Towards Trustworthy Computing Systems:
Taking Microkernels to the Next Level

Gernot Heiser- Kevin Elphinstone

lhor Kuz

Gerwin Klein Stefan M. Petters

NICTAT and |University of New South Wales
. Sydney, Australia
{firstname.lastname}@nicta.com.au

ABSTRACT

As computer systems become increasingly mission-critical, used in
life-critical situations, and relied upon to protect intellectual prop-
erty, operating-system reliability is becoming an ever growing con-
cern. In the past, mission- and life-critical embedded systems con-
sisted of simple microcontrollers running a small amount of soft-
ware that could be validated using traditional and informal tech-
niques. However, with the growth of software complexity, tradi-
tional techniques for ensuring software reliability have not been
able to keep up, leading to an overall degradation of reliability.
This paper argues that microkernels are the best approach for deliv-
ering truly trustworthy computer systems in the foreseeable future.
It presents the NICTA operating-systems research vision, centred
around the L4 microkernel and based on four core projects. The
sel4 project is designing an improved API for a secure microker-
nel, L4.verified will produce a full formal verification of the micro-
kernel, Potoroo combines execution-time measurements with static
analysis to determine the worst case execution profiles of the ker-
nel, and CAmkES provides a component architecture for building
systems that use the microkernel. Through close collaboration with
Open Kernel Labs (a NICTA spinoff) the research output of these
projects will make its way into products over the next few years.

1. INTRODUCTION

Operating-system reliability is a growing concern as computer sys-
tems are becoming increasingly mission-critical for many organisa-
tions. Furthermore, embedded computing systems are increasingly
used to handle sensitive personal data. For example, in some coun-
tries people routinely perform financial transactions via their mo-
bile phones, and an increasing number of countries use embedded
computer systems to store and access sensitive medical informa-
tion. Embedded systems are also increasingly being used in life-
critical situations, such as aircraft, automobiles and medical de-
vices. Finally, personal computers as well as mobile devices are
increasingly used to access valuable intellectual property, such as
artistic media content, which the owners authorise for use under
very restricted conditions.

This raises concerns about the reliability and trustworthiness of
such systems. In the past, mission- and life-critical embedded sys-
tems consisted mostly of simple microcontrollers running a very
small amount of software, which could be validated with traditional
(informal) means. The strong growth in functionality (and conse-

*Also with Open Kernel Labs

TNICTA is funded by the Australian Government’s Department of
Communications, Information Technology, and the Arts and the
Australian Research Council through Backing Australia’s Ability
and the ICT Research Centre of Excellence programs.

quently complexity) of these devices makes such validation meth-
ods less and less satisfactory. In a nutshell, software complexity is
increasing much faster than the power of techniques for ensuring
software reliability, leading to an overall degradation of reliability.

This problem of software reliability must be addressed at all lev-
els of the software stack, and with a combination of approaches. In
particular, the operating system must be a core part of the approach.
Any guarantee of application-software correctness is useless if the
application runs on top of a faulty operating system, which can in-
terfere in arbitrary ways with the operation of the application soft-
ware.

We argue that microkernels form the basis of the only feasible ap-
proach with a chance of delivering truly trustworthy computer sys-
tems in the foreseeable future. This is the core of the operating-
systems research agenda at NICTA, Australia’s centre of excellence
in ICT research. In this paper we present the NICTA OS research
vision, an overview of the research agenda that aims to deliver on
this vision, and discuss the progress to date and the steps taken to
deploy the research outputs for real-world use.

The remainder of this paper is structured as follows.
presents microkernels, and specifically L4, as a basis for trustwor-
thy embedded systems . This is followed by an overview of the
NICTA OS research and commercialisation agenda in [Section 3

In particular we focus on four core projects: sel4, L4.verified, Po-
toroo, and CAmKES. compares this research agenda to
current related work. We note that while there is activity elsewhere
on various subsets of our agenda, none is as comprehensive and
ambitious as our projects. Finally[Section 5]closes with a summary
and conclusions.

2. OPERATING-SYSTEM COMPLEXITY
AND ROBUSTNESS

2.1 Main-stream operating systems

The kernel of an operating system is usually defined as the part of
the software that executes in the processor’s privileged mode, giv-
ing it unrestricted access to all hardware resources and functions.
In customary “monolithic” system design, the kernel provides most
of the core OS functionality, including interrupt handling, memory
management, access control, device drivers, network stacks, file
systems, etc.

Novel hardware, increased hardware variety (e.g., multithreading,
multicores, bus-connected SMP, NUMA) and more varied usage
contexts (ranging from embedded systems to supercomputers) have
lead to a strong growth in the number and complexity of OS ser-

http://www.nicta.com.au
http://www.unsw.edu.au
mailto:gernot@nicta.com.au
http://www.ok-labs.com

vices. This is reflected by an immense growth in the size of kernel
code. The Linux kernel now comprises about 4.1 millions lines of
code (MLOC), having grown by a factor of 33 within 13 years (see
[Figure T). Windows Vista is said to have 20 MLOC of kernel code.

60 prerrrer prrrrrer prrrrrer prrerer preerrer prrrrrer prrrrrer

50 | .

40 | -

30

20

Size of linux-*.tar.gz [MB]

10

0
1994 1996 1998 2000 2002 2004 2006 2008

Figure 1: Size of the Linux kernel source

This growth is developing into a formidable challenge to system re-
liability. Well-engineered code can be expected to have of the order
of 2 defects per KLOC [42], which puts the number of kernel bugs
in modern operating systems literally into the tens of thousands.
Since all this code executes in privileged mode, each bug has the
potential to cause arbitrary damage. In fact, the majority of OS
code is contained in drivers, which are on average of much lesser
quality [6], meaning that the number of kernel bugs is probably up
in the hundreds of thousands.

While we are not aware of formal studies of system reliability,
anecdotal evidence certainly supports the view that it is deterio-
rating. Five years ago, the author’s Linux desktop was essentially
rebooted only after power outages or for hardware upgrades, the
laptop maybe once a month. These days the laptop needs to be
rebooted daily on heavy use, the desktop at least monthly.

While not all of this code is actually loaded in any particular sys-
tem, the active code still accounts for in the order of a million LOC.
Even systems stripped down to a bare minimum, such as embedded
versions of Linux or Windows, will contain several 100 KLOC of
kernel code.

Even these minimal systems are increasing in size and complexity.
A recent study of the Linux kernel source [50] found that the sizes
of Linux kernel modules have been growing linearly with the ver-
sion number. More worrisome, the interdependencies of modules
via global variables increased exponentially! This complexity in-
crease can be expected to lead to a growth in number of bugs that
is super-linear with code size.

2.2 Microkernels

Microkernels represent an alternative to monolithic systems as an
OS design paradigm. While there are a range of views of what
constitutes a microkernel, the most precise definition was given by
Jochen Liedtke, who can be considered the father of modern mi-
crokernels:

A concept is tolerated inside the microkernel only if
moving it outside the kernel, i.e. permitting competing
implementations, would prevent the implementation of
the system’s required functionality. [40]

Note that this definition does not leave any space for “nanokernels”,
“picokernels”, “femtokernels” and the like, kernels that claim to be
even smaller than a microkernel (unless they form only a part of the
kernel, meaning that there must be other code that also executes at
the highest hardware privilege level).

A microkernel in this sense is a minimal substrate upon which
the actual operating-system services are implemented at user level.
Implicit in the definition is the notion that the microkernel itself
provides no services, only mechanisms for implementing services.
The microkernel also needs to be free of policies, as it would oth-
erwise not be possible to implement arbitrary systems (and their
policies) on top of it.

‘We know of no real kernel which is a microkernel in the strict sense
of the above definition. In practice, compromises are made by in-
cluding extra functionality in the kernel for performance reasons.
In the following we will use the term microkernel in a slightly
looser sense, applying it to systems that also contain a “small”
amount of non-essential code (say, an order of magnitude less than
the essential kernel code).

2.3 A brief history of microkernels

Like so many concepts in computer science, microkernels go back
to at least the 1970’s. The first known system that deserves to be
called a microkernel is Brinch Hansen’s Nucleus [4]. It clearly
enunciated the basic ideas behind microkernels: the kernel supplies
only primitives for process control and inter-process communica-
tion, the kernel has no built-in strategies, and all operating system
policy is implemented as processes outside the kernel. Hydra [38],
a combined hardware-software approach that explored alternative
systems structures, took up Brinch Hansen’s ideas and explicitly
formulated the principle of separation of mechanism (in the kernel)
and policy (in userland). The Mach system [47], a software-only
approach based on the same principles, coined the term “micro-
kernel”. Ironically, Mach, which featured a code size of over 150
kLOC and over 200 system calls, fell far short of meeting the min-
imality requirement expressed in the above definition of a micro-
kernel.

There were a number of contemporaries of Mach [27, 49], and
a large number of followers — microkernels were very much en
vogue in the late 80’s. However, the enthusiasm gave way to dis-
appointment in the early 90’s, when it turned out that microkernel-
based systems all exhibited poor performance. This lead to some
spectacular failures, most notoriously IBM’s $2G disaster with its
Workplace OS [15]. Other commercial Mach projects, such as
OSF/1 and NextStep (including its successor, Mac OS X), ended
up “co-locating” OS services with the Mach kernel, giving up on
any pretence of using a microkernel structure.

Inherent in microkernels is the need to invoke services in different
address spaces, making the performance of kernel-provided inter-
process communication (IPC) mechanisms critical. Kernels of the
day exhibited IPC costs in the order of 100us, almost irrespective
of hardware [39].

An analysis of the performance of Unix on Mach, compared to na-

tive Unix, concluded that the performance problems were “inherent
in the OS structure” [5], in other words, a result of the microkernel
approach. However, Liedtke re-analysed the same data and showed
that performance of the Mach-based system was limited by capac-
ity cache misses in the Mach kernel [40] — Mach’s footprint was
too big.

Liedtke also showed that microkernel IPC can be made fast, by
taking minimality seriously, and taking a very careful approach to
design and implementation, with extensive micro-optimisation of
algorithms and data structures [39]. While Mach and its contempo-
raries exhibited IPC costs that were 1-2 orders of magnitude above
the architectural limit, his L4 kernel came within tens of percent of
that limit, outperforming Mach by more than an order of magni-
tude.

Unfortunately, the Mach experience had already given microker-
nels a very bad image, and Liedtke’s results were largely ignored.
The academic community by and large lost all interest in micro-
kernels. Instead, virtual machines [20] are experiencing a renais-
sance [1], driven by a need to provide stronger resource isolation
between subsystems than what is offered by mainstream operating
systems, and the desire to run multiple operating systems on the
same hardware platform. Virtual machines have a lot in common
with microkernel, in the sense that both are (potentially) small ker-
nels with very limited functionality. In fact, microkernels have long
been used as virtual-machine monitors [21,24]. Interestingly, most
hypervisors seem much larger (in terms of code size) than L4.

2.4 Microkernels in the embedded-systems

domain

Despite their general abandonment, microkernels did survive in
niche areas, especially in the embedded-systems industry. QNX
[27], while originally not performing much better than Mach, is in
widespread use as a real-time OS, and Integrity OS from Green
Hills Software is well established in the military and aerospace
domain. Integrity has limited functionality (less than L4 for ex-
ample), which makes it unsuitable for systems that require effi-
cient resource sharing between protection domains, but this makes
it easier to validate the kernel for correctness and timeliness — it is
presently undergoing Common Criteria EALG certification.

More recently, virtualisation has become an important technology
in parts of the embedded-systems industry. Unlike the server do-
main, where virtualisation is used to improve utilisation and perfor-
mance separation (QoS), in the embedded world this trend is driven
by the desire to use different OS environments concurrently and co-
operatively. The industry is going through a transition from closed
systems, well served by simple real-time OSes (RTOSes) with-
out memory protection, to open systems comparable in power and
functionality to personal computers, requiring modern OS technol-
ogy and standard APIs. Virtualisation supports the co-existence of
a high-level OS, such as embedded versions of Linux or Windows,
with an RTOS that supports (legacy) real-time software. Unlike the
server domain, the emphasis is less on separation, as the nature of
an embedded system requires a strong cooperation of all compo-
nents, including high-bandwidth, low-latency communication be-
tween subsystems (virtual machines).

L4 has repeatedly demonstrated its suitability as a high-
performance virtual-machine monitor for server and desktop sys-
tems [24,36,37]. Its small size makes it a suitable candidate for
embedded systems as well, and its emphasis on high communi-

cation performance makes it superior to plain hypervisors. It is
therefore not surprising that L4 is increasingly used in embedded
systems.

2.5 Towards a trustworthy TCB

However, using a microkernel as simply a hypervisor not only un-
derutilises the kernel, it also does little to address the problem of
system robustness and trustworthiness [29]. A hypervisor is de-
signed to run a complete operating system in each virtual machine,
and in general does not provide support for running applications
natively. In contrast, a microkernel is designed as a platform on
which minimal services can be provided. As such, a microkernel
is an excellent approach to providing a minimal trusted computing
base (TCB).

Making the TCB small has obvious advantages: Since software is
buggy, minimising the amount of software has the benefit of min-
imising security-critical bugs. The question arises whether this can
be taken to the next step: Can we completely eliminate bugs from
the TCB, thereby making it not only frusted, but actually trustwor-
thy?

We believe that this question can be answered in the affirmative
— under the right conditions. We believe that if the TCB is small
enough, it can be made correct in a strict sense, and shown to be
correct.

Size is the key. In the end, “shown to be correct” implies a form
of proof. This can take the form of exhaustive testing, or formal
mathematical proof. The former is infeasible for anything larger
than a few dozen, or at best a few hundred, LOC. The latter scales
somewhat better, but is still only feasible for of the order of ten
thousand lines of code. This limits the size of the kernel, since
for the purpose of verification it cannot be subdivided. Hence,
keeping the kernel small, at around 10 kLOC, is the key to veri-
fication. Microkernels are the only class of kernels which fit this
restriction while at the same time providing mechanisms of suf-
ficient generality to support the construction of arbitrary systems.
Virtual machines monitors, which can be made similarly small or
even smaller, lack this generality. Specifically, the L4 microkernel
is roughly 10 kLOC, and therefore a prime candidate for a trust-
worthy TCB [57].

3. THE NICTA AGENDA: TRUSTWOR-
THY EMBEDDED SOFTWARE

In this section we describe our research program, which aims to de-
velop a demonstrably-correct foundation for trustworthy systems.
The program primarily targets embedded systems because we see
the greatest need, as well as the greatest opportunities in this field.

The need has been discussed above; the opportunities arise due to
significant changes that are happening in the embedded-systems
industry. There is a growing realisation in the industry that the
widely-used unprotected real-time operating systems (RTOSes) are
reaching their use-by date, and companies are looking for better so-
lutions. This development, which is happening in different verticals
at different times (the mobile-phone handset industry is currently
in the middle of it) is creating a unique opportunity: a once-in-a-
generation chance to change operating-system technology. If the
right solution is presented, it has a real chance of being adopted.

The program has four main research components: kernel API,

kernel verification, temporal analysis, and component technology.
These will be discussed below, followed by an accompanying fifth
component: commercialisation.

3.1 Kernel API: selL4

The selL4 (secure embedded L4) project aims to evolve L4 into a
platform for constructing secure embedded systems. The project’s
close relationship with the L4.verified project (Section [3.2)) also
creates interesting issues beyond those immediately driven by the
desire for security. Some of the issues the project is tackling specif-
ically are kernel physical memory management, the management
of authority to invoke kernel services, the provision of a develop-
ment environment amenable to both kernel prototyping and formal
verification of the end result, and development of kernel mecha-
nisms that are highly flexible, as kernel changes trigger potentially
expensive re-verification.

Physical memory is a limited resource that must be managed care-
fully, especially inside the kernel. Excessive consumption of kernel
memory via application use of kernel services can result in denial
of service to other applications due to memory exhaustion. In the
embedded domain, the common approaches of quotas, or treating
kernel physical memory as a cache of data stored elsewhere are
less appropriate. It is difficult to avoid underutilisation with quotas,
and caching kernel data does not provide the temporal guarantees
needed for real-time systems. Our approach involves avoiding im-
plicit memory allocation in the kernel entirely. Instead it provides
a model to applications that enables them to explicitly allocate ker-
nel data structures, by giving them authority to a subset of physical
memory. The model has the benefit of providing a direct and sim-
ple relationship between possession of authority and kernel mem-
ory consumption, giving higher-level systems the ability to confine
kernel memory to particular applications, or even implement tradi-
tional quotas and caching. Further details can be found in [10].

The selL4 kernel extends the original L4 kernel model with capa-
bilities — all kernel services are accessed by invoking capabilities,
with no default inherent authority conferred to processes. Capa-
bilities, when confined to subsystems by construction, can achieve
spatial partitioning of subsystems to provide strong fault isolation
guarantees. Given the explicit memory management model, these
isolation guarantees also extend to kernel physical memory con-
sumed when providing services to applications.

The seL4 prototype uses a novel development approach for an op-
erating system kernel [11]. Even small operating systems are com-
plex enough to require prototyping to validate ideas. This is typi-
cally done by either exploring implementation details with an eye
for efficiency, or providing a concrete implementation to gain expe-
rience in high-level system construction. Prototyping in a low-level
language like C exposes the designer to time consuming debugging,
combined with complex low-level hardware details. It is also dif-
ficult to extract a formal model of the kernel from a low-level C
implementation. To address these issues, the seL.4 prototype has
been written in the functional programming language Haskell. The
Haskell implementation evolved over time from a simple model to
a complete kernel implementation, encompassing the management
of hardware artifacts such as page tables. It exposed many imple-
mentation issues during the design of the kernel, while at the same
time providing a precise basis for automatic extraction of a formal
model of the implementation for use in a theorem-proving environ-
ment.

The prototype kernel model is detailed enough to process a stream
of events resembling the exceptions a real kernel would process to
manage applications on real hardware. We have coupled the ker-
nel model with the user-level execution component of the QEMU
machine simulator. Exceptions, which would normally result in the
transfer to privileged execution, instead are used to drive the kernel
model, which induces changes to user-level applications to mimic
the behaviour of a real kernel running on the simulated machine.
We have used this environment to construct high-level system soft-
ware and applications on the new kernel, prior to a real bare-metal
implementation existing. We also have a bare-metal implementa-
tion in C underway, based on the mature Haskell prototype. A high-
performance C implementation, suitable for formal verification, is
one of the core deliverables of the project.

We are now in the position where the Haskell prototype forms a
platform for feedback and change based on issues discovered in
implementing the model itself, issues discovered in its formalisa-
tion, issues uncovered by its use by high-level system software, and
finally issues uncovered by re-implementation in C. We have found
the functional prototype a productive lingua franca for the kernel
designers, the formal methods practitioners, and the application de-
velopers. Further details of our approach can be found in [9].

Finally, we recognise that success in building a formally verified
implementation of a secure kernel will be short-lived if the ker-
nel is insufficiently general to support a broad class of systems.
Kernel changes to support specific applications invalidate imple-
mentation proofs which can be time-consuming to re-prove. This
adds stronger than usual motivation for the separation of policy and
mechanism [38].

Our hope is that, with the benefit of 13 years of experience with
microkernel API design, we will be able to produce something that
approaches the stability of a hardware interface — a “kernel ma-
chine” that provides sufficient mechanisms to provide the isolation
guarantees we seek, whilst also offering a very general machine
for higher-level system construction. We will view ourselves suc-
cessful if the attitude towards selL.4 becomes similar to that towards
hardware, where the natural tendency is to always work with it (or
to some extent, around it), with changes to the underlying platform
being an infrequent occurrence of last resort.

As the project currently stands, we have a mature implementation
of seL4 in Haskell, together with infrastructure to run it in conjunc-
tion with various user-level simulators to support native develop-
ment on the new API. We also have a pen-and-paper proof of the
isolation ability of the new API. Additionally, we have an immature
C version of the kernel, and are continuing to build infrastructure
for performance analysis of the C implementation (using both sim-
ulated and real hardware environments).

3.2 Kernel verification: L4.verified

The critical component of the whole program is the formal correct-
ness proof of the kernel. The L4.verified project aims to show, in
the theorem prover Isabelle/HOL [45], that the high-performance
C implementation produced by the seL.4 project conforms to its ab-
stract specification. The project uses three levels of specification:
an abstract description of correct kernel behaviour in Isabelle/HOL,
an executable specification that coincides with the Haskell proto-
type developed in the seL.4 project, and the C implementation itself
that is parsed directly into the theorem prover. We then prove that
each layer is a formal refinement of the layer above. This implies

that all behaviours of the C code are subsumed in the abstract spec-
ification and that all Hoare-Logic properties and system invariants
of the abstract specification are true of the C implementation.

Because full verification is commonly thought to be infeasible, the
highest software certification levels (e.g., Common Criteria EAL7)
currently require machine checked formal proof only for the high
level design, which in some cases might be even more abstract than
our top-level specification. Any correspondence between imple-
mentation and design is left to semi-formal arguments and code in-
spection. The L4.verified project goes beyond these requirements
in providing exact, machine checked correspondence between for-
mal model and actual code for a general purpose OS kernel.

The current state of the verification is that the seL4 kernel is pre-
cisely specified at both specification levels, with about 3.5 kKLOC
on the most abstract and 7 kLOC on the executable level. The C
implementation is nearing completion and the proof that the exe-
cutable specification formally refines the abstract kernel model is
about 90% complete with 48 kLOC of Isabelle proof scripts. This
includes a large number of system invariants that describe safe op-
eration of the kernel and ensure consistency of internal data struc-
tures through all possible executions.

Additionally, the project has produced a number of proof infras-
tructure components, such as a refinement calculus for monadic
functional programs, a Hoare-Logic for such programs with auto-
mated verification condition generator, a translator from Haskell
into Isabelle/HOL [9, 12], an extensive proof library for low-level
n-bit machine words, a formal model of the ARM architecture and
instruction set, a detailed memory model for low-level pointer pro-
grams in C that is amenable to abstract separation logic reasoning,
and a significant case study of this logic on the current L4 kernel
memory allocator [58].

The refinement proof between abstract and executable specification
has provided significant feedback into the design cycle, so far lead-
ing to 37 patches in the Haskell prototype and 109 changes to the
abstract specification. Not all of the changes in either of the specifi-
cations were related to correctness issues or bugs. A large percent-
age were for proof convenience, making functions more general or
more obviously correct (relying more on local properties instead
of global system invariants), which was often easier to do on the
abstract side.

Nevertheless, it is interesting to note that the Haskell prototype had
a significantly smaller number of defects such as typos or missing
definitions than would normally be expected for a new kernel. We
believe that this is due to the fact that the Haskell prototype was
repeatedly run against application code and extensively validated.
The defects that were discovered in this relatively well-tested code
were corner cases in the implementation, typos in rarely executed,
but critical parts of the kernel, and design issues like unbounded
execution time or unexpected behaviours. Unsurprisingly, these
were implementation defects of the kind that may lurk for years in
well-tested production code with the potential for system crashes
or security exploits. It is precisely the absence of such defects that
the formal verification guarantees.

The main remaining proof is the refinement step between the ex-
ecutable specification and the C implementation. The project is
planned to finish in mid 2008.

3.3 Temporal analysis: Potoroo

For many embedded systems, functional correctness, as will be es-
tablished by L4.verified, is not enough. Many embedded systems,
particularly those where correctness is important, are real-time sys-
tems, in which case timeliness is as important as functional correct-
ness. However, the temporal behaviour of the complete system can
only be analysed if the temporal behaviour (or at least the temporal
bounds) of the underlying kernel is known. The goal of the Po-
toroo project is, therefore, to develop a complete timing model of
the kernel.

There are two basic approaches to this: static analysis and measure-
ment. Static analysis is popular in academia, but generally shunned
by industry. The reason is that it relies on accurate timing models of
the underlying hardware, which are hard if not impossible to come
by (often the manufacturers themselves may not know). Further-
more, the complexity of the timing behaviour of modern embedded
processors, with multiple levels of caches, long pipelines, branch
prediction units and other complications, make static analysis in-
creasingly difficult. In general, static analysis is limited to simple
or small pieces of code, simple processor models, and produces
wildly-pessimistic results for all but the most trivial systems. Mod-
ern architecture features such as out-of-order execution or dynamic
branch prediction do not lend themselves to static analysis due to
their dynamic nature.

The method of choice in industry is measurement. However, there
are no systematic measurement procedures that are guaranteed to
produce reliable upper bounds on latencies of real-life code of any
appreciable complexity. The standard approach in industry can be
summarised as heavy benchmarking, and then applying a “safety
factor”. This obviously provides no guarantees. In the case of
safety-critical systems manual analysis of the code is still practised,
but obviously does not scale well.

The approach applied to the analysis of the kernel needs to be man-
ageable from a complexity point of view, support easy migration
between hardware architectures, and provide guarantees for the re-
sulting worst-case execution times (WCET). In order to achieve
this, we combine concepts from both static analysis as well as the
dynamic, measurement-based analysis methods, similar to earlier
work [2]. We measure the execution time at the basic block level.
This is motivated by the fact that the best model of the system is
the system itself. The measurements are used to create an execu-
tion time profile (ETP), which describes the temporal behaviour
in greater detail than would a single number, as provided with a
WCET. The measurements avoid the requirement of detailed hard-
ware architecture modelling and are thus subject to neither an error
prone exploration stage, nor the usual problems with portability.

We combine the measurements using a tree representation of the
code ensuring that any possible combination of paths is accounted
for and removing the largest contributor to the variability of execu-
tion times. The second largest source of execution-time variability
is due to cache misses, and is eliminated in our approach by using
a cache model derived from the hardware (e.g., [31]).

The resulting timing profile provides a highly accurate picture of
the kernel’s timing behaviour, but offers no guarantees as to the
measurement coverage. Accordingly, we next address the problem
of verifying that the supplied measurements cover all possible sys-
tem behaviours with respect to execution time. We achieve this by
considering a simpler problem of proving that all possible cache

miss counts have been observed during measurements. The cache
miss counts are easily extracted from the timing profile, and are
highly representative of programs behaviour; in other words, if all
possible cache miss counts have been observed during measure-
ment, then the measurement coverage is exhaustive with respect to
execution time [51].

We solve the problem by using static analysis to extract from the
kernel a function (program) that dynamically computes cache miss
counts. This is achieved by first translating the kernel’s binary im-
age itself into a purely-functional program that readily lends itself
to such symbolic manipulation. We then consider the problem of
proving that the range of the computed cache miss function is no
greater than that observed during measurement. Our algorithm pro-
ceeds by computing an inverse of the cache miss function (i.e.,
a function from cache miss counts to sets of machine states) and
applying a novel form of range analysis to the inverted function
in order to either prove totality of the supplied set of cache miss
counts or disprove it by arriving at a counter-example. As a result,
Potoroo provides a convenient framework for “debugging” mea-
surement suites in order to achieve adequate coverage. The cache
model also aims to tighten the resulting WCET and profiles dur-
ing the combination stage by establishing dependencies between
different units measured.

The first stage of the project, providing the measurement and analy-
sis infrastructure, is close to completion. The second stage covering
the static analysis of the cache behaviour of the kernel is scheduled
for completion by mid 2008.

3.4 Component technology: CAmkKES

While the above projects focus on the microkernel itself, providing
complete embedded-systems solutions requires that we also focus
on building the software systems that use the kernel. The goal is to
build reliable and trustworthy systems, and to do so we must take
full advantage of what the kernel has to offer. Doing this requires
that the system be designed and built as a highly structured, com-
ponentised, software architecture, with individual system services
contained in separate components. These components must have
well defined interfaces, explicitly specifying any interaction points,
and clearly detailing interaction between components. The aim of
the CAmKES (component architectures for microkernel-based em-
bedded systems) project is to provide an architecture for building
such componentised microkernel-based systems.

With an appropriate granularity of components, a componentised
design gives developers control over which functionality is in-
cluded in the system, helping to keep the TCB small and man-
ageable. Furthermore, by placing the components in separate pro-
tection domains, fault containment is provided, supported by the
underlying hardware memory management unit and managed by
the microkernel. Given proper runtime support, a structured design
based on well-defined components also enables the system archi-
tecture to be changed at runtime, allowing the loading and unload-
ing of components as necessary. This leads to possibilities such as
hot-swapping of service implementations, dynamic update of OS
and system services, and even detection and restarting of faulty ser-
vices (including drivers).

Verification of a complete software system’s correctness will also
benefit from a well structured design. This takes advantage of the
fact that components are isolated and interact using only the mech-
anisms provided by the microkernel. Since a verified kernel gives

guarantees about interaction properties, we can reason about the
system using models of the individual components and their ex-
plicit interaction patterns.

Such structuring does not always come for free, however, and there
are tradeoffs involved in componentising a system. In particular,
having many small components means that there will be more com-
munication involved. While IPC in L4 has been made fast and
efficient, too much communication will nevertheless have a perfor-
mance impact. On the other hand, a design with many small com-
ponents is good for safety, reliability and verification. Depending
on system requirements, decisions must be made regarding these
tradeoffs.

The CAmKES architecture [34] allows such componentised sys-
tems to be easily built. Besides providing for improved software
engineering through component-based development (CBD) [56],
the architecture is flexible and allows for the making of tradeoffs
as discussed above. Furthermore, it has low overhead and allows
software to take full advantage of the benefits that a finely-tuned
high-performance microkernel provides. Finally being a frame-
work for developing a wide range of embedded systems (including
those with limited resources), it does not make a resulting system
pay for features that it does not need or use.

Two properties of CAmKES are key to providing these features.
The first is that connectors, like components, are first-class enti-
ties [54]. Rather than being implicit in the architecture, as they are
in most component systems, connectors are explicitly defined and
implemented by system developers. This means that new connec-
tors may be added without modifying the core architecture. Thus,
when designing a system, the developer specifies the components
used, the connections between components, and the specific con-
nectors used for these connections. In this way, the developer has
full control over the mechanisms used for interaction between com-
ponents, however, the concerns of component functionality and in-
teraction remain cleanly separated. Not only does this provide flex-
ibility of design, it also provides flexibility in making tradeoffs be-
tween performance and other desired properties.

For example, during the design and implementation of a network-
access router based on CAmKES and L4 we took advantage of the
flexibility of connectors to experiment with safety vs. performance
tradeoffs. We implemented several connectors ranging from those
that provided complete memory protection between components to
no protection between components. These connectors were used to
produce versions of the router that represented the different trade-
offs with regards to protection and performance. We also devel-
oped a version of the router that combined the different connectors
internally. In this router, components of the network stack were
connected with performance optimised connectors, while the stack
itself was protected from application-level components using con-
nectors that provided maximum protection.

The second key property is that the architecture is minimal and
does not include superfluous features that negatively impact run-
time resource consumption. While the core architecture only pro-
vides support for statically-defined and -deployed systems, it is de-
signed to be extensible. Extra functionality is added in the form
of extension components, which are similar to regular components.
Extension components can be added and combined as required to
achieve desired functionality. Currently we provide extensions that
allow components and connectors to be dynamically created and

destroyed at runtime. Besides the benefit to modularity, this also
benefits verification, since it can greatly reduce the number of sys-
tem components that must be verified (i.e., only those that are ac-
tually used need to be verified).

The CAmKES project is nearing completion and currently provides
the core architecture, dynamic extensions, and several demonstra-
tor systems. A scheduled follow-on project will investigate ad-
vanced aspects of componentised (trustworthy) embedded systems
including real-time and power management, correctness of com-
ponents and their connections, and the application of further soft-
ware engineering approaches, such as model driven development
(MDD).

3.5 Commercialisation

In the last two years, the embedded-systems industry has started
to show a serious interest in L4. For example, in November 2005
NICTA announced that wireless chipset maker Qualcomm was de-
ploying L4 on their Mobile Station Modem chipsets, which are
used in mobile phones and other wireless devices. The first mo-
bile phones running on L4 reached end users in late 2006.

NICTA has a strong focus on practical research outcomes and com-
mercialisation, so this interest was a welcome development. In
order to maximise market opportunities, a company, called Open
Kernel Labs, was spun out. The company is in a joint venture with
NICTA, in order to ease the transfer of the technology resulting
from the above research projects, and to ensure that the research
outcomes are commercially relevant. Open Kernel Labs now de-
velops, markets and supports its own brand of L4, called OKL4 (a
derivative of L4Ka::Pistachio [35]).

4. RELATED WORK

There are current research and commercial activities related to all
of the projects discussed above. In this section we review the most
relevant related projects.

The selL4 design is similar to early hardware-based capability sys-
tems such as CAP [43] in its approach to physical memory manage-
ment, later software-based capability systems such a KeyKOS and
EROS [23,53] in the management of authority, and virtual machine
monitors such as Xen [1] (and to some extent L4), in the explicit
management of address spaces and page tables. The Coyotos [52]
and the Dresden L4.sec [32] projects have similar aims to seL4.

Early work on theorem-proving based OS verification includes
PSOS [44] and UCLA Secure Unix [60]. A lack of mature mecha-
nised theorem proving technology meant that while designs could
be formalised, full implementation proofs were not achieved. Later,
KIT [3], part of the CLI stack, described verification of process
isolation properties down to object code level, but for an idealised
kernel with far simpler and less general abstractions than modern
microkernels.

The VeriSoft project [17] is attempting to verify a whole system
stack, including hardware, compiler, applications, and a simplified
microkernel called VAMOS that is inspired by, but not very close
to, L4. Performance and industry adoption are not goals of the
project. The VFiasco project [30] aims to verify an existing ker-
nel (L4/Fiasco) directly by developing a formal semantics for the
subset of C++ used to build it. The added flexibility of our kernel
design methodology and the much simpler semantics of C com-
pared to C++ will produce a fully verified kernel earlier, cheaper

and with more assurance.

The Coyotos team [52] take a different approach of defining a new
low-level implementation language (BitC) with precise formal se-
mantics, and hope to subsequently verify properties of the kernel
that they are building. Although with less emphasis on high-level
verification, the Singularity project also uses a type-safe imperative
language (C#), but with additional compiler extensions to allow
programmers and system architects to specify low-level checkable
properties of the code, for example IPC contracts [13].

A significant number of groups are conducting research on WCET
analysis, with several producing commercial tool sets. The leading
static-analysis approach is that of Heckmann and Ferdinand [25],
while the leading measurement-based approach is that of Bernat
[2]. The latter is a precursor of the work of the Potoroo project.
The combination of static analysis and measurements to provide
guarantees on the computed results has been attempted by Ya-
mamoto [63]. Their approach differs from ours in the way that the
measurements and static analysis are used. While we aim to mea-
sure the behaviour for the worst case and confirm sufficient mea-
surement coverage with static analysis, their approach is to measure
a best case scenario in terms of cache contents and add a penalty
for cache misses based on the static analysis. Our approach ac-
counts for additional execution time which might be produced by
the secondary effects of a cache miss, such as additional pipeline
bubbles.

WCET analysis has been applied to operating-system code by
Colin and Puaut [7], who used their static-analysis toolset on the
RTEMS kernel. Compared to L4, RTEMS is a much simpler sys-
tem, as it does not support memory protection and multiple privi-
lege levels. Furthermore, the analysis was performed using a very
simple architecture, lacking caches and branch prediction. The re-
sults contained overestimations of, on average, 80% of the mea-
sured WCET. Potoroo aims to support modern high-end embedded
processors, such as those based on the ARM architecture, and to
reduce pessimism.

Existing component architectures based on enterprise component
technologies such as .Net [41], EJB [55], and CORBA Component
Model (CCM) [46], fail to address the critical issues (including re-
source constraints, real-time performance, reliability, and energy
use) of using components in embedded systems. Research and en-
gineering efforts that focus on establishing component-based soft-
ware engineering disciplines targeted specifically at embedded sys-
tems can be roughly divided into three categories.

The first category includes component architectures that target spe-
cific application domains such as field devices, consumer electron-
ics, vehicular systems, etc. Examples of such architectures include
PECOS [18], Koala [59] and Save [22]. While the models in this
category are suited to embedded systems they are generally too re-
strictive, and do not provide the flexibility required to make them
more broadly applicable in the embedded systems domain.

The second category encompasses component-based operating sys-
tems such as TinyOS [28], Pebble [16] and Think [14]. In these sys-
tems the component model is applied at the operating system level,
and the details of the OS and the component model are intertwined.
Other projects such as Knit [48], Click [33] and MMLITE [26] pro-
vide component architectures for building system level software.
The main difference with the CAmKES approach is that our model

is designed so that it can optimally make use of the given kernel
mechanisms, rather than provide mechanisms of its own or be used
to build such mechanisms.

The third category consists of middleware-based component mod-
els tailored for embedded and real-time systems with a particu-
lar focus on non-functional attributes. Examples of these include
CIAO [62], COMQUAD [19] and PECT [61]. Typically the over-
head of the middleware support, even when tailored for embedded
systems, is quite high. While originally closely tied to Microsoft
platforms, the OpenCOM [8] project advocates an approach that
more closely resembles ours in terms of broader applicability, as
well as minimality and extensibility.

S. CONCLUSIONS

We have presented NICTA’s research program for trustworthy em-
bedded systems, based on exploiting the inherent strengths of
microkernel technology, especially the small yet general-purpose
L4 kernel. While there are groups working on projects similar to
ours, to date we have not identified any other group with such a
comprehensive and ambitious agenda, certainly not in such an ad-
vanced state.

The present set of research projects is to conclude within about
a year, at which time the technology will be handed over to our
spinoff Open Kernel Labs for commercialisation. Various results
will make their way into products over the next two years. We
believe that in 2009 it will be possible to deploy real embedded
systems products that provably satisfy the highest possible levels
of safety, security and trustworthiness.

6. REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proceedings of the 19th ACM Symposium on OS
Principles, pages 164—177, Bolton Landing, NY, USA, Oct. 2003.

[2] G. Bernat, A. Colin, and S. M. Petters. WCET analysis of
probabilistic hard real-time systems. In Proceedings of the 24th
IEEE Real-Time Systems Symposium, pages 279-288, Austin, Texas,
USA, Dec. 3-5 2002.

[3] W.R. Bevier. Kit: A study in operating system verification. [EEE

Transactions on Software Engineering, 15(11):1382-1396, 1989.

P. Brinch Hansen. The nucleus of a multiprogramming operating

system. Communications of the ACM, 13:238-250, 1970.

[5] J. B. Chen and B. N. Bershad. The impact of operating system
structure on memory system performance. In Proceedings of the 14th
ACM Symposium on OS Principles, pages 120-133, Asheville, NC,
USA, Dec. 1993.

[6] A.Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Engler. An

empirical study of operating systems errors. In Proceedings of the

18th ACM Symposium on OS Principles, pages 73—88, Lake Louise,

Alta, Canada, Oct. 2001.

A. Colin and I. Puaut. Worst case execution time analysis of the

RTEMS real-time operating system. In Proceedings of the 13th

Euromicro Conference on Real-Time Systems, pages 191-198, Delft,

Netherlands, June 13-15 2001.

G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, and J. Ueyama. A

component model for building systems software. In Proceedings of

IASTED Software Engineering and Applications (SEA’04),

Cambridge, MA, USA, Nov. 2004.

[9] P. Derrin, K. Elphinstone, G. Klein, D. Cock, and M. M. T.
Chakravarty. Running the manual: An approach to high-assurance
microkernel development. In Proceedings of the ACM SIGPLAN
Haskell Workshop, Portland, OR, USA, Sept. 2006.

[10] D. Elkaduwe, P. Derrin, and K. Elphinstone. A memory allocation

model for an embedded microkernel. In Proceedings of the 1st

4

finar}

[7

—

[8

=

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

International Workshop on Microkernels for Embedded Systems,
pages 28-34, Sydney, Australia, Jan. 2007. NICTA.

K. Elphinstone, G. Klein, P. Derrin, T. Roscoe, and G. Heiser.
Towards a practical, verified kernel. In Proceedings of the 11th
Workshop on Hot Topics in Operating Systems, San Diego, CA,
USA, May 2007.

K. Elphinstone, G. Klein, and R. Kolanski. Formalising a
high-performance microkernel. In R. Leino, editor, Workshop on
Verified Software: Theories, Tools, and Experiments (VSTTE 06),
Microsoft Research Technical Report MSR-TR-2006-117, pages
1-7, Seattle, USA, Aug. 2006.

M. Fihndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R.
Larus, and S. Levi. Language support for fast and reliable
message-based communication in Singularity OS. In Proc. of
EuroSys2006, April 2006.

J.-P. Fassino, J.-B. Stefani, J. Lawall, and G. Muller. Think: A
software framework for component-based operating system kernels.
In Proceedings of the USENIX Annual Technical Conference,
Monterey, CA, USA, June 2002.

B. D. Fleisch, M. A. A. Co, and C. Tan. Workplace microkernel and
OS: A case study. Software: Practice and Experience, 28:569-591,
1998.

E. Gabber, C. Small, J. L. Bruno, J. C. Brustoloni, and

A. Silberschatz. The Pebble component-based operating system. In
Proceedings of the USENIX Annual Technical Conference, General
Track, Monterey, CA, USA, June 1999.

M. Gargano, M. Hillebrand, D. Leinenbach, and W. Paul. On the
correctness of operating system kernels. In Proc. 18th International
Conference on Theorem Proving in Higher Order Logics
(TPHOLs’05), pages 1-16, Oxford, UK, 2005.

T. GenBler, A. Christoph, M. Winter, O. Nierstrasz, S. Ducasse,

R. Wuyts, G. Arévalo, B. Schonhage, P. Miiller, and C. Stich.
Components for embedded software: the PECOS approach. In
Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES '02),
Grenoble, France, Oct. 2002.

S. Gobel, C. Pohl, S. Réttger, and S. Zschaler. The COMQUAD
component model: enabling dynamic selection of implementations
by weaving non-functional aspects. In Proceedings of the 3rd
International Conference on Aspect-Oriented Software Development
(AOSD ’04), Lancaster, UK, Mar. 2004. ACM Press.

R. P. Goldberg. Architecture of virtual machines. In AFIPS, pages
74-112, New York, June 1973.

D. Golub, R. Dean, A. Forin, and R. Rashid. Unix as an application
program. In Proceedings of the 1990 Summer USENIX Technical
Conference, June 1990.

H. Hansson, M. Akerholm, I. Crnkovic, and M. Torngren. SaveCCM
- a component model for safety-critical real-time systems. In
Proceedings of the 30th EUROMICRO Conference (EUROMICRO
’04), Rennes, France, Sept. 2004.

N. Hardy. KeyKOS architecture. Operating Systems Review,
19(4):8-25, Oct. 1985.

H. Hartig, M. Hohmuth, J. Liedtke, S. Schonberg, and J. Wolter. The
performance of p-kernel-based systems. In Proceedings of the 16th
ACM Symposium on OS Principles, pages 66—77, St. Malo, France,
Oct. 1997.

R. Heckmann and C. Ferdinand. Verifying safety-critical timing and
memory-usage properties of embedded software by abstract
interpretation. In Proceedings of Design, Automation and Test in
Europe, DATE 2005, Mar. 2005.

J. Helander and A. Forin. MMLite: A highly componentized system
architecture. In Proceedings of the 8th SIGOPS European Workshop,
Sintra, Portugal, Sept. 1998.

D. Hildebrand. An architectural overview of QNX. In Proceedings of
the USENIX Workshop on Microkernels and other Kernel
Architectures, pages 113—126, Seattle, WA, USA, Apr. 1992.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
System architecture directions for network sensors. In Proceedings of
the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2000),
Cambridge, UK, Nov. 2000.

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

M. Hohmuth, M. Peter, H. Hirtig, and J. S. Shapiro. Reducing TCB
size by using untrusted components — small kernels versus
virtual-machine monitors. In Proceedings of the 11th SIGOPS
European Workshop, Leuven, Belgium, Sept. 2004.

M. Hohmuth and H. Tews. The VFiasco approach for a verified
operating system. In Proc. 2nd ECOOP Workshop on Programm
Languages and Operating Systems, Glasgow, UK, Oct. 2005.

T. John and R. Baumgartl. Exact cache characterization by
experimental parameter extraction. In Proceedings of the 15th
International Conference on Real-Time and Network Systems
RTNS07, pages 65-74, Nancy, France, Mar. 2007.

B. Kauer and M. Volp. L4.sec: Preliminary Microkernel Reference
Manual. Dresden University of Technology,
http://os.inf.tu-dresden.de/L4/L4.Sec/, Oct. 2005. Last visited
2007-04-10.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
click modular router. ACM Transactions on Computer Systems,
18(3):263-297, Aug. 2000.

I. Kuz, Y. Liu, I. Gorton, and G. Heiser. CAmKES: A component
model for secure microkernel-based embedded systems. Journal of
Systems and Software Special Edition on Component-Based Software
Engineering of Trustworthy Embedded Systems, 80(5):687-699, May
2007.

L4Ka Team. L4Ka::Pistachio kernel.
http://l4ka.org/projects/pistachio/.

J. LeVasseur, V. Uhlig, M. Chapman, P. Chubb, B. Leslie, and

G. Heiser. Pre-virtualization: Slashing the cost of virtualization.
Technical Report PA005520, National ICT Australia, Oct. 2005.

J. LeVasseur, V. Uhlig, J. Stoess, and S. Gotz. Unmodified device
driver reuse and improved system dependability via virtual machines.
In Proceedings of the 6th USENIX Symposium on Operating Systems
Design and Implementation, pages 17-30, San Francisco, CA, USA,
Dec. 2004.

R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf.
Policy/mechanism separation in HYDRA. In ACM Symposium on OS
Principles, pages 132-140, 1975.

J. Liedtke. Improving IPC by kernel design. In Proceedings of the
14th ACM Symposium on OS Principles, pages 175-188, Asheville,
NC, USA, Dec. 1993.

J. Liedtke. On p-kernel construction. In Proceedings of the 15th
ACM Symposium on OS Principles, pages 237-250, Copper
Mountain, CO, USA, Dec. 1995.

J. Lowy. Programming .NET Components. O’Reilly & Associates,
Inc, 2003.

Y. K. Malaiya and J. Denton. Estimating defect density using test
coverage. Technical Report 98-104, Colorado State University, 1998.
R. Needham and R. Walker. The Cambridge CAP computer and its
protection system. In Proceedings of the 6th ACM Symposium on OS
Principles, pages 1-10. ACM, Nov. 1977.

P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and

L. Robinson. A provably secure operating system: The system, its
applications, and proofs. Technical Report CSL-116, SRI
International, 1980.

T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

Object Management Group. CORBA Component Model, 2006.
http://www.omg.org/cgi-bin/doc?formal/06-04-01.

R. Rashid, A. Tevanian, Jr., M. Young, D. Golub, R. Baron, D. Black,
W. J. Bolosky, and J. Chew. Machine-independent virtual memory
management for paged uniprocessor and multiprocessor
architectures. IEEE Transactions on Computers, C-37:896-908,
1988.

A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide. Knit:
Component composition for systems software. In Proceedings of the
Fourth Symposium on Operating Systems Design and
Implementation, Oct. 2000.

M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien,

M. Guillemont, F. Herrmann, C. Kaiser, S. Langlois, P. Léonard, and
W. Neuhauser. Chorus distributed operating systems. Computing
Systems, 1(4):305-367, 1988.

[50]

[51]

[52]

(53]

[54]1

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and A. J. Offutt.
Maintainability of the Linux kernel. IEE Proceedings: Software,
149:18-23, 2002.

S. Schaefer, B. Scholz, S. M. Petters, and G. Heiser. Static analysis
support for measurement-based WCET analysis. In /12th IEEE
International Conference on Embedded and Real-Time Computing
Systems and Applications, Work-in-Progress Session, Sydney,
Australia, Aug. 2006.

J. Shapiro. Coyotos. www.coyotos.org, 2006.

J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: A fast capability
system. In Proceedings of the 17th ACM Symposium on OS
Principles, pages 170-185, Charleston, SC, USA, Dec. 1999.

M. Shaw. Procedure calls are the assembly language of software
interconnection: Connectors deserve first-class status. In ICSE ’93:
Selected papers from the Workshop on Studies of Software Design,
pages 17-32, London, UK, 1996. Springer-Verlag.

Sun Microsystems. Enterprise JavaBeans Specification Version 3.0.
http://java.sun.com/products/ejb/index.jsp.

C. Szyperski, D. Gruntz, and S. Murer. Component Software -
Beyond Object-Oriented Programming. Addison-Wesley / ACM
Press, second edition, 2002.

H. Tuch, G. Klein, and G. Heiser. OS verification — now! In
Proceedings of the 10th Workshop on Hot Topics in Operating
Systems, pages 7-12, Santa Fe, NM, USA, June 2005. USENIX.
H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation
logic. In M. Hofmann and M. Felleisen, editors, Proceedings of the
34th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 97-108, Nice, France, Jan. 2007.
R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The
Koala component model for consumer electronics software.
Computer, 33(3):78-85, Mar. 2000.

B. Walker, R. Kemmerer, and G. Popek. Specification and
verification of the UCLA Unix security kernel. CACM,
23(2):118-131, 1980.

K. C. Wallnau. Volume III: A technology for predictable assembly
from certifiable components. Technical Report
CMU/SEI-2003-TR-009, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, USA, 2003.

N. Wang, D. C. Schmidt, M. Kircher, , and K. Parameswaran.
Adaptive and reflective middleware for QoS-enabled CCM
applications. IEEE Distributed Systems Online, 2(5), 2001.

K. Yamamoto, Y. Ishikawa, and T. Matsui. Portable execution time
analysis method. In Proceedings of the 12th International
Conference on Embedded and Real-Time Computing and
Applications, Sydney, Australia, Aug. 2006.

http://os.inf.tu-dresden.de/L4/L4.Sec/
http://l4ka.org/projects/pistachio/
http://www.omg.org/cgi-bin/doc?formal/06-04-01
www.coyotos.org
http://java.sun.com/products/ejb/index.jsp

	Introduction
	Operating-System Complexity and Robustness
	Main-stream operating systems
	Microkernels
	A brief history of microkernels
	Microkernels in the embedded-systems domain
	Towards a trustworthy TCB

	The NICTA Agenda: Trustworthy Embedded Software
	Kernel API: seL4
	Kernel verification: L4.verified
	Temporal analysis: Potoroo
	Component technology: CAmkES
	Commercialisation

	Related Work
	Conclusions
	References

