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Abstract. Despite the extensive use of caching techniques, the Web is overloaded. While the
caching techniques currently used help some, it would be better to use different caching and replica-
tion strategies for different Web pages, depending on their characteristics. We propose a framework
in which such strategies can be devised independently per Web document.
A Web document is constructed as a worldwide, scalable distributed Web object. Depending on
the coherence requirements for that document, the most appropriate caching or replication strategy
can subsequently be implemented and encapsulated by the Web object. Coherence requirements
are formulated from two different perspectives: that of the Web object, and that of clients using the
Web object. We have developed a prototype in Java to demonstrate the feasibility of implementing
different strategies for different Web objects.
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1 Introduction

With the continuing growth of the Web’s popularity, we are increasingly confronted with its limited
scalability. In particular, problems are emerging with respect to accessing and transferring pages
across the Internet. For example, Web servers are often unreachable due to their getting more re-
quests than they can handle. Likewise, bandwidth limitations and unreliable links lead to long
downloading times, especially with pages containing image, audio, or video. The solution to these
problems is to apply traditional scaling techniques, such as caching and replication [10]. In the
Web, much attention has been paid to caching. Recently, it has also been recognized that caching
alone is not enough. In particular, replication techniques by which updates are pushed to clients
are needed as well [2].

Unfortunately, caching and replication inherently lead to consistency problems: when a page is
cached or replicated, a modification of one copy makes that copy different from the others. In Web
caching [4], a simple consistency protocol has been widely adopted to manage consistency: when-
ever a page is retrieved from a cache, the cache checks when that page was last updated at its server.
If the page was updated at the server subsequent to its being cached at the client, the cache entry is
refreshed by fetching the page from the server. Otherwise, the currently cached version is handed
over to the client. Provided the caching and update times are known correctly, this scheme never
returns an outdated page.

A weaker form of consistency can also be maintained. For example, many Web proxies assume
a page that has just been cached remains valid until some expiration time. Only when that time
expires, will the cache entry need to be refreshed. Of course, in this scheme, it is possible that a
cached page is stale and the client will be handed an out-of-date page.

To improve the Web’s scalability, alternative caching and replication schemes have been proposed,
each containing a solution for handling consistency problems. These schemes generally assume
(1) that some form of consistency should be supported, and (2) that a single consistency model is
required for all Web pages. No distinction is made between different pages, so the same caching
strategy is applied to all of them. However, with the large variety of Web pages currently exist-
ing, and the increasing alternative applications of Web technology, it is questionable whether these
assumptions are valid even now, let alone in the near future.

Consider, for example, a personal home page. In general, although it may be worthwhile to let an
individual browser cache such a page, site-wide caching by a Web proxy is less likely to improve
performance. In contrast, home pages of commonly popular organizations or events should per-
haps be cached only by Web proxies. A browser’s cache could then be reserved for pages that are
popular only by a specific client. Further distinctions can be made with respect to deciding how
modifications should be made visible. Irregular updates to pages for cultural or scientific events
may require only a notification mechanism, after which an interested client may decide to pull the
modification to a nearby cache. Magazine-like documents that are updated periodically, may ben-
efit from a push strategy to servers in areas with a relatively large number of subscribers.

In our view, achieving scalability of the Web requires that we take a look at individual documents,
where we consider a document as a collection of one or more pages. In particular, we first need to
know what kind of coherence is actually required. Then, based on these coherence requirements,
a suitable replication strategy should be applied. This approach requires that we look at each Web
document separately. In other words, coherence and its implementation is to be considered strictly
on a per-document basis. The current Web infrastructure is inadequate to support this approach. In
particular, it provides hardly any facilities for adopting different strategies for separate classes of
Web objects. As an alternative, we propose to use an object-based infrastructure, called Globe [6,
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13], in which each Web document is modeled as a separate, self-contained object. Such an object
encapsulates not only the content of one or more pages, but also implementations of policies for
replicating and distributing those pages.

In this paper, we present a framework for scalable Web objects. The paper is organized as follows.
First, we determine the coherence requirements for a Web object before applying caching and repli-
cation techniques. The coherence model of an object expresses the consistency of the object’s state
when multiple clients perform read and write operations on that state. In addition, we distinguish
client-based coherence models, which express the consistency that a single client requires from an
object. Coherence of Web objects is discussed in Section 3.

Web objects are expressed as distributed shared objects. These objects are physically distributed,
meaning that they reside at multiple machines at the same time. In contrast to other object-based
models, distributed shared objects fully encapsulate state, operations on that state, as well as imple-
mentations for caching, replicating, and migrating state. We discuss our object model in Section 2.

To demonstrate that we can indeed easily combine different models and implement them on a per-
object basis, we have built a prototype in Java, which is briefly described in Section 4. We conclude
and discuss future work in Section 5.

The main contribution of the research described in this paper, is that we show how scaling tech-
niques, namely caching, replication, and distribution, can be effectively implemented for each Web
document separately. As such, we demonstrate how truly scalable objects can be constructed, an
issue that is not supported by the current Web infrastructure.

2 The Globe Approach

To support worldwide applications, we are currently developing a wide-area distributed system
called Globe [6, 13]. Globe is constructed as a middleware layer on top of existing networks and
operating systems. Our architecture consists of an object model and a collection of basic support
services. In this section, we briefly discuss Globe’s distributed-object model in the context of Web
applications.

The general idea behind Globe, is that processes interact and communicate through distributed
shared objects. Objects are passive, but multiple processes may simultaneously access the same
object. When applying this model to Web applications, we model each Web document as a separate
distributed shared object. A Web document consists of a collection of HTML pages, together with
files for images, applets, etc., which jointly comprise the state of the distributed shared object. The
state itself is hidden from clients behind one or more interfaces, each consisting of a number of
methods. For example, an interface of a Web object consists of a method for selecting a page, and
reading it in HTML format so that it can be subsequently interpreted by a browser. Likewise, we
offer a method for replacing one of the document’s pages.

Changes to an object’s state made by one process are visible to the others. Our distributed shared
objects are physically distributed, meaning that an object’s state may be partitioned and replicated
across multiple machines at the same time. However, client processes are not aware of this: state
and operations on that state are completely encapsulated by the object. All implementation aspects,
including communication protocols, replication strategies, and distribution and migration of state,
are part of the object and are hidden behind its interfaces. In order for a process to invoke an object’s
method, it must first bind to that object by contacting it at one of the object’s contact points. Binding
results in an interface belonging to the object being placed in the client’s address space, along with
an implementation of that interface. Such an implementation is called a local object. This model
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is illustrated in Figure 1.

Figure 1: Example of an object distributed across four address spaces.

A local object resides in a single address space and communicates with local objects in other ad-
dress spaces. It forms a particular implementation of an interface of the distributed object. For
example, a local object of a distributed Web object may implement an interface by forwarding all
method invocations to a central location where the files of the Web document are stored, as in RPC
client stubs. However, a local object in another address space may implement that same interface
through operations on local replicas of those files. Such implementation details are transparent to
the client processes: they see only the interface to the distributed object as offered by the local ob-
ject. Each local object is composed of several sub-objects, and is itself again fully self-contained
as also shown in Figure 1. A minimal composition consists of the following four components.

Semantics object. This is a local object that implements (part of) the actual semantics of the dis-
tributed object. In the case of Web objects, the semantics object encapsulates the files that
comprise the Web document. The developer is responsible only for the construction of those
files, and encapsulating them into a semantics object with the appropriate interfaces. All
other parts can either be obtained from libraries, or are generated from interface specifica-
tions.

Communication object. This is generally a system-provided local object. It is responsible for
handling communication between parts of the distributed object that reside in different ad-
dress spaces. Depending on what is needed from the other components, a communication
object may offer primitives for point–to–point communication, multicast facilities, or both.

Replication object. The global state of the distributed object is made up of the state of its vari-
ous semantics objects. Semantics objects may be replicated for reasons of fault tolerance or
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performance. In particular, the replication object is responsible for keeping these replicas
consistent according to some (per-object) coherence strategy. Different distributed objects
may have different replication objects, using different replication algorithms. A replication
object is controlled by the control object.

Control object. The control object takes care of invocations from client processes, and controls
the interaction between the semantics object and the replication object. Incoming invocation
requests are also handled by the control object.

A key role, of course, is reserved for the replication object. An important observation is that com-
munication and replication objects are unaware of the methods and state of the semantics object.
Instead, both the communication object and the replication object operate only on invocation mes-
sages in which method identifiers and parameters have been encoded. This independence allows
us to define standard interfaces for all replication objects and communication objects.

3 Replication and Coherence for Web Objects

In this section, we first introduce a system model that will allow us to express coherence for dis-
tributed objects that represent Web documents. We then present a collection of coherence models to
express coherence requirements of current and future Web applications. Finally, we briefly present
a taxonomy of strategies for implementing coherence.

3.1 A System Model

In Globe, a Web object encapsulates its own policies for replication and distribution of the files
that comprise its state. In particular, each Web object will offer its own coherence model to client
processes that bind to the object. To express such coherence models, we need an underlying system
model that can capture the fact that the state of a Web object is replicated at different locations.

In our model, the files that comprise the state of a Web object can be kept at different stores. For
simplicity, we distinguish only general read and write operations on these files, which are always
performed by clients. Clients may perform read and write operations at any store. Three different
classes of stores are distinguished:

Permanent stores implement persistence of a distributed Web object. This means that if there is
currently no client process bound to the object, the object’s state will be kept at its associated
permanent stores. The permanent stores keep replicas consistent according to the coherence
model that the Web object offers to its clients, as we describe in Section 3.2. A Web server
is an example of a permanent store.

Object-initiated stores are installed as the result of the object’s global replication policy. Repli-
cas are kept consistent independent of clients although these stores may, for performance rea-
sons, support a weaker coherence model than the one guaranteed by the object’s permanent
stores. A typical example of an object-initiated store is a mirrored Web site.

Client-initiated stores are comparable to caches. They are installed independent of the replication
policy of the object, and fall under the regime of the client processes that read and write the
object’s state. A site-wide cache at a Web proxy is an example of a client-initiated store.
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Figure 2: A system model for replicated Web objects.

Stores are organized in a layered fashion as shown in Figure 2. This architecture allows us to sep-
arate replicas managed by servers (permanent and object-initiated stores) from those managed by
clients (client-initiated stores). Whereas permanent stores are responsible for implementing an ob-
ject’s coherence model, object-initiated and client-initiated stores may offer weaker coherence, but
perhaps offering the benefit of higher performance. Effectively, for some applications, some de-
lay in propagating a change is often acceptable. It is generally up to the client to decide to which
replica he will bind.

3.2 Coherence Models

A coherence model describes the effect of read and write operations by different clients on a possi-
bly replicated object, as viewed by clients of that object. A coherence protocol describes an imple-
mentation of such a model. Consequently, before describing coherence protocols, it is necessary to
first consider the kind of coherence models applicable to Web objects. We make a distinction be-
tween coherence as offered by an object to its set of clients, and coherence as required by a client.
These two classes of coherence models are discussed next.

3.2.1 Object-based Coherence Models

Current Web cache coherence protocols assume Web pages are modified only by their owner. They
provide no support for shared applications that allow concurrent updates on shared state by dif-
ferent clients (like shared white-boards). However, we expect that such applications will become
increasingly popular. Therefore, it is important that our framework offers models that express the
coherence of an application shared by concurrently operating clients.

Many studies, especially in the distributed shared memory systems community have addressed the
definition of such coherence models. We believe the following are relevant for current and future
Web applications.

The sequential coherence model [8] requires a global ordering of operations on an object. Al-
though such a coherence model is hard to implement efficiently, many applications will ac-
tually need it. For performance reasons, its implementation may be restricted to permanent
stores, combined with only a simple propagation of updates to other store layers.
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The PRAM coherence model [9] guarantees that writes made by a given client appear on every
store in the order in which they have been issued. As this coherence model does not require
global coordination neither between stores or clients, it can be implemented efficiently by
tagging every update with the updater and a local sequence number. This model is particu-
larly useful when clients update Web objects incrementally. Consider, for example, a shared
bibliographic database. A client may decide to add a new record to the database, and later
to update one of its fields. The PRAM coherence model prescribes that the field update at a
store is delayed until the record has been added to that store’s replica of the database. The
FIFO coherence model is an optimization of the PRAM model. In this case, a write request
from a client is honored if it is more recent than the latest write from that same client. Other-
wise, the request is simply ignored. This model will prove better performance when clients
overwrite a Web object instead of performing incremental updates.

The causal coherence model [1, 7] is also a weaker form of coherence since the ordering of op-
erations must be guaranteed only between causally related operations. For example, such a
coherence model could be applied to a Web forum, like a newsgroup, where a participant’s
reaction makes sense only if the audience has received the message that triggered the reac-
tion. This ordering must be ensured at every store.

The eventual coherence model is the weakest form of coherence since it ensures that eventually
updates are propagated but without any ordering constraints.

After deciding on a Web object’s coherence model, a programmer selects a coherence protocol. The
programmer also specifies which store layers have to support the model. For example, a groupware
editor requires strong coherence at every store layer. On the other hand, a home page may require
strong consistency only at permanent stores; it may be sufficient to support eventual consistency at
the other two layers.

3.2.2 Client-based Coherence Models

A client-based coherence model allows a client to express his own coherence requirements. This
is useful either when the object-based model is not sufficient from a client’s point of view, or when
no coherence is offered. Client-based coherence is applied separately for each client possibly in
combination with the object-based coherence model.

Client-based coherence models are derived from the session guarantees developed in the Bayou
system [12]. Bayou provides mobile users weak consistency support in a replicated database. We
have retained their models, although there are a number of differences. First, we attempt to guar-
antee coherence rather than only check whether the coherence requirements are satisfied, as is done
in the Bayou system. Second, we combine client-based models with object-based ones in a single
framework.

The client-PRAM coherence model (equivalent to the Monotonic Writes scenario in Bayou) is
the same as the object-based PRAM model but now restricted to only one client.

The client-causal coherence model (equivalent to the Writes Follow Reads scenario in Bayou)
allows a client to view the execution of its operations with respect to those of other clients
on which its own operations depend. The writes appear on every store in the same order
respecting dependencies between operations. For example, if a client reacts to an electronic
newspaper article, the article and then the reaction must appear in that order on every store
to make any sense.
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The Read Your Writes coherence model as defined in Bayou, is local to a client and to the store
it accesses. An object is consistent according to this model if the effects of every write by a
client are visible to all subsequent reads by that client. We return to this model in Section 4.

The Monotonic Reads Coherence model has also been defined in Bayou. The model prescribes
that two subsequent reads, possibly at different stores, are based on copies updated by all
writes preceding the first read operation. For example, consider a Web page replicated at
two different stores S1 and S2. If a client first reads the page from S1 and later again from S2,
then the second copy should be the same as the one read on S1, or an updated version thereof,
but not an earlier version.

The strength of our approach is that we can combine object-based and client-based models into a
single framework. Object-based models represent a developer’s view on consistent replication of
an object; client-based models express the preferences of a single client. Moreover, we have sepa-
rated the functionality of an object from consistency issues in the face of caching and replication,
by isolating coherence protocols in replication subobjects. The standardized interfaces offered by
our model allow us to dynamically update strategies. For example, when a client binds to a store
and requests support for some client-based coherence model, the replication subobject of the store
is easily augmented to integrate the implementation of the new coherence model. Not every com-
bination of object-based and client-based model makes sense, however. For example, if the object
offers sequential consistency, then it automatically offers every client-based model as well. On the
other hand, if only PRAM consistency is offered, a client may decide to impose the Monotonic
Reads model as well. An example of how these coherence models may be combined usefully is
given in Section 4.

The flexibility offered by our approach need not always be experienced as a benefit to the casual
user. Developers and clients of Web documents have to be aware of the effects of the various coher-
ence models, which may not always be obvious. We plan to provide default solutions and simple
guidelines to assist users where necessary.

3.3 Implementation Parameters

Which protocol should actually be used for a specific model may depend on such issues as read/write
ratios, the number of clients simultaneously bound to an object, etc. We have defined a set of im-
plementation parameters that are used to specify when, how, and by whom coherence is managed.
An overview of the most common implementation parameters is shown in Table 1. These parame-
ters must be set by the programmer of a Web object at initialization once the object-based coherence
model has been chosen.

In addition to these common parameters, we have defined two other parameters tightly related to
object-based and client-based models. They refer to the reaction of a store when it notices that co-
herence requirements for a given model are not satisfied. A store containing an outdated replica
may either passively wait until an update arrives, or, alternatively, demand that its copy is imme-
diately updated. A store’s reaction to a copy that becomes outdated, is modeled by an outdate
reaction parameter.

The choice of implementation is important since it may have a large effect on performance. For
example, if a highly replicated Web object is often modified, it may be more efficient to implement
a periodic update in which several updates are aggregated, instead of an immediate one. In contrast,
if the Web object is seldom modified, then an immediate coherence transfer type avoids unnecessary
network traffic. Ideally, the implementation parameters can be modified dynamically as the usage
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Table 1: Implementation parameters for replication policies

Parameters Values Meaning
Consistency
propagation

- update
- invalidate

This parameter specifies how coherence is man-
aged: either by updating or invalidating replicas
when changes occur on an object.

Store - permanent
- permanent and

object-initiated
- all

This parameter specifies which kind of store im-
plements the object-based coherence model.

Write set - single
- multiple

This parameter gives the number of simultane-
ously writers.

Transfer
initiative

- pull
- push

This parameter describes who is in charge of the
propagation of coherence information: either co-
herence information is pushed to the replicas or
they pull it from other replicas.

Transfer
instant

- immediate
- lazy (periodic or other

criteria)

This parameter specifies when the coherence is
managed: either as soon as a change occurs, or
periodically whereby successive updates can be
aggregated.

Access
transfer type

- partial
- full

This parameter specifies whether only part of the
Web document or the entire document is retrieved
when accessed.

Coherence
transfer type

- notification
- partial
- full

This parameter specifies whether coherence is
managed on only part of the Web document, or on
the entire document. The notification value means
that no invalidation or update is sent, but only a
message to inform a store that a change occured.
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characteristics of an object changes. However, self-adaptive policies are beyond the scope of this
paper; they are a subject of future research.

4 An Example: Web Objects

To show how a Web object can be implemented as a distributed shared object and how the two
levels of coherence can be integrated, we have implemented a prototype in Java, described in this
section.

4.1 Combining PRAM and Read Your Writes Consistency Models

Consider a conference home page giving information about the technical program, registration, au-
thor guidelines, accommodations, and so on. The Web master of the conference incrementally up-
dates the page when new information becomes available. Figure 3 depicts how the system is mod-
eled. Using our terminology, the Web master of the page is represented by a client (client M). In-
terested participants are also modeled as clients (client U). The Web server where the page is stored
is represented by a permanent store. Clients have caches modeled as client-initiated stores. Pages
are cached on demand as usual. There are no object-initiated replicas in the system.

Figure 3: Overview of the example Web object’s design.

As updates are performed incrementally and because we have a single permanent store, we have
chosen to apply the PRAM object-based coherence model. The PRAM coherence model is applied
to all replicas (store implementation parameter is thus set to all). The Web master writes directly to
the Web server whereas all reads are performed from the cache. When the Web master updates the
Web server, he must be able to check whether the write has been done correctly. For that purpose,
the Web master uses a read your writes (RYW) client-based coherence model. As the PRAM object-
based coherence model is sufficient for clients, no other client-based coherence model is specified
in the system. The partial updates are pushed periodically to caches (transfer instant parameter set
to periodic, transfer initiative parameter set to push and coherence transfer type parameter set to
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partial). When the Web server detects that PRAM coherence requirements have been violated, it
simply waits until a new write arrives (object-outdate reaction parameter set to wait). However,
if the cache M detects a violation in the RYW coherence requirements, it sends a request to the
Web server to obtain the correct update (client-outdate reaction parameter set to demand). The
implementation parameters are summarized in Table 2.

Table 2: Replication strategy parameter values for the example

Coherence propagation: update
Store: all
Write set: single
Transfer initiative: push
Transfer instant: lazy (periodic)
Access transfer type: full
Coherence transfer type: partial
Object-outdate reaction: wait
Client-outdate reaction: demand

4.2 Globe Implementation

We have built a prototype in Java 1.1 on top of the Internet. We assume reliable communication but
ordering is managed at the application level. We return to this below. The conference home page
is implemented as a distributed shared object. Each client, or store, is represented as a local object
and all entities have the same semantics object. The communication objects are all the same as well
and implement point-to-point communication facilities (send, receive and send/receive functions).
Figure 4 depicts the system implemented in Globe. The Web master and client applications are
existing Web browsers.

Clients

The clients do not implement the semantics object. Basically, clients only translate method calls to
messages which are sent to the caches (or server) to retrieve (or write) data.

Client U implements no coherence model at all. Read requests are immediately forwarded and
executed.

Client M handles method calls from the Web master application. Its replication object implements
PRAM object-based coherence as well as RYW client-based coherence. For PRAM coherence, a
unique write identifier (WiD) is assigned to each new write, composed of the client’s identifier and
a sequence number (WiD client id sequence number ). Write identifiers are used by stores to
check the ordering of writes. To implement RYW coherence, the identifier of the last performed
write and the identifier of the store on which it has been performed has to be saved. This
dependency WiD store id is transmitted with a read request to the cache.

Stores

In contrast to clients, stores implement the Web page by means of semantics object. Each store im-
plements a version number (expected write client ) that contains the value of the sequence number
of the last performed write or update for each client.
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Figure 4: Implementation of the example in Globe.

The replication object of cache U implements PRAM coherence. Upon receipt of an update (which
can come only from the Web server), the sequence number of the incoming update’s WiD is com-
pared to the client’s version number (expected write clientM ). If they are equal, then all previous
updates have been performed and the new update is performed as well. Otherwise, the update re-
quest is buffered and the store waits until the next one.

The replication object of cache M (the Web master’s cache) implements object-based PRAM and
client-based RYW coherence. PRAM coherence is implemented as in the user’s cache. To imple-
ment RYW coherence, expected write clientM is compared to dependency sequence number on
each incoming read request. If the write expected by the read operation has already been propa-
gated, the read is immediately performed. Otherwise, the cache first demands an update from the
Web server (demand update message).

The replication object of the Web Server is responsible for performing incoming writes according
to the PRAM coherence model. This is done exactly the same as in the caches. In addition, the
replication object has to multicast updates either periodically or when an update has been demanded
from cache M. Therefore, the communication object of the Web server offers a multicast facility in
addition to the point-to-point communication facility.

It is important to note that the replication objects all have the same interface. This means that the
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flow of control within the local object is more or less the same everywhere. However, the internals
of the replication objects differ as each implements its own part of a coherence protocol.

In our prototype, we have used TCP/IP for the sake of simplicity to provide reliable communica-
tion. The ordering that a TCP connection provides, however, does not interest us since we leave the
ordering guarantees to the application. Effectively, a coherence protocol inherently leads to order-
ing constraints. This means that as soon as a coherence model is implemented for a Web object, all
ordering constraints imposed by that coherence model are also implemented. Moreover, ordering
constraints may even allow reliable communication to be implemented at no additional cost. For
example, in our prototype, we could have used UDP, instead of TCP/IP, for more efficiency and
directly use the PRAM object-based model to implement reliability. Then, simply by changing the
object-outdate reaction parameter from wait to demand, reliability comes as a side-effect of the
coherence model. These observations are in line with the various discussions on end-to-end argu-
ments in system design [11], and show the impact that a coherence model and its implementation
may have on implementing scalable solutions.

5 Conclusions

In this paper, we have presented a framework for consistent, replicated Web objects. This frame-
work uses a symmetric object-based model which allows the encapsulation of policies for distri-
bution, replication, and coherence on a per-object-basis. The goal of our architecture is to achieve
scalability and efficiency in any worldwide distributed system.

In our architecture, both clients and servers participate in implementing an adequate coherence pro-
tocol for a given Web object. Servers exploit their knowledge about the nature of the Web object
and its access patterns, to optimally replicate the state of the object and apply an appropriate coher-
ence protocol. In addition, clients can express their own coherence requirements. This approach
will contribute to better global performance. A practical implementation of a conference Web home
page has been developed in Java to show the flexibility of our approach.

Some related work has been done to change current Web caching, such as giving more flexibility or
more control to the server. In Wessels’ approach [14], servers are allowed to explicitly grant or deny
a client permission to cache an object. In push-caching [5], servers use their knowledge of access
patterns to optimally distribute popular objects to other servers. This approach is comparable to
installing object-initiated stores in our architecture. However, it does not address coherence models
for Web objects. The W3objects system [3] has similar aims as ours. However, in the W3objects
model, coherence protocols are not encapsulated within an object but are under the control of a
separate object administrator, thus limiting the scalability of the approach. Moreover, their goal is
to provide a highly visible caching mechanism whereas we aim at maximum transparency. Also,
W3objects do not address coherence models for Web objects as we do.

The main contribution of the research described in this paper is to first address coherence models
required for current and future Web objects. As interfaces are fully standardized in our object-based
infrastructure, new coherence models can easily be integrated within our framework. Thus our ap-
proach provides the flexibility needed in an evolutionary system such as the Web. We are currently
working on a complete implementation of the framework. Future research consists of defining self-
adaptive policies by which implementation parameters can be changed dynamically. We plan to
exploit our approach for building wide-area distributed Web servers.
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