
Securely Replicated Web Documents

Bogdan C. Popescu, Maarten van Steen, Bruno Crispo, Andrew S. Tanenbaum
Division of Mathematics and Computer Science

Faculty of Sciences Vrije Universiteit, Amsterdam, The Netherlands
{bpopescu, steen, crispo, ast}@cs.vu.nl

Jan Sacha
Computer Science Department, Trinity College Dublin, Ireland

Jan.Sacha@cs.tcd.ie

Ihor Kuz
National Information and Communications Technology, Sydney, Australia

Ihor.Kuz@nicta.com.au

Abstract

In order to achieve better scalability and reduce latency
in handling user requests, many Web applications make ex-
tensive use of data replication through caches and Content
Delivery Networks. However, in such scenarios data is often
placed on untrusted hosts. As a result, existing replication
mechanisms open a wide class vulnerabilities, ranging from
denial of service to content masquerading. In this paper we
present an architecture that combines data content, replica-
tion strategies and security in one unified object model and
offers integrity guarantees for Web documents replicated on
non secure servers.

1 Introduction

Starting with the late 90’s, the World Wide Web has
been experiencing scalability problems due to irregular
data access patterns. When a Web document suddenly
becomes very popular (a phenomenon known as a flash
crowd), clients experience long delays in retrieving it. The
single hosting server simply cannot cope (CPU-wise or
bandwidth-wise) with the sudden high demands. A possible
solution to this problem is data replication.

A common way of replicating Web documents is through
content delivery networks (CDNs). These are normally run
by companies that set up a large number of servers around
the world, each server dedicated to hosting Web document
replicas. The owners of these documents usually have no
control over the replicating servers. Thus, in the CDN sce-
nario, clients are retrieving data from hosts that are con-

trolled neither by them, nor by the content providers. This
situation is by no means specific only to CDNs; caching
presents the same problem.

Retrieving data from untrusted hosts introduces a series
of security issues, which can be grouped in two categories
- document integrity and secure naming. Document in-
tegrity deals with ensuring that a document retrieved by a
client from an untrusted host has not been tampered with by
that host. Secure naming deals with establishing secure as-
sociations between Web documents and the real-world en-
tities in charge of them.

This paper introduces a security architecture that guaran-
tees data integrity and secure naming for Web content even
when this content is replicated on untrusted hosts. While
read-only secure storage systems have already been pro-
posed [6], the main contribution of this paper is to describe
a design where data content, replication strategies and se-
curity are all integrated in one unified object model. Our
design has been validated through a number of performance
tests we have carried on a prototype implementation, results
which are also presented in this paper.

The rest of the paper is organized as follows: in Section 2
we introduce a new Web document model with a quick dis-
cussion on how such a model can be implemented in order
to use most of the current Web infrastructure. Section 3 de-
scribes our security architecture, and how this architecture
tackles secure naming and document integrity issues. Sec-
tion 4 describes our prototype implementation, and a num-
ber of performance tests we have performed, Section 5 dis-
cusses related work, while Section 6 points to directions for
future work and concludes.

1

2 Globe Web Documents

For the work described in this paper we rely on the ser-
vices offered by Globe [17] - a middleware architecture that
allows the development of distributed applications based on
replicated shared objects. One such distributed application
is GlobeDoc [18]. GlobeDoc objects are the building blocks
for our new Web document model.

In the GlobeDoc model of the Web, a Web site is com-
posed of related Web documents. A Web document itself is
a collection of logically related Web resources. These Web
resources are referred to as a document’s page elements
and can be anything that is accessible over the Web (e.g.,
HTML files, text files, images, audio files, video files, ap-
plets, etc.). The relation between the resources contained in
a Web document is generally stronger than that between the
documents contained in a Web site. For example, an orga-
nization’s Web site contains a collection of Web documents
that are somehow related to that organization, while a Web
document representing a news story would contain only the
elements directly relating to that story (e.g., the HTML page
plus any icons and images relating to the story or the page
layout).

In GlobeDoc, a Web document is encapsulated in a
Globe distributed shared object which contains that docu-
ment’s elements in its state. Such a GlobeDoc object offers
methods that allow clients to access and modify its state on
a per-element basis. The hyper-linked structure that is nor-
mally provided by Web pages is maintained in GlobeDoc.
A relative hyper-link contained in some GlobeDoc object’s
element refers to another element in that same object. Like-
wise, an absolute hyper-link may refer to an element con-
tained in another GlobeDoc object.

Every GlobeDoc object is identified by a unique object
ID (OID). This is a 160-bit number which does not con-
tain any location information and is not human readable.
The GlobeDoc architecture, therefore, contains two services
that facilitate locating objects. The Naming Service [3]
maps human readable object names onto OIDs. The Globe
Location Service [16] maps OIDs onto contact addresses,
which contain information about where and how to contact
a GlobeDoc object.

By virtue of it being a Globe distributed shared object,
a GlobeDoc can distribute (replicate) its state over multiple
physically separated address spaces (or machines). As such,
requests for an object’s state will be distributed over these
various machines, thereby spreading the total load gener-
ated by the requests and preventing any single machine
hosting the GlobeDoc from becoming overloaded. Simi-
larly, by strategically replicating a GlobeDoc object’s state
so that it is close to large concentrations of clients, the traf-
fic at each replica will have a local character, increasing
responsiveness for clients and decreasing overall network

traffic and saturation. This architecture is ideally suited to
the creation of (peer-to-peer) content delivery networks.

Also, because Globe makes the state distribution trans-
parent to clients and because the distribution policies can
be determined independently per Globe object, GlobeDoc
makes it possible to apply distribution strategies on a per-
document basis. In this way GlobeDoc allows replication of
Web documents without imposing any single global replica-
tion policy on all documents. [13] has shown that applying
per-document distribution strategies can lead to better effi-
ciency than the application of one-size-fits-all strategies.

2.1 GlobeDoc Services

A client accesses a GlobeDoc object using a standard
Web browser. However, standard Web browsers cannot di-
rectly connect to GlobeDoc objects and invoke its methods
to retrieve the page elements. For this task, browsers rely on
a GlobeDoc proxy server to intercept requests to GlobeDoc
objects and manage the interaction with the object (i.e.,
connect to the object and retrieve its elements). Because
standard Web browsers do not understand GlobeDoc object
names, hybrid URLs are used. These are just regular URLs
that start with a distinguishing prefix (which in our case is
http://enter.globeworld.org). GlobeDoc and page element
names are then embedded in these hybrid URLs.

GlobeDoc proxies connect to GlobeDoc objects by bind-
ing to them. The result of binding to a GlobeDoc object is
that a local representative of that object is placed in the ad-
dress space of the binding process. A local representative
is a local part of the GlobeDoc object. It can be a simple
object proxy, forwarding method invocations to other repli-
cas, or it can be a full replica containing a local copy of the
GlobeDoc object’s state. The client, however, is unaware of
this and simply invokes methods from the local representa-
tive as though the object was local.

Binding itself consists of two distinct phases: (1) finding
the object, and (2) installing the local representative. This is
illustrated in Figure 1. Finding an object is separated into a
name-lookup and a location-lookup step; installing the local
representative requires that a suitable contact address and
implementation be selected.

2.1.1 Naming Service

To find an object, a process must resolve the object’s name
to an OID. This is done by passing the object name to a
naming service. The naming service returns the object’s
OID. Whereas an OID uniquely identifies an object (i.e.,
an object always has exactly one OID), an object may have
multiple names that resolve to its OID. An object name is
simply a human-readable string that represents an object. It
is up to the naming service to interpret this name and resolve
it to an OID.

2

4 3

5

2

6

Object Handle

Distributed Shared Object

1

Contact
Address

Naming Service

Location Service

Client Process
Name

Local Representative

Make contact

Implementation Repository

Protocol
Identifier

Code

Figure 1. Binding to a GlobeDoc object

2.1.2 Globe Location Service

Resolving an object’s name leads to an OID. An OID, how-
ever, does not identify the location of an object and its repli-
cas. To find the actual object, the OID must first be passed
to a location service, which returns one or several contact
addresses which represent GlobeDoc object contact points.
The location service is responsible for storing contact ad-
dresses and resolving OIDs to these contact addresses. Be-
sides looking up contact addresses for objects, the location
service also allows addition, deletion and modification of
contact-address mappings.

The Globe Location Service is implemented as a dis-
tributed search tree. In this tree, the world is divided into
a hierarchical set of domains. At the lowest level there is
one domain per site; a collection of sites form a region, etc.
An object is recorded at each site where it has a contact
address, and recursively in each enclosing region up to the
root of the tree. Initially, a record at the site level contains
the actual contact addresses while records at higher levels
contain pointers to the next lower level. Recording an ob-
ject at multiple levels allows searches with expanding rings:
a search starts at the local site, followed by the local region,
then the next higher level region, etc., and eventually fol-
lowed by the root.

2.1.3 Object Server

A GlobeDoc object’s replicas are implemented as stateful
local representatives hosted on object servers. An object
server is a process that provides an address space, con-
tact points and runtime services to the local representa-
tives that it hosts. The object server also manages a local
representative’s access to local resources such as local disks
and networking resources. Besides simply hosting LRs, a

Globe object server also has a remotely accessible interface
that allows other local representatives, other Globe object
servers, or administrators to request services from it. These
services include the creation and destruction of GlobeDoc
objects and their replicas.

3 The GlobeDoc Security Architecture

In this section we will describe the mechanisms used to
make GlobeDoc objects secure. We have been using well-
known security and cryptographic techniques as building
blocks, and combine them in an architecture that can offer
secure naming and data integrity guarantees.

Following the model of the Web master for regular Web
documents, we require that behind each GlobeDoc object
there is a person or organization - the object owner - that is
in charge of it. The owner is the one who creates the object
and is responsible for providing permanent storage for it,
updating it, and setting up the replication and security poli-
cies for the object. Furthermore, we require each GlobeDoc
to have a unique public/private key pair associated with it,
which is generated by the owner when the object is created.
As we will describe next, the object owner uses the object’s
private key to sign the object’s state (files) before it repli-
cates it, while clients use the public key to perform integrity
checks when retrieving parts of the object’s state from un-
trusted hosts.

3.1 Secure Naming

3.1.1 The Problem

Secure naming deals with creating secure and trustworthy
associations between Web resources and qualified names,
which in turn convey information about the real world en-
tities that are behind these resources. In the current Web,
name binding is accomplished through the Domain Name
System (DNS) [11], a hierarchical distributed database
that translates between human-readable resource names and
their IP addresses. Data integrity requirements were left out
from the original DNS design, which made it vulnerable to
various types of masquerading attacks. To prevent these,
a secure DNS (DNSsec) framework has been proposed [5]
and is currently being deployed.

All DNSsec does is establish secure associations be-
tween resource names and sets of IP addresses. However,
clients cannot authenticate IP addresses, so their attempts
to retrieve data from servers at these addresses are vulner-
able to man-in-the-middle attacks. To prevent this, secure
Web servers have public/private key pairs which they use
to authenticate to clients. The server’s public key needs to
be certified by some Certificate Authority (a trusted third
party) through a digital certificate that binds the public key

3

to the server’s name (which presumably can be traced to the
qualified path name solved through DNSsec). Having this
public key, securely associated to the server’s name (by the
CA), and to the server’s IP address (by DNSsec), the client
can then authenticate the server. In this way, the man-in-the-
middle attack becomes impossible, and the name binding
and secure channel establishment can be safely combined.

The problem with this approach is that it does not work
well with dynamically replicated Web documents. Al-
though DNS supports mirroring Web sites by allowing mul-
tiple addresses associated with the same name, the basic
assumption is that mirroring is more or less static. Dy-
namic active replication of Web documents would put se-
rious strain on the resource-record caching that makes DNS
so efficient.

In conclusion, the approach as followed in DNSsec for
secure naming of Web documents will not work well for the
GlobeDoc model we are proposing. For GlobeDoc objects
we need a naming mechanism that both:

• Securely associates objects with the real-world entities
behind these objects.

• Supports efficient lookup operations even when ob-
jects are massively replicated and replicas’ network
addresses change frequently.

3.1.2 Our Solution

As described in Section 2, each GlobeDoc is identified
through a unique 160-bit object ID (OID). Secure name
binding requires creating a secure association between an
OID, the object’s public key, and the real-world entity (in-
dividual, company, organization) that is in charge of the ob-
ject.

First, we will examine how to securely link the object’s
public key to the OID. This can be accomplished by having
the OID be the 160-bit secure hash SHA-1 [1] of the object’s
public key, in fact creating a self-certifying OID for the ob-
ject. The SHA-1 secure hash function has the property that
it is computationally intractable to find two different inputs
with the same hash. Therefore an OID obtained in this man-
ner is securely linked with the public key of the object. This
approach of using self-certifying OIDs is similar to the one
taken by the designers of the SFS system [10], who have
pioneered the concept of self-certifying resource names [9].

Now, the only thing left is to securely associate self-
certifying OIDs with the real-world entities in charge with
their corresponding objects. As stressed in the SDSI doc-
ument [15], we believe that establishing trust in a remote
entity (trusting that entity to be who it claims to be) is such
a security-sensitive task that it is better to give most control
over it to the users themselves. To facilitate this, GlobeDoc
objects have a special security interface that can be used

by clients (in fact by their proxies) to retrieve any certifi-
cates the objects can provide to prove their identity. The
users themselves can specify a number of CAs they trust,
and store their public keys with their user proxy. When the
user requests an element part of a GlobeDoc, its proxy re-
quests identity certificates that match the user’s list. For the
first match found, the proxy displays the naming informa-
tion in the certificate. The user examines this information
and can then make a decision how much trust to put in that
object.

The CA-mediated secure name-binding mechanism we
just described is appropriate when Web objects are used
for highly sensitive applications such as e-commerce or e-
banking. For less sensitive applications, users may find the
name-binding information provided by a DNSsec-like name
service sufficient. The good news is that DNSsec can be
extended to support self-certifying OIDs by storing them
in the resource records instead of IP-addresses [3]. The
great advantage of this would be that DNS would store
only location-independent data. The location-dependent
information associated with each object (the addresses of
its replicas) is retrieved in an additional step from the Globe
Location Service. This two step secure name resolution al-
lows us to overcome the problems DNS has when tracking
dynamically replicated documents.

One point we want to stress here is that users do not have
to trust the information stored in the Location Service. In
fact, using the Location Service is not even mandatory for
GlobeDoc objects; a per-object dedicated directory replica
keeping track of all the other replicas’ contact points would
accomplish the same task. A malicious Location Service
server can return false contact points to its clients, making
these clients bind to replicas which are not part of the ob-
jects they want to contact. However, as we will see in the
next section, clients can easily detect when the data they
are retrieving is not part of the GlobeDoc object they want
to browse, so the most harm a malicious Location Service
server can do is a temporary denial of service.

As a conclusion, secure naming for GlobeDoc objects is
achieved through self-certifying OIDs, which can be stored
in DNSsec resource records. When additional security guar-
antees are necessary, object-provided certificates, signed by
trusted CAs can also be employed. Because only location-
independent information is stored, this mechanism has the
two properties we required in Section 3.1.1: it securely as-
sociates Web objects to the real-world entities in charge
of them, and can efficiently support massively replicated
objects even when replicas network addresses change fre-
quently.

4

3.2 Document Integrity

3.2.1 The Problem

Most of the data transfer in the current WWW is inse-
cure. Clients simply connect to Web servers and request the
documents stored there. This approach is clearly vulnera-
ble to man-in-the-middle attacks, not to mention malicious
caches. In such an attack scenario, an active attacker inter-
cepts the client’s request, and answers with his own docu-
ment. Although such attacks are infrequent, that is prob-
ably as much due to the lack of determination on the part
of the attackers as to the inherent security of the underlying
network architecture. Furthermore, due to the possibility
of such attacks, the security of an HTTP request is down-
graded to the security of the weakest network link/router on
the request path.

In the current WWW, the most common protection
against such attacks is through TLS (Transport Layer Secu-
rity) [4]. TLS uses public-key cryptography to authenticate
servers and establish secure channels between servers and
clients.

The main problem with TLS is that it requires servers
to be trusted. The secure channel between the client and
server does not help at all if a malicious server sends bogus
data over it. For this reason, TLS allows documents to be
replicated only on trusted servers, which greatly restricts the
set of acceptable hosts.

Turning back to our GlobeDoc objects, we can see that a
mechanism like TLS is clearly not suited for ensuring data
integrity. As mentioned in Section 2, GlobeDoc objects dy-
namically place their replicas on (possibly) untrusted ob-
ject servers close to where their client requests are com-
ing from. Our assumption is that most of these servers are
honest, but we need to consider the possibility that some
of them may try to replace the documents they host with
fake data. Therefore, we need a security mechanism that en-
forces the following three properties on the replicated state
of a GlobeDoc:

• Authenticity - the document the client receives from a
server has indeed been created by the object’s owner.
No attacker or malicious server should be able to pass
off one of their own documents as being part of the
object.

• Freshness - the client is guaranteed to receive the most
recent version of a document part of a object. No at-
tacker or malicious server should be able to pass off
genuine but old versions of a document and convince
the client they are fresh.

• Consistency - the client is guaranteed to receive a doc-
ument, part of the object, that is consistent to what she
has requested. No attacker or malicious server should

be able to replace the requested document with another
fresh document part of the same object.

Our aim is to come up with a security design that en-
forces these three properties, and at the same time is effi-
cient and lightweight (especially on server load), so that it
can be employed with every type of Web application.

3.2.2 Our Solution

As we mentioned in Section 2, a GlobeDoc consists of a
number of page elements. These can be HTML source files,
images, Java applets and so on. We preserve the integrity of
the object’s state by having an integrity certificate associ-
ated with the object. As shown in Figure 2, this is a digital
certificate signed with the object’s private key that contains
a table with entries for each page element for the object.
Each page element entry contains the element’s name, its
secure SHA-1 hash, and a validity interval.

Signature

Expiration Time

Expiration Time

SHA-1(Element)

SHA-1(Element)

Page Element Name

Page Element Name

SHA-1(Element) Expiration TimePage Element Name

Integrity Certificate

Figure 2. Integrity certificate for a GlobeDoc
object

Every server that hosts GlobeDoc replicas is required to
store all of the object’s page elements and the object’s in-
tegrity certificate. As we mentioned in Section 3.2.1, page
elements retrieved from untrusted servers should be authen-
tic, fresh, and consistent with the user request. The integrity
certificate allows the user to check for these properties in the
following steps.

• Using the object’s public key, the client verifies that the
signature on the integrity certificate has been generated
using the object’s private key (authenticity).

• The client checks the “element name” field in the cer-
tificate to ensure it is the same as the element name she
has requested (consistency).

• The client computes the SHA-1 hash of the page ele-
ment and makes sure it is the same as the one in the
certificate (authenticity).

• The client checks the time of retrieval to ensure it
falls in the validity interval specified in the certificate
(freshness).

5

3.3 Putting the Pieces Together

The security architecture for GlobeDoc objects results
from combining the various security mechanisms described
so far. The key advantage of this architecture is provid-
ing integrity guarantees for end-users, even when the Web
content they are browsing is replicated on untrusted servers.
Figure 3 shows how secure browsing through GlobeDoc ob-
jects works.

 replica

4. Get object’s
 public key

5. Verify public key

7. Display certified
 object name

 consistency

 data hybrid
1. Request 14. Display

User’s
Machine

User’s Proxy

certificate
8. Get integrity

 signature
9. Verify certificate

11. Verify hash

12. Check freshness

13. Check

10. Get page
element

 identity proofs
6. Get additional

3. Find

Secure Name
Service

User’s Web
Browser

Service
Location

Replica

 URL

2. Resolve
 name

Figure 3. Secure Web browsing through
GlobeDoc objects

The user starts with a hybrid URL (as described in Sec-
tion 2), with an embedded object and page element name.
The user can either directly type the hybrid URL in the
Web browser, or get to it through an external link in some
other GlobeDoc object. When the user’s proxy receives this
URL, it will resolve the object name by contacting the se-
cure naming service, thus obtaining a self-certifying OID.
The proxy then queries the Location Service for that OID

and finds the closest object replica. The Location Service
is not trusted, so there is a chance that the address it re-
turns may point to a replica which is not part of the object.
However, this can cause at most denial of service for the
user, since she can always check the authenticity of the data
retrieved from the replica. Our assumption is that the Loca-
tion Service provides accurate information most of the time;
if attackers are able to corrupt some of the LS’s servers, this
can be easily detected, and appropriate measures (rebooting
servers, restoring the original data content from backups,
etc.) can be taken.

Once the user is connected to a GlobeDoc object replica,
the proxy first retrieves the object’s public key, takes its
SHA-1 hash and makes sure it matches the self-certifying
OID. As an extra security check, the proxy can request some
additional identity proof from the object, in the form of a
name certificate signed by one of the CAs trusted by the
user. If such a certificate is found, the naming information
in the certificate is displayed to the user in a “Certified as:”
window. Next, the proxy requests the object’s integrity cer-
tificate, and verifies its signature using the object’s public
key. At this point, the secure binding between the proxy
and the object is complete; the proxy now requests the page
element specified in the URL; once it has received it, it per-
forms the authenticity, consistency and freshness tests dis-
cussed in the previous section. If all these tests are success-
ful, the page element is sent to be displayed in the user’s
browser, otherwise a “Security Check Failed” HTML doc-
ument is generated.

4 Performance Evaluation

Our implementation consists of two components: the ob-
ject server and the client proxy, which are both implemented
in Java, using JDK 1.3 with the standard crypto libraries.

The object server provides all the runtime services
needed for creating and running GlobeDoc object replicas.
These services are offered through a command interface
which can be remotely accessed through a secure TLS con-
nection, in which case TLS also takes care of the remote en-
tity authentication. We support a simple but effective access
control model: the server administrator sets up a Java key-
store listing the public keys for all entities allowed to create
GlobeDoc replicas on the server; such entities can be either
GlobeDoc owners (individuals) or other GlobeDoc object
servers (in this way we can support dynamic replication al-
gorithms). Each entity is then allowed to manage only the
replicas it creates (this includes replica destruction). We
are currently working on integrating more complex poli-
cies - allowing dynamic resource negotiation, and delega-
tion mechanisms - but this is outside the scope of this paper.

The client proxy needs to be installed by every client that
wants to access secure GlobeDoc objects; the proxy identi-

6

Host Architecture RAM OS Java
ginger.cs.vu.nl, Dual 2 GB Linux Sun JDK
VU, Amsterdam Pentium III, 2.4.9 1.4
“primary” 2×1 GHz
sporty.cs.vu.nl, Dual 2 GB Linux Sun JDK
VU, Amsterdam Pentium III, 2.4.9 1.4
“secondary” 2×1 GHz
canardo.inria.fr, Pentium III 256 MB Linux Sun JDK
Inria, Paris 1 GHz 2.4.7 1.4.2
ensamble02. Ultra 256 MB SunOS Sun JDK
cornell.edu, SPARC-IIi 5.8 1.3
Cornell, 450 MHz
Ithaca, NY

Table 1. Experimental setting

fies GlobeDoc names from the hybrid URLs passed by the
client browser, does name resolution and replica location,
retrieves the desired page elements and performs the au-
thenticity, freshness and consistency tests discussed earlier.
The proxy also transparently handles any regular HTTP re-
quests it receives from the browser.

For our experiments we have used four hosts: two in
Amsterdam (“primary” and “secondary”), one in Paris, and
one in Ithaca, NY. Table 4 summarizes the system configu-
ration for each of these hosts.

In the first experiment we used four GlobeDoc objects,
each consisting of one page element (image), of sizes 1KB,
10KB, 100KB, 300KB, 600KB, and 1MB respectively. For
each of these objects, we placed one replica on an object
server running on the Amsterdam “primary” host. Each of
the objects was then accessed from the Amsterdam “sec-
ondary”, Paris and Ithaca hosts, using the wget HTTP client.
On each of these hosts, wget was configured to use the lo-
cally installed secure GlobeDoc proxy. The aim of the ex-
periment was to measure the security overhead; in order
to do this, we placed timers in various parts of the proxy
and server code, and measured, for each object access, the
amount of time dedicated to security-specific operations
(these are: retrieving the object’s public key, verifying its
SHA-1 hash matches the object Id, retrieving the object cer-
tificate and verifying it, computing the hash of the page el-
ement and verifying it against the hash in the certificate).
Figure 4 shows the results of this experiment (these are av-
erage values computed after running the experiment for 24
consecutive hours at 6 minutes intervals).

As we can see, the overhead for transferring small page
elements is significant (around 25%), and this is due to the
fact that our proxy first needs to retrieve the GlobeDoc ob-
ject public key and the object certificate (about 2KB of ex-
tra information). However, for larger data transfers, this
initial security exchange becomes less significant, and the
overhead is mainly dictated by the time needed to compute
the hash over the actual data (which is proportional to the
data size, but independent of the network placement of the
replica). It is also worth noticing that for large data trans-
fers, the security overhead is worse when the proxy and the

500 600 700 800 900

’Ithaca’

1000

Se
cu

ri
ty

 O
ve

rh
ea

d
(p

er
ce

nt
ag

e)

Data Size (KB)

’Amsterdam’
’Paris’

5

4003002001000

30

25

20

15

10

0

Figure 4. Security overhead

object replica are on the same LAN (the Amsterdam pri-
mary - Amsterdam secondary case), because in this case
the network transfer time is so small that the time to com-
pute the hash dominates. For the actual deployment of the
GlobeDoc architecture, we expect the most common case
to be the one in the Paris-Amsterdam setting (client and
replica in relatively close network proximity, although not
on the same LAN). In this case, we can see that the security
overhead drops quite rapidly for larger data transfers. We
achieve even lower overhead when replicas and clients are
placed on different continents (the Amsterdam-NY setting),
in which case the transfer time is so large that adding a bit
of computation hardly matters. However, this latter setting
is less realistic for the architecture we advocate - the whole
point with GlobeDoc objects is to place replicas in close
proximity of the clients.

In the second experiment we used three GlobeDoc ob-
jects, each consisting of 11 page elements. One of the page
elements was always a 5KB text file. The other 10 elements
are images, and are of size 1KB each for the first object,
10KB each for the second, and 100KB each for the third
object. Thus, the total size for the first object is 15KB, for
the second 105KB, and for the third 1005KB. For each of
these objects, we place one replica on an object server run-
ning on the Amsterdam “primary” host. We also place the
same page elements (as text and image files) in a directory
accessible by an Apache web server, also running on the
Amsterdam primary host.

The aim of the experiment was to compare the perfor-
mance of the GlobeDoc server/proxy combination to the
Apache server. For this, we compared the time needed
to access the four GlobeDoc objects using wget and the
GlobeDoc secure proxy with the time needed to download
(again using wget) the same files from the Apache server
through standard HTTP and secure (SSL) HTTP connec-
tions. Figures 5, 6, and 7 show the average timing computed

7

after running this experiment for 24 consecutive hours at 15
minutes intervals.

Figure 5. Performance comparison - Amster-
dam client

Figure 6. Performance comparison - Paris
client

We can see that although running as interpreted Java
code, our proxy/object server combination performs quite
similar to the compiled C Apache code. On the disap-
pointing side, it should be noticed that our implementation
does not always outperform the Apache/SSL combination,

Figure 7. Performance comparison - Ithaca
client

which we would have expected considering that GlobeDoc
requires only public key signature verification operations
which are much faster than the public key encrypt/decrypt
operations required by SSL. The reason for this is the Java
memory management mechanism combined with the rather
limited memory resources on the Paris and Ithaca hosts; the
result is extensive memory swapping which greatly reduces
performance. In the case of the Amsterdam client, the large
amount of physical memory reduces the need for memory
swapping.

Despite these shortcoming, we believe that our proof-of-
concept prototype has served its purpose, and has demon-
strated that our design is viable. Furthermore, in the worst-
case performance scenarios, the determining factors are the
specifics of the Java environment - particularly its memory
allocation mechanism - as opposed to performance limita-
tions introduced by our design. For this work, we have used
Java because it is ideal for quick prototyping, but we be-
lieve that implementing the same functionality as compiled
C code - as a “GlobeDoc” Apache module for example -
would greatly improve performance.

It is also important to stress that the biggest advantage
of the GlobeDoc architecture is the ability to place object
replicas in close proximity to clients, which greatly reduces
the client-perceived latency. However, the aim of the exper-
imental work in this paper is to prove that the security mech-
anisms we have devised for GlobeDoc do not introduce ex-
cessive overhead, which we believe we have demonstrated.
By no means are we trying to quantify the performance im-
provement introduced by actually replicating Web content

8

by means of the GlobeDoc architecture; this is work has
already been done, and the results were presented in [13].

5 Related Work

The WWW has experienced explosive growth, with an
increasing number of security-sensitive applications mak-
ing now use of it. Not surprisingly, the issue of “making
the Web more secure” has attracted considerable attention,
with multiple solutions proposed for a number of specific
application scenarios. What makes the GlobeDoc approach
distinctive is the fact that it considers not only security but
other aspects, such as data content aggregation and replica-
tion, creating a unified Web document object model.

The current “state of the art” for secure Web browsing
is the combination of DNSsec [5], certified Web servers’
public keys and TLS [4]. In Section 3 we have described
how these mechanisms can be combined in order to achieve
secure naming, server authentication and integrity guaran-
tees for the data received by the clients. However, this
approach does not support document replication on un-
trusted hosts. Furthermore, since DNSsec records are used
to store location-dependent information (IP addresses), this
approach does not scale well for dynamically-replicated
documents.

Along the same lines is the SHTTP proposal [14], which
extends the HTTP protocol with a number of security ex-
tensions. The aim is to allow end-to-end integrity checks, as
well as data confidentiality and traceability for HTTP trans-
actions. This proposal explicitly mentions secure data repli-
cation on untrusted hosts as a potential benefit, which is also
one of the motivations for GlobeDoc. However, SHTTP
comes as an Internet RFC, which means it is only a set of
guidelines for system developers. GlobeDoc is an actual
system architecture with a running prototype implementa-
tion. Furthermore, GlobeDoc is broader in its scope, also
dealing with data replication aspects (replica hosting, repli-
cation algorithms, consistency models), which are not cov-
ered by SHTTP.

Like GlobeDoc, the read-only Secure File System (r-
oSFS) [6] focuses on securely replicating data on untrusted
servers. The basic architectural element for r-oSFS is the
file system; because of this it is possible to use r-oSFS as a
middleware and implement various distributed applications
on top of it, a secure Web infrastructure being one such pos-
sible application [7]. In order to guarantee the integrity of
data replicated on untrusted hosts, r-oSFS constructs a hash
tree by applying a secure hash function (SHA-1) on the data
blocks and i-nodes of the file system. This approach is very
efficient, since only the root of the tree needs to be signed by
the owner, but has the drawback that only one global (per-
file system) consistency interval can be supported, instead
of allowing per-file freshness constraints.

Although r-oSFS file systems can be replicated on un-
trusted hosts, there is little support for the actual replication.
In contrast, each GlobeDoc comes with its own replication
policy which is part of the object itself; this allows for very
fine-grained (per page-element) replication policies to be
defined, which has been proven [13] to greatly improve per-
formance. Following the same logic, the GlobeDoc security
architecture uses per page-element expiration dates, which
allow owners to set per page-element freshness constraints
(which is not possible with r-oSFS).

The Gemini project [12] at Carnegie Mellon University
aims at creating a publisher-centric replication infrastruc-
ture for information dissemination. Gemini is built as an
extension to the Squid [2] WWW cache, and - like secure
GlobeDoc - aims at providing integrity guarantees for Web
documents replicated on untrusted hosts. However, Gem-
ini focuses more on dynamic Web data, and their secu-
rity solution is different from the one we advocate in this
paper - they require the untrusted caches to sign the data
they return to clients, which ensures that malicious caches
serving bogus content are eventually caught “red-handed”.
On the other hand, GlobeDoc makes impossible for mali-
cious servers to pass bogus data undetected. Furthermore,
GlobeDoc provides a unified Web document object model,
with explicit support for replication, features which are not
present in Gemini.

Finally, OceanStore [8] is a project that aims at using
untrusted hosts to provide a “utility infrastructure designed
to span the globe and provide continuous access to per-
sistent information.” To accomplish this ambitious goal,
the designers of the system make use of peer-to-peer tech-
nologies, such as associative storage, distributed routing,
and probabilistic query algorithms. Although both make
use of untrusted storage, OceanStore and GlobeDoc have
slightly different goals: OceanStore assumes that all the
storage is untrusted, and focuses on high data redundancy to
prevent loss due to malicious hosts or catastrophic events.
GlobeDoc on the other hand assumes that each document
has access to some secure storage provided by its owner
(the traditional Web document model), and relies on un-
trusted hosts for replication in order to improve perfor-
mance. Although we recognize the many revolutionary
ideas OceanStore introduces, we believe that the GlobeDoc
Web document model is more appropriate for the next gen-
eration of secure WWW services.

6 Conclusion

In this paper we have presented a security architecture
that integrates data content, replication mechanisms and se-
curity policies in one unified object model, and guarantees
data integrity and secure naming even when object replicas
are placed on untrusted servers. Our experimental results

9

show that this new object model can be efficiently integrated
into the current Web infrastructure, and the security mecha-
nisms do not incur excessive performance penalty.

One direction for future work is support for more com-
plex data hosting negotiation mechanisms. We are working
on the design of a policy language that would allow ob-
ject owners to express quality of service requirements be-
fore instantiating new object replicas. At the same time
server administrators will be able to specify resource lim-
itations (in terms of disk space, memory, network band-
width among other things) for the replicas they are willing
to host, with the object server being responsible with en-
forcing these limitations.

Another direction for future work is GlobeDoc support
for dynamic Web content. We believe this will be particu-
larly challenging because the technique we currently apply
to secure static documents - signing them with the object
key - does not work in the case of dynamic data - it would
require the object owner to sign the results for every pos-
sible client query, which is clearly not feasible. In such a
setting, a solution based on auditing the untrusted servers
where the data is replicated, as suggested in [12], combined
with a probabilistic double-checking of the dynamic Web
content these untrusted servers generate is likely to be more
effective.

References

[1] Secure Hash Standard. FIPS 180-1, Secure Hash Stan-
dard, NIST, US Dept. of Commerce, Washington D. C. April
1995.

[2] Squid web proxy cache. http://www.squid-cache.org.
[3] G. Ballintijn, M. van Steen, and A. Tanenbaum. Scalable

User-Friendly Resource Names. IEEE Internet Computing,
5(5):20–27, 2001.

[4] T. Dierks and C. Allen. The TLS Protocol Version 1.0,. IETF
RFC 2246, January 1999.

[5] D. Eastlake. Domain name system security extensions. RFC
2535, March 1999.

[6] K. Fu, M. Kaashoek, and D. Mazieres. Fast and Secure Dis-
tributed Read-only File System. In Proc. 4th USENIX Symp.
on Operating Systems Design and Implementation, pages
181–196, San Diego, CA., Oct. 2000.

[7] M. Kaminsky and E. Banks. SFS-HTTP: Securing the web
with self-certifying URLs. citeseer.nj.nec.com/470041.html.

[8] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An Architecture for
Global-scale Persistent Storage. In Proc. 9th ACM ASPLOS,
pages 190–201, Cambridge, MA, November 2000. ACM.

[9] D. Mazieres and M. F. Kaashoek. Escaping the Evils of Cen-
tralized Control with Self-Certifying Pathnames. In Proc.
8th ACM SIGOPS European Workshop, Sintra, Portugal,
Sept. 1998.

[10] D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witchel.
Separating Key Management from File System Security. In

Proc. 17th Symp. on Operating Systems Principles, pages
124–139, Kiawah Island, SC, 1999.

[11] P. V. Mockapetris and K. J. Dunlap. Development of the
domain name system. In SIGCOMM, pages 123–133, 1988.

[12] A. Myers, J. Chuang, U. Hengartner, Y. Xie, W. Zhuang,
and H. Zhang. A Secure, Publisher-Centric Web Caching In-
frastructure. In Proc. 20th IEEE Infocom, Anchorage, AK.,
April 2001.

[13] G. Pierre, M. van Steen, and A. Tanenbaum. Dynamically
Selecting Optimal Distribution Strategies for Web Docu-
ments. IEEE Transactions on Computers, 51(6), 2002.

[14] E. Rescorla and A. Schiffman. The Secure HyperText Trans-
fer Protocol. IETF RFC 2260, August 1999.

[15] R. L. Rivest and B. Lampson. SDSI – A Simple Distributed
Security Infrastructure. Presented at CRYPTO’96 Rumpses-
sion, 1996.

[16] M. van Steen, F. Hauck, P. Homburg, and A. Tanenbaum.
Locating Objects in Wide-Area Systems. IEEE Commun.
Mag., pages 104–109, January 1998.

[17] M. van Steen, P. Homburg, and A. Tanenbaum. Globe: A
Wide-Area Distributed System. IEEE Concurrency, pages
70–78, January-March 1999.

[18] M. van Steen, A. Tanenbaum, I. Kuz, and H. Sips. A Scal-
able Middleware Solution for Advanced Wide-Area Web
Services. Distributed Systems Engineering, 6(1):34–42,
March 1999.

10

