Towards automatic performance optimisation of componentised
systems

Nicholas FitzRoy-Dale

NICTA *and University of New South Wales
Sydney, Australia

nicholas.fitzroy-dale@nicta.com.au

Abstract

Use of hardware-based memory protection to implement a
componentised system is an effective way to enforce isola-
tion between untrusted software components. Unfortunately
this type of system design can lead to poor performance.
Manual optimisation is error-prone and difficult. Instead, we
describe a system to perform automatic optimisation of com-
ponents, relying on three major functional units: a method
to reconfigure the component system, simulations of each
component in order to determine performance characteris-
tics, and a system simulator that makes use of those char-
acteristics to construct a ranking of optimisations. We start
with a simple model and iteratively expand it until it is suit-
able for a wide variety of performance-measurement scenar-
ios, and show that a small amount of information provided
with each component allows for a wide variety of optimisa-
tion checks, such as scheduling, threading, and cache per-
formance. We present our initial results with this system and
discuss a number of interesting extensions.

1. Introduction

Using hardware-based memory protection is an effective
way to enforce isolation between untrusted software compo-
nents in computer systems when language techniques cannot
be relied upon. Componentised software design (that is, de-
signing software architectures as assemblies of components
interacting through well-defined interfaces) provides a struc-
tured way of building such systems and both representing

*NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and
the Australian Research Council through the ICT Centre of Excellence
program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright (© 2009 ACM IIES 2009 978-1-60558-464-5. .. $5.00

Thor Kuz

NICTA and University of New South Wales
Sydney, Australia

ihor.kuz@nicta.com.au

and enforcing the isolation at design and implementation
time. Unfortunately past experience has shown that com-
ponentisation of system software (including modularisation
and microkernel-based systems) often leads to poor perfor-
mance of the resulting systems (Haeberlen et al. 2000). In
particular the impact of component-to-component commu-
nication is a major cause of overall performance degrada-
tion.

This class of problems is caused by some system configu-
ration or high-level design issue: interacting subsystems are
not communicating efficiently enough; a priority or sched-
uler problem causes starvation; or the critical path simply
involves too much code or data, reducing the efficiency of
the CPU caches. Solving these sorts of problems manually is
tedious and error-prone, particularly if the problem-solver is
not familiar with all the code in the system. It is easy to reach
an impasse in such a system in which the component imple-
menter must know the characteristics of the complete system
in order to produce efficient code, but the system assembler
must know the details of each component’s implementation
in order to produce an efficient system.

We believe this problem is best solved by the component
implementor providing additional information about each
component in a way that can be used to automatically deter-
mine a components’s performance in a given system config-
uration. There are three major advantages to automatic op-
timisation. Firstly, an automatic optimiser can check a large
number of potential system configurations. This is important
in whole-system optimisation, where the causes of perfor-
mance problems are sometimes subtle and non-local. Sec-
ondly, if an automatic system is used, a lot of information
can be encoded about the component, including special-case
domain-specific optimisations that may otherwise be over-
looked. Finally, the additional information required for auto-
matic optimisation paves the way for automatic verification
of the system configuration.

In Section 2 we describe the component system architec-
ture and introduce an example component system. We then
introduce the three major components of our optimisation
tool in Section 3. In Section 4 we give some examples of the

system, and present preliminary results. Finally, Section 5
discusses related work, and Section 6 concludes and outlines
future research.

2. Componentised system architecture

When we refer to a system in this paper we mean an assem-
bly of components interacting through well-defined inter-
faces. Our components are self-contained code objects con-
taining at least one thread, and each component is separated
from others in the system by hardware-mediated memory
protection. The system layout is determined statically. This
means that the set of components with which any given com-
ponent may communicate (as well as any memory that the
components will use for their communication) is determined
when the system is compiled and linked. This combination
of static configuration and hardware-mediated memory pro-
tection describes a mid-size embedded system, such as an
advanced portable media player.

To illustrate some of the challenges involved, we intro-
duce a running example: a networked video player. This is
an embedded device which plays video received from a net-
work interface on an LCD. Its architecture is shown infor-
mally in Figure 1. More formally, the system is described
using an embedded component system with the following
properties relevant to this paper:

TCP/IP stack

y

Client (application)

Ethernet hardware Ethernet driver

Video hardware Video driver

Figure 1. The networked video player

Components: A component is an independent piece of code
which can only communicate with other components via
well-defined named interfaces;

Connectors: Components interact with each other via con-
nectors. A connector consists of two parts: the sender’s
portion, attached to the sending component; and the re-
ceiver’s portion, attached to the receiving component.
When communication occurs, the sender’s portion must,
at a minimum, marshal any data and notify the receiver’s
portion. The receiver’s portion must (again at a mini-
mum) unmarshal data and notify the receiving compo-
nent. Connectors are extensible and may perform com-
plex, multi-stage transactions. Connector portions com-
municate with their components through a function-call
interface (they are essentially libraries);

Configuration: Components and connectors are configured
with constants at compile-time. For example, a buffering
connector may be configured with the size and maximum
number of buffers it supports.

Typing: Connectors have a type. The type is meaningless
to the component system itself, but serves to identify in-
terchangeable connectors for optimisation purposes. For
example, two connectors of type stream are functionally
equivalent, but may have different performance charac-
teristics.

Static layout: A system architecture consists of typed com-
ponents joined by connectors. The layout is fixed at com-
pile time.

As shown in Figure 1, this device contains a single crit-
cal path traversing all components — data moves from the
network device driver to the LCD device driver via the TCP
stack and the player application. This a data-intensive and
performance-critical path: the right component must exe-
cute when data is available, and connectors between com-
ponents must be fast enough that video is played smoothly.
On battery-powered devices such as this one, improving per-
formance beyond merely “usable” is beneficial as reducing
overhead lowers power consumption and thus improves bat-
tery life. We will perform whole-system optimisation to im-
prove the performance of this device.

3. System optimisation

The overall aim of the optimisation task is to take a sys-
tem as input and produce a faster, yet otherwise functionally
equivalent, system as output. In our system, the transforma-
tion occurs at the system architecture level: i.e. optimisation
is achieved by changing the components and connectors in
the system (by replacing them with other components and
connectors), and not by modifying component and connec-
tor code itself (an orthogonal problem which we leave to the
compiler).

We separate the problem into thee parts: the system-
architecture transformation itself (the optimisation func-
tions), simulation of individual components to determine
their performance characteristics (component simulations),
and the system simulation which uses optimisation-specific
criteria to determine the performance of the transformed sys-
tem relative to the original system (to determine whether the
optimisation is an improvement). A high-level representa-
tion of this system is shown in Figure 2, and each part is
discussed separately below.

System Optimisation Candidate System Optimised
arch. function arch. simulation arch. \
~

N /
~

AN Component 7
S~ simulations -

Figure 2. The optimisation architecture

3.1 Optimisation functions

Optimisations themselves are expressed by optimisation
functions. These functions modify the system layout by

def stream_to_rbuf (node):
if node.is_connector

and node.ck_type == ’stream’
and node.ck_name != ’RBufConnector’
and node.client.ck_name == ’NIC’:

node.replace(’RBufConnector’)

Figure 3. The any-stream-to-RBuf optimisation function

adding, removing, or replacing components and connectors.
Optimisation functions are written in Python (chosen be-
cause it is easy to learn and understand) and stored with the
component or connector to which they apply. This allows for
domain-specific optimisations, which only apply to a single
component or connector.

Optimisation functions are supplied by the author of the
component or connector and should represent the ways in
which that component or connector can be used. This is one
of the ways through which the component or connector au-
thor supplies additional information. Additionally, optimisa-
tion functions do not make any guarantee that the optimisa-
tion being implemented is beneficial. To determine whether
a given optimisation is beneficial it is simply implemented
on the system and its performance is simulated (see below).
If there is a performance improvement, the optimisation is
used on the real system.

The example optimisation function in Figure 3 illustrates
the relevant properties. This particular function attempts to
replace the outgoing connection from the network interface
driver with a connector named RBufConnector, by check-
ing that the supplied argument is of a valid type (it iden-
tifies itself as a “‘stream” connector, and it’s connected to
the network interface card component), and then by replac-
ing it with a new connector. Optimisation functions are run
once for every component and connector in the system —
the current component or connector is passed as the func-
tion’s only argument. The optimisation function references
other components and connectors in the system through a
relative-naming scheme: the .client and .server acces-
sor functions for connectors, and through named interfaces
for components. This style of relative referencing, borrowed
from the Click router framework (Kohler et al. 2000), tends
to make functions more readable. The function indicates suc-
cess by modifying the system in some way. If the function
is not successful (because some check failed), it should not
make any modifications to the system state.

3.2 Component simulations

Component simulations describe the behaviour of a compo-
nent or connector by providing a simplified implementation
of it. A simulation function reduces the component to a set of
properties that are essential for measuring its performance.
The simulation is beneficial (compared to simply execut-
ing the component’s code) because it executes quickly. This

class sim_rbuf (Connector):
def sim_send(self, system, data):
Data arrived from client. Pass it on.
system.ipc(4)
system.call(self.server, "data_in", data)

Figure 4. A simple RBufs connector simulation

is a highly desirable property because the system simula-
tor (discussed below) may execute a component simulation
many times while coming up with an appropriate optimisa-
tion. Unfortunately, the amount of information that must be
provided about the behaviour of a component or connector
in order to provide for conceivable performance evaluation
is quite large. For example, for accurate cache simulation
the component simulation must return accurate information
about the amount of, and location of, code and data. This in-
formation is not always readily available, and, more impor-
tantly, is not always necessary, as Section 4 discusses. We
propose a modular approach, through which the component
simulation can supply detailed information if it is available;
if the information is not available then some classes of per-
formance evaluation will not be possible, but others may be.

A component or connector’s simulation is implemented
as a Python class, and should be supplied by the component
implementor. The class contains a Python function for each
component function to be simulated (since components and
connectors communicate with a standard C function inter-
face, there must be a simulation for every function in ev-
ery interface of the component). Each function simulation
calls one or more system functions, which represents com-
ponent activity relevant to performance analysis. Figure 4
shows a simple example: a data-passing component dealing
with data which is already shared in memory simply passes
it from the client to the server. The component simulation
is data-centric: primarily concerned with the movement of
data across interfaces. Data movement is tracked using an
abstraction: data are represented by an object called a named
data object consisting of a unique identifier and a length.
Memory sharing is performed by allowing two components
simulations to both reference the same named data object.
Objects can also be copied, representing real data copying.
We go to this amount of trouble so we can accurately mea-
sure the cost of data copying in the system.

3.3 System simulation

The final of the three optimisation tasks is system simula-
tion. The system simulation takes a given system architec-
ture and simulates it using the component simulations in or-
der to produce an ordering of optimisations. For example, for
simulating raw throughput, a system simulation may be sup-
plied with a starting component and an ending component.
The system simulator calls the appropriate function in the
simulation of the starting component, and accumulates per-

formance data until the appropriate interface of the supplied
end component simulation is called. A more sophisticated
system simulation may take cache usage, concurrency, and
scheduling into account. When an ordering is produced, the
top-ranked optimised system becomes the new base system,
and the process may be repeated.

The system simulation effectively determines the abstrac-
tion that component simulations must conform to. We must
therefore anticipate the type of information we need from
the component simulation. We are currently interested in
modelling data flow (for throughput estimation), CPU usage
(for load estimation), inter-component control flow (required
in order to correctly simulate component interactions), and
cache utilisation. The system simulator must therefore make
it possible for component simulations to indicate data flow,
CPU usage etc. to the system simulator, which component
simulations do by calling appropriate functions on the sys-
tem simulator.

3.4 Putting it together

Optimisation begins with the system designer running the
system simulator. This simulator takes an architecture de-
scription as input. First, it generates a base-line performance
value for the original system. This value is specific to the
type of optimisation required: for example, for a throughput
optimisation, it may represent the total number of CPU cy-
cles required to send data from one component to another. It
then generates a list of optimisations to perform. This set is
the collection of all optimisations included with every com-
ponent and connector included in the system architecture.
The first function in the list is then run, generating a new
system architecture. This system architecture is then simu-
lated to generate a performance value for the new system.
This process is then performed for each remaining optimisa-
tion. The system with the largest performance improvement
is then selected, and the process is repeated until the system’s
performance cannot be improved further. This iterative pro-
cess is required because some optimisatons may be mutually
exclusive.

4. Example optimisations

To illustrate the potential of this system, we present some
preliminary results measuring system throughput. These re-
sults refer to the networked video player described in Fig-
ure 1. This system uses components connected via connec-
tors of type stream, which pass blocks of data. We investi-
gated two styles of stream connectors: UNIX pipe style, in
which data are copied from component to component by the
kernel, and RBufs style (Leslie et al. 1996), in which data
are passed via shared memory.

The optimisation function used is very similar to that
shown in Figure 3, without the requirement that the source
component be the NIC — i.e., all streams interfaces, initially
modelled using UNIX pipes are converted to RBufs.

class sim_pipe(Connector):
def sim_send(self, system, data):
system.pipe(data)

system.call(self.server, "data_in", new_data)

Figure 5. A UNIX pipes connector simulation

Name Cycles
notifypipe 2189
notifys, 471

ipC 1k 3761
ctx 1596
CtXpotify 3320
mem;g 420

Table 1. Microbenchmark results in CPU cycles — Linux
2.6, Core 2 Duo (single core), 2.2GHz.

The component simulation for RBufs is the same as that
shown in Figure 4. The component simulation for UNIX
pipes is shown in Figure 5.

The system simulation is a straightforward throughput es-
timation taking costs of IPC and data copying into account. It
contains a rudimentary network device simulator capable of
generating packets for the NIC component simulation. The
scheduler switches components only when they call other
components — i.e. scheduling is co-operative. This is not
unrealistic as it approximates the common case where only
one component is runnable. The system simulation is pa-
rameterised by microbenchmarked results of performance
of various tasks under Linux. Results of these microbench-
marks (in CPU cycles) are summarised in Table 1.

Under Linux, context-switch time is highly dependent on
the system call performing the context switch. As a result,
explicit context switches implemented using Linux’s high-
performance futex mechanism (notifyg.y, in the figure) are
significantly faster than implicit context switches resulting
from sending data into a pipe (notifypipe in the figure), but in
the former case data must be copied separately. Component
simulation calls result in the system simulator applying mi-
crobenchmark figures in order to rank the optimised system:
for example, system.ipc () in the RBufs simulation results
in an additional notifyy, in the system simulation for that
path.

To evaluate the model, we implemented two componen-
tised systems: an RBufs-style system with memory shar-
ing, and a UNIX pipes implementation. Both implemented
systems consisted of three classes of component: a packet
source, representing the Ethernet hardware; four packet
transports, representing the Ethernet driver, stack, client,
and video driver; and a packet sink, representing the video
hardware. For each system, we apply the system simulation
described above and compare the results with the actual per-

System Model Benchmark Ratio
RBufs shared 4818 6119 0.79:1
UNIX pipes 18805 18678 1.01:1

Table 2. Performance model vs measured results: cost in
CPU cycles to send a single packet through the system.

formance numbers obtained by running the code. The RBuf
connector improves performance through queueing. In this
case the queue length for the RBufs connector was set to 10
packets. The results of this evaluation are shown in Table 2.
These results show that the cost model is capable of produc-
ing a correct ordering of systems in terms of overall latency.
The accuracy of the model can be seen as the ratio between
the predicted performance value and the benchmarked value,
shown in the ‘ratio’ column.

The RBufs prediction is less accurate than the UNIX
pipes prediction. This relects the fact that the UNIX pipes
measurement takes into account all kernel code involved
in implementing the pipe, including cache effects, whereas
in the RBufs example more non-kernel code is executed as
the buffer manipulation is performed in user-space. The dis-
crepancy points to the usefuless of a more detailed compo-
nent simulation, but it nonetheless seems to indicate that
such a detailed simulation is not necessary for at least
some component optimisation tasks, i.e., those focusing on
throughput performance in network-limited systems. In fact,
pipelines involving network data can contribute significantly
to system-wide CPU and memory bandwidth utilisation (Dr-
uschel et al. 1993).

However, most optimisation tasks are not this simple. In
the following sections we show how the basic model can be
extended to support cache simulation and scheduling.

4.1 Measuring cache effects

Measuring cache effects requires extensive pre-analysis
of the component or connector. Two classes of system
functions are introduced: CPU usage functions, and data-
manipulation functions.

CPU usage functions : The component simulation supplies
CPU usage in the form of an instruction range (as a
range of virtual addresses) and the probability of its ex-
ecution. This is implemented as system.cpu(start,
end, prob = p), where start and end correspond with
the beginning and end of the virtual address range. This
may also be used to predict system CPU usage.

Data manipulation functions : The use of named data ob-
jects (see subsection 3.2) allows for accurate cache sim-
ulation of data usage in most cases. If a large amount
of component-private state is manipulated, the compo-
nent simulation class can use the same data-manipulation
functions but retain the data within the class.

4.2 Scheduling

The scheduling simulation may be performed entirely by
the system simulator, given enough auxilliary information
from the components. A simplistic scheduler, such as the one
used to measure throughput in the results above, can sim-
ply pass control to an IPCed component, resulting in what
is effectively co-operative scheduling. However, pre-emptive
scheduling can also be simulated by treating the component
simulations as continuations which may be paused and re-
sumed at any time. For example, a component may indicate
CPU usage with a system.cpu() call as described above,
which may trigger the system simulator to simulate a con-
text switch. The simulator then determines the amount of
code that would have been executed before the switch, se-
lects a new component, and continues the simulation. When
it returns to the original component, the simulator re-starts it
from where it left off. Importantly, cache simulation remains
valid through this process.

4.3 Managing non-determinism

Up until now we have assumed that component simulations
always do the same thing given the same input data. This is
not always true, so some way of expressing non-determinism
to the system simulator may improve simulation accuracy.
However, having component simulations literally be non-
deterministic would result in a significantly more compli-
cated system simulator. We compromise by defining the sys-
tem simulation function system.maybe(p, func), where
func is a function representing a particular simulated com-
ponent execution and p is the probability that this execution
occurs. The sum of all probabilities should be 1. System sim-
ulators can use this information to investigate a performance
landscape, testing different optimisations to determine the
effect on individual components and the whole system. Such
a system simulator may make use of simulated annealing or
similar to reach an acceptable performance level.

4.4 Potentially-unsafe optimisations

Many useful optimisations change the system configuration
in unsafe ways. As a single example, consider a window
server which multiplexes graphical information from many
applications onto a single frame buffer. In such a system it
is important that one application can’t draw over another
application’s window. A simple way to implement this ar-
rangement is to require all components to communicate with
the window server via IPC, but this is rather slow as each
drawing operation incurs a protection-domain-crossing per-
formance hit. A faster option is to allow applications to draw
directly to the shared frame buffer via a graphics library, but
this requires that applications be trusted not to draw beyond
their clipping region. Similar problems arise with other com-
mon optimisations, such as ILP in a network stack.

A somewhat practical solution is simply to require any
optimisation that may compromise the system’s safety as-

sumptions to notify the system designer of that fact. This so-
lution may be workable for simple cases, but is rather unsat-
isfying because it once again requires the system designer to
know the behaviour of each component in detail. Automated
component safety checking is one alternative: a symbolic ex-
ecution engine for safety verification is future work.

5. Related work

We focus on performance prediction to determine the effi-
cacy of optimisation, but performance prediction of com-
ponentised systems is not a new field. Yacoub proposes a
technique for performance measurement that involves mea-
surements taken around component-to-component connec-
tions (“glue code” in his terminology) with a method simi-
lar to ours (Yacoub 2002). However, the described method
is purely analytical, with no predictive power. Chen et al.
propose a model that takes a similar idea to ours (isolating
the costs of the framework) by measuring the overheads of
various parts of an Enterprise JavaBeans or CORBA frame-
work (Chen et al. 2005). The result is a sophisticated cost
model. Unlike our approach, however, this model is rather
coarse-grained (measuring database transaction times, for
example) and focuses on the interaction between the appli-
cation and an end user, rather than component-to-component
operations.

Becker et al. note that a successful performance evalua-
tion technique should be accurate; adaptable; cost-effective;
composable (able to work at different levels of abstraction),
and scalable; should be analyzable (give some insight into
the design flaw that is causing the performance bottleneck);
and should be universal (easily-adaptable to different com-
ponent technologies) (Becker et al. 2006). The technique we
have described performs very well on some of these criteria
due to its isolation of, and focus on, component connectors
rather than components themselves. As a result, it is highly
adaptable in the domain of interest (changing connectors and
changing platforms), provides a high degree of analysability
(since each connection is individually ranked), is universal
(since the small set of component-technology-specific costs
form the basis of the prediction), and cost-effective (since
performance information need only be derived once for each
re-usable connector).

6. Conclusion

In this paper we described an expandable system for perfor-
mance estimation of componentised systems. We also pre-
sented some some initial results of the system applied to the
task of throughput optimisation, which show promising cor-
relation with measured performance numbers (ratio between
0.79:1 and 1.01:1). This work is nonetheless very much a
work in progress. We are working on the following addi-
tional features, roughly in planned chronological order:

Cache and scheduler experiments: Support for cache and
scheduler simulation is described above, but we are keen

to back up the description with experiments and results
as per the initial throughput examples.

Component modes: Typically components have modes in
which behaviour is dramatically different: devices may
be initialised or uninitialised; streaming connectors have
a steady state and an overload state, etc. The system
currently makes the assumption that there is only one
interesting mode; incorporating more is future work.

Integration with existing component systems: The com-
ponent system described in Section 2 is a minor exten-
sion of the CAmKES component architecture (Kuz et al.
2007). Integration with CAmKES will allow us to experi-
ment on embedded systems based on the L4 microkernel.

Symbolic execution: We are interested in exploring the ap-
plication of symbolic execution or other static analy-
sis techniques to automatically generate the component
model, taking the burden off the component designer.

References

S. Becker, L. Grunske, R. Mirandola, and S. Overhage. Perfor-
mance prediction of component-based systems — a survey from
an engineering perspective. In Architecting Systems with Trust-
worthy Components, volume 3938, pages 169—192. Springer-
Verlag, 2006.

Shiping Chen, Yan Liu, Ian Gorton, and Anna Liu. Performance
prediction of component-based applications. J. Syst. Softw., 74
(1):35-43, 2005. ISSN 0164-1212. doi: http://dx.doi.org/10.
1016/j.jss.2003.05.005.

Peter Druschel, Mark B. Abbott, Michael A. Pagals, and
Larry L. Peterson. Network subsystems design. [EEE
Network, 7(4):8-17, 1993. URL citeseer.ist.psu.edu/
druschel93network.html.

Andreas Haeberlen, Jochen Liedtke, Yoonho Park, Lars Reuther,
and Volkmar Uhlig. Stub-code performance is becoming impor-
tant. In WIESS’00: Proceedings of the 1st conference on Indus-
trial Experiences with Systems Software, pages 4—4, Berkeley,
CA, USA, 2000. USENIX Association.

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek. The Click modular router. ACM Trans.
Comput. Syst., 18(3):263-297, 2000. ISSN 0734-2071. doi:
http://doi.acm.org/10.1145/354871.354874.

Ihor Kuz, Yan Liu, Ian Gorton, and Gernot Heiser. CAmKES:
A component model for secure microkernel-based embedded
systems. Journal of Systems and Software Special Edition on
Component-Based Software Engineering of Trustworthy Embed-
ded Systems, 80(5):687-699, May 2007.

Ian Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul
Barham, David Evers, Robin Fairbairns, and Eoin Hyden. The
design and implementation of an operating system to support
distributed multimedia applications. IEEE Journal on Selected
Areas in Communications, 14:1280-1297, 1996.

Sherif M. Yacoub. Performance analysis of component-based ap-
plications. In SPLC 2: Proceedings of the Second International
Conference on Software Product Lines, pages 299-315, London,
UK, 2002. Springer-Verlag. ISBN 3-540-43985-4.

citeseer.ist.psu.edu/druschel93network.html
citeseer.ist.psu.edu/druschel93network.html

	Introduction
	Componentised system architecture
	System optimisation
	Optimisation functions
	Component simulations
	System simulation
	Putting it together

	Example optimisations
	Measuring cache effects
	Scheduling
	Managing non-determinism
	Potentially-unsafe optimisations

	Related work
	Conclusion

