in the previous section.
Assume our scheduling heuristic has constructed a partial
schedule for instructions vk(k = 1, 2, · · · , 8) as shown in Ta-
ble 3a. Now consider scheduling v9. v9 has a sibling v8
already been scheduled. If v9 is scheduled on either C1 or
C2, the start time of v12 is minimised. So this is where Case
(a) is applicable. As we can see, the best choice is to sched-
ule v9 on cluster C1 at cycle 8.

A schedule for Example 1 constructed by our heuristic is
shown in Table 3a. For comparison, a schedule for Exam-
ple 1 constructed by UAS heuristic with ALAP and CWP
priority schemes [3] is shown in Table 3b, and a schedule
for Example 1 generated by Integrated heuristic [4] is shown
in Table 3c. We can see that our heuristic can effectively

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
L/S on C1 v3 v4 copy copy
ALU on C1 v6 v7 v9 v10 v11
L/S on C2 v1 v2 copy copy copy
ALU on C2 v5 v8 v12

(a) A schedule by our scheduling heuristic

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L/S on C1 v1 v2 copy copy copy
ALU on C1 v5 v8
L/S on C2 v3 v4 copy
ALU on C2 v6 v7 v9 v10 v12 v11

(b) A schedule by UAS heuristic

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13
L/S on C1 v3 v4 copy copy copy
ALU on C1 v6 v7
L/S on C2 v1 v2
ALU on C2 v5 v8 v9 v10 v11 v12

(c) A schedule by Integrated heuristic

Table 3: Schedules by different heuristics

reduce the execution time of the basic block by 3 cycles and
1 cycle, respectively .

The UAS heuristic [3] schedules the ready instructions cy-
cle by cycle and does not reconsider earlier cycles that are
already scheduled. Therefore, the copy instruction has to
be issued at the current cycle. For example, in Table 3b
instruction v8 could be scheduled at cycle 8 if the copy in-
struction could be inserted at cycle 5 rather than cycle 7.
This makes the execution time longer as the communication
delay can not be hidden by other instructions.

The Integrated heuristic [4] does not consider the resource
constraints when prioritising the instructions. We can see in
Table 2 the instruction mobility and number of successors
are not as accurate as our lmax(vi)-successor-tree-consistent
deadlines. Furthermore, the cost function for cluster as-
signment in the Integrated heuristic can not schedule the
instructions as early as possible comparing to our instruc-
tion scheduling heuristic. For example, in Table 3c the in-
struction v9 has two predecessor v1 and v6 on cluster 2 and
cluster 1, respectively. According to their cost function, v9
is scheduled on cluster 2 at cycle 10 as v9’s successor v12 has
the other predecessor v8 scheduled on cluster 2. According
to our heuristic, v9 is scheduled at cycle 8 on cluster 1.

After the lmax(vi)-successor-tree-consistent deadline of ea-
ch instruction vi is computed, our instruction scheduling
heuristic takes O(n logn) time to construct a schedule for
the basic block by sorting all the instructions in non-decreasi-
ng order of their deadlines. Therefore, the time complexity
of our entire instruction scheduling heuristic is dominated by
the algorithm for all the lmax(vi)-successor-tree-consistent
deadlines. As a result, the following Theorem holds.

Theorem 2. Given a basic block, the time complexity of
our entire instruction scheduling heuristic is O(ne), where
n is the number of instructions in the basic block, and e is
the number of edges in the precedence-latency graph.

4. SIMULATION RESULTS
To evaluate the performance of our scheduling heuristic,

we simulated our scheduling heuristic, UAS heuristic [3] and

Integrated heuristic [4] by using 808 basic blocks selected
from MediaBench II benchmark suite [18]. The number and
size range of all the basic blocks selected from each of the
benchmarks and the names of the benchmarks from which
each basic block is taken, are shown in Table 4. Most of
the basic blocks of the benchmark suite are quite small. We
selected large basic blocks from 20 to 379 instructions. In
order to generate large basic blocks, we unrolled loops from
the benchmark suite to obtain basic blocks with at least 1280
instructions.

Our target clustered VLIW processors have two types of
functional units: load/store unit and ALU unit. The in-
struction set of our target processors is the instruction set
of TMS320C6X processor [19], where the latencies of the
load instruction, the 16 ∗ 16 multiply instruction and the
branch instruction are 4, 1 and 5 cycles, respectively. The
latencies of other instructions are 0 cycles. In addition, we
assume the inter-cluster communication latency is 2 cycles.
The register files are assumed to have unlimited size. The
following six different clustered VLIW processors are used
for the evaluation:

1. Processor (a) has 4 clusters with 2 ALU units and 2
load/store units in each cluster.

2. Processor (b) has 3 clusters with 2 ALU units and 2
load/store units in each cluster.

3. Processor (c) has 2 clusters with 2 ALU units and 2
load/store units in each cluster.

4. Processor (d) has 4 clusters with 1 ALU unit and 1
load/store unit in each cluster.

5. Processor (e) has 3 clusters with 1 ALU unit and 1
load/store unit in each cluster.

6. Processor (f) has 2 clusters with 1 ALU unit and 1
load/store unit in each cluster.

Fig. 3 shows the simulation results for the real basic blocks
taken from MediaBench II benchmark suite, and Fig. 5 shows
the simulation results for the artificial basic blocks unrolled
from the selected loops taken from MediaBench II bench-
mark suite. The simulation results shown in Fig. (i) were
obtained by using Processor (i). For example, Fig. 3(a) as-
sumes Processor (a). For UAS heuristic, we used ALAP and

Benchmark MPEG2 JPEG2000 H.264 H.263 MPEG4 JPEG
Basic Block Number 82 76 273 73 212 92

Smallest Basic Block Size 20 20 20 20 20 20
Biggest Basic Block Size 116 120 379 163 211 108
Average Basic Block Size 38 30 42 39 50 37

Table 4: Information of benchmark

CWP priority schemes which yield the best performance for
UAS heuristic [3]. In each figure, a vertical axis represents
the average number of processor cycles of a schedule for ba-
sic blocks from a benchmark on a specific clustered VLIW
processor.

The improvements of our heuristic over UAS heuristic and
Integrated heuristic are shown in Fig. 4 and Fig. 6. As we
can see, our scheduling heuristic outperforms UAS heuristic
and Integrated heuristic for all the selected basic blocks. On
average, for the six processor models, our heuristic improves
25%, 25%, 33%, 23%, 26%, 27% over UAS heuristic, respec-
tively, and 15%, 16%, 15%, 9%, 20%, 8% over Integrated
heuristic, respectively.

There are several reasons that our heuristic performs bet-
ter than UAS heuristic and Integrated heuristic. Firstly,
our priority scheme considers the processor resource con-
straints while the priority schemes of UAS heuristic and In-
tegrated heuristic ignore the processor resource constraints.
As a result, our priority scheme is more accurate, especially
when the instruction has many successors competing for the
limited resources. Secondly, UAS heuristic can not insert
the inter-cluster communication into earlier cycles while our
heuristic can issue the inter-cluster communication earlier
to hide the communication delay. Thirdly, the communica-
tion cost function of Integrated heuristic aims to minimise
the inter-cluster communication while our heuristic aims to
minimise the total execution time.

From the simulation results, we have the following key
observations:

• To a large extent, the improvements of our heuristic
over UAS heuristic and Integrated heuristic increase
with the decreasing number of clusters, or the decreas-
ing number of functional units of each cluster. The
reason is that when the contention for functional units
(resource constraints) among all ready instructions be-
comes less intense, the lmax(vi)-successor-tree-consiste-
nt deadline of each instruction vi starts to degenerate
to the priority derived from the priority scheme that
does not consider the resource constraints.

• Both UAS heuristic and Integrated heuristic suffer from
a performance anomaly: the performance degrades wh-
en the number of clusters increases. Our heuristic
does not have this performance anomaly. For exam-
ple, when the instructions in Fig. 1 are scheduled on
Processor (b), the total execution time is increased by
2 cycles comparing to that on Processor (c) for both
UAS heuristic in Table 5b and Integrated heuristic in
Table 5c. The reason is as follows. UAS heuristic
and Integrated heuristic schedule ready instructions
as early as possible, which may schedule two prede-
cessors of an instruction on different clusters. In the
case where instructions do not have enough parallelism
comparing to the clusters, if the ready instructions are
scheduled as early as possible, it may introduce un-

necessary inter-cluster communication delay. Consider
Example 1 and Table 5. If we increase the number of
clusters by one, UAS heuristic and Integrated heuris-
tic will schedule both v3 and v4 at the same cycle on
different clusters, resulting in an extra delay of 2 cycles
for v6.
Comparing to UAS heuristic and Integrated heuristic,
our instruction scheduling heuristic takes into account
the successor’s execution time rather than only the cur-
rent instruction’s execution time. For example, in Ta-
ble 5a, our heuristic tries to schedule the successor v6
as early as possible, therefore it keeps v3 and v4 on the
same cluster and do not utilise cluster C3 to avoid the
performance anomaly.

5. CONCLUSION
We have proposed an efficient priority-based heuristic for

scheduling instructions in a basic block on a clustered VLIW
processor. Our heuristic converts the original scheduling
problem into a problem of scheduling the same set of in-
structions with a common deadline, computes the lmax(vi)-
successor-tree-consistent deadline for each instruction vi, and
uses these deadlines as priorities to construct a schedule.
Compared to the previous priority schemes, our priority
scheme is the first one that considers both the precedence-
latency constraints and resource constraints. The priorities
computed by our heuristic are more accurate with respect
to the relative importance of each instruction. We have sim-
ulated our heuristic, UAS heuristic and Integrated heuristic
on the 808 basic blocks taken from the MediaBench II bench-
mark suite using six processor models. On average, for the
six processor models, our heuristic improves 25%, 25%, 33%,
23%, 26%, 27% over UAS heuristic, respectively, and 15%,
16%, 15%, 9%, 20%, 8% over Integrated heuristic, respec-
tively.

In the existing approaches, register allocation and instruc-
tion scheduling are separated. For clustered VLIW proces-
sors, these two problems are closely related and have a sig-
nificant impact on each other. An open problem is how to
integrate register allocation and instruction scheduling into
a single problem and solve it efficiently.

6. REFERENCES
[1] John L. Hennessy and David A. Patterson. Computer

Architecture: A Quantitative Approach. Elsevier,
114-120, fourth edition, 2006.

[2] Andrei Terechko, Erwan Le Thenaff, Manish Garg,
Jos van Eijndhoven, and Henk Corporaal. Inter-cluster
communication models for clustered vliw processors.
In proceedings of Symposium on High Performance
Computer Architectures, 2003.

[3] E. Ozer, S. Banerjia, and T. M. Conte. Unified assign
and schedule: A new approach to scheduling for
clustered register file microarchitectures. In

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
L/S on C1 v3 v4 copy copy
ALU on C1 v6 v7 v9 v10 v11
L/S on C2 v1 v2 copy copy copy
ALU on C2 v5 v8 v12
L/S on C3

ALU on C3

(a) A schedule by our scheduling heuristic on Processor (b)

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
L/S on C1 v3 copy copy
ALU on C1 v6 v9 v12
L/S on C2 v4 copy
ALU on C2 v7 v10 v11
L/S on C3 v1 v2 copy copy copy copy
ALU on C3 v5 v8

(b) Performance anomaly by UAS heuristic on Processor (b)

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L/S on C1 v3 copy copy
ALU on C1

L/S on C2 v4 copy copy
ALU on C2 v6 v7
L/S on C3 v1 v2
ALU on C3 v5 v8 v9 v10 v11 v12

(c) Performance anomaly by Integrated heuristic on Processor (b)

Table 5: Performance anomaly

Proceedings of the 31st Annual International
Symposium on Microarchitecture, 1998.

[4] Rahul Nagpal and Y. N. Srikant. pragmatic integrated
scheduling for clustered vliw architectures.
software-practice and experience, 38:227–257, 2008.

[5] Jeffrey D. Ullman. Complexity of Sequencing
Problems. John Wiley and Sons, 1976.

[6] John R. Ellis. Bulldog: A Compiler for VLIW
Architectures. The MIT Press, 1986.

[7] Saurabh Jang, Steve Carr, Philip Sweany, and Darla
Kuras. A code generation framework for vliw
architectures with partitioned register banks. In
proceedings of 3rd International Conference on
Massively Parallel Computing Systems, 1998.

[8] Victor S. Lapinskii and Margarida F. Jacome. cluster
assignment for high-performace embedded vliw
processors. ACM transactions on design automation of
electronic systems, 7(3):430–454, July 2002.

[9] Rainer Leupers. Instruction scheduling for clustered
vliw dsps. In proceedings of the International
Conference on Parallel Architecture and Compilation
Techniques, 2000.

[10] Kailas K, Agrawala A, and Ebcioglu K. Cars: A new
code generation framework for clustered ilp processors.
In Proceedings of the 7th International Symposium on
High-Performance Computer Architecture, 2001.

[11] Jesús Sánchez and Antonio Gonzálezor. Instruction
scheduling for clustered vliw architectures. In
Proceedings of 13th International Symposium on
System Synthesis, 2000.

[12] Javier Zalamea, Josep Llosa, Eduard Ayguade, and
Matoe Valero. Modulo scheduling with integrated
register spilling for clustered vliw architectures. In

Proceedings of the 34th Annual International
Symposium on Microarchitecture, pages 160–169, 2001.

[13] Phillip B. Gibbons and Steven S. Muchnick. Efficient
instruction scheduling for a pipelined architecture. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
1986.

[14] Jesús Sánchez and Antonio González. Modulo
scheduling for a fully-distributed clustered vliw
architecture. In Proceedings of the 33rd International
Symposium on Microarchitecture, 2000.

[15] Josep M. Codina, Jesús Sánchez, and Antonio
González. A unified modulo scheduling and register
allocation technique for clustered processors. In
Proceedings of 2001 International Conference on
Parallel Architecture and Compilation Techniques,
2001.

[16] Yi Qian, Steve Carr, and Philip Sweany. optimizing
loop performance for clustered vliw architectures. In
Proceedings of 2002 International Conference on
Parallel Architecture and Compilation Techniques,
2002.

[17] Alex Aleta, Josep M. Codina, Jesús Sánchez, Antonio
González, and David Kaeli. Agamos: A graph-based
approach to modulo scheduling for clustered
microarchitectures. IEEE Transactions on Computers,
58(6):770–783, 2009.

[18] Mediabench ii benchmark.
http://euler.slu.edu/ fritts/mediabench/.

[19] Ti tms320c64xx dsps. http://www.ti.com.

(a) (b) (c)

(d) (e) (f)

Figure 3: Simulation results Part A: Processor cycles for real basic blocks

(a) (b) (c)

(d) (e) (f)

Figure 4: Simulation results Part B: Improvements of our heuristic on real basic blocks

(a) (b) (c)

(d) (e) (f)

Figure 5: Simulation results Part C: Processor cycles for artificial basic blocks

(a) (b) (c)

(d) (e) (f)

Figure 6: Simulation results Part D: Improvements of our heuristic on artificial basic blocks

	Introduction
	Related Work
	Instruction Scheduling on Clu-stered VLIW Processors
	Processor Model and Definitions
	Computing the lmax(vi)-Successor-Tree Co-nsistent Deadline
	Instruction Scheduling Heuristic

	Simulation Results
	Conclusion
	References

