
The Globe Distribution Network

A. Bakker, E. Amade, G. Ballintijn
Department of Mathematics and Computer Science

Vrije Universiteit
Amsterdam, The Netherlands

I. Kuz
Delft University of Technology

P. Verkaik, I. van der Wijk, M. van Steen, A.S. Tanenbaum
Vrije Universiteit Amsterdam

arno@cs.vu.nl, http://www.cs.vu.nl/globe/

Abstract

The goal of the Globe project is to design and build a
middleware platform that facilitates the development of
large-scale distributed applications, such as those found
on the Internet. To demonstrate the feasibility of our de-
sign and to test our ideas, we are currently building a
new Internet application: The Globe Distribution Net-
work. The Globe Distribution Network, or GDN, is an
application for the efficient, worldwide distribution of
free software and other free data. The GDN can be seen
as an improvement to anonymous FTP and the World
Wide Web due to its flexibility and extensive support for
replication. This paper describes the design of the GDN.
We start by explaining how the replication facilities of
the Globe middleware are used to make the GDN effi-
cient, and how these facilities are implemented. Next,
we present the architecture of the GDN and discuss how
the Domain Name System can be used as a first approach
towards a worldwide service for naming software pack-
ages and other entities. This is followed by an analysis
of the security requirements for the GDN and measures
taken to satisfy these requirements. We hope to make
Globe and GDN itself available for free under the BSD
license by 2001.

1 Introduction

Developing a large Internet application is a difficult task
due to the complex nonfunctional aspects that have to be
taken into account. A developer has to deal with a po-
tentially very large number of users, high communica-
tion delays, security threats, and machine and network
failures. The goal of the Globe project is to design and
build a middleware platform that facilitates the develop-

ment of worldwide distributed applications by providing
extensive support for handling all of these complex non-
functional aspects [van Steen et al., 1999].

As replication is a powerful technique for dealing with
many of these aspects, support for flexible replication
plays an important role in the Globe middleware. In
Globe, processes communicate by invoking methods on
a special kind of distributed object, called a distributed
shared object (DSO). What makes a distributed shared
object special is that we can vary the replication strat-
egy on a per-object basis, allowing the way the object
is replicated to be governed completely by object- and
application-specific requirements with respect to consis-
tency and nonfunctional aspects, such as security and
fault tolerance. Replication and application code are
separated, which means that we can reuse replication
protocols developed for one distributed shared object to
build other DSOs.

The first version of our middleware platform is nearly
complete. To demonstrate the feasibility of our ideas
and the design of our middleware we are currently build-
ing a prototype of a new Internet application using the
Globe middleware. This paper describes the design of
this application, called the Globe Distribution Network.
The Globe Distribution Network, or GDN for short, is
an application for the efficient, worldwide distribution
of data. In the beginning, it will be used for the distribu-
tion of publicly redistributable software packages, such
as the GNU C compiler, Linux distributions and share-
ware. We intend, however, to extend this to other types
of data, such as free digital music, in the future.

Because it deals with the worldwide distribution of data,
the GDN is similar in function to the World Wide Web.



They do differ in one important aspect, however. Al-
though the architecture of the World Wide Web has been
shown to be quite scalable, the WWW does suffer from
performance problems. We think that these problems are
mainly caused by the Web’s limited and inflexible sup-
port for replication. The GDN therefore needs extensive
and flexible replication support. This will be provided by
the Globe middleware, via its distributed shared object
concept. It is therefore better to compare the GDN with
commercial content delivery networks, such as Digital
Island’s Footprint [Digital Island, Ltd., 2000], or wide-
area file systems such as AFS [Howard et al., 1998] or
CODA [Satyanarayanan et al., 1990].

To avoid any confusion: the purpose of the GDN appli-
cation is not to replace the Web or become the world’s
leading distributed file system. It is a research vehicle
which should demonstrate the feasibility of our ideas
about middleware for large Internet applications. The
GDN is a prototype of a system that could one day re-
place the Web as the Internet application for distribut-
ing information, just as the Web has essentially replaced
FTP. Nonetheless, it is a serious application that will be
running and publicly accessible on the Internet.

Throughout this paper we refer to two versions of the
GDN. The first version of the GDN is a limited proto-
type that will run entirely on machines at our univer-
sity in June 2000. The version intended to be used by
the general public is scheduled to be ready by the end
of 2000 and is referred to as the second version of the
GDN. The source code of Globe and the Globe Distri-
bution Network will be made available under the BSD
license by the end of 2000.

The rest of this paper is organized as follows. Section
2 describes the functionality of the Globe Distribution
Network. Section 3 explains how we intend to make the
distribution of software packages efficient by using the
Globe middleware. After this explanation we present the
architecture of the GDN in Section 4. In Section 5 we
describe the naming of software packages and our proto-
type worldwide name service for distributed shared ob-
jects. An analysis of the security requirements and the
concrete measures we take to meet these requirements
are described in Section 6. Section 7 discusses avail-
ability of the various Globe and GDN components and
gives an overview of their current status. A summary of
the paper and our future plans for the GDN can be found
in Section 8.

2 The Globe Distribution Network

The Globe Distribution Network is to be a worldwide
distributed application for the efficient dissemination of
free software packages (e.g. Gimp, teTeX and Linux
distributions) and other free data. We assume, for the
first versions of the application, that a software package
has the following basic properties:

1. It consists of one or more files

2. It has a unique name

3. The collection of files or the individual files that are
part of the package can be very large

The functionality of the GDN is initially simple: it
should be possible to add software packages to the GDN,
retrieve copies of software packages, update them and
remove packages that are no longer of interest.

We currently divide the user community into three
groups: the GDN users, the GDN moderators and the
GDN administrators. GDN moderators are allowed to
create, update and remove software packages. GDN
users are allowed to retrieve packages only. To add a
package to the GDN, GDN users must contact a GDN
moderator. GDN administrators have complete control
over the GDN application and hand out moderator priv-
ileges. In the future we intend to introduce a fourth
group, the GDN maintainers. A GDN maintainer is al-
lowed to manage just the contents of a package. He or
she would typically be the person that also maintains the
software package (i.e., fixes bugs, etc.). In the first ver-
sions we, the Globe team, will play the role of GDN ad-
ministrators, and together with a number of volunteers
act as GDN moderators.

3 Distributing Packages Efficiently

3.1 Flexible Replication

To make software packages available to a worldwide au-
dience they will need to be replicated, for two reasons.
First, there are a potentially very large number of peo-
ple interested in a particular software package and mul-
tiple machines are needed to handle such a load. Second,
wide-area bandwidth is a scarce resource and with inter-
ested people distributed all over the world replicas must
be created close to where the clients are (e.g. in each
country) to avoid wasting bandwidth. This is, in fact, a
trade-off between server capacity (disk space) and band-
width. Another reason for replicating packages close to
clients is the resulting low response time (i.e., a down-



load starts quickly), which is an important usability as-
pect.

However, replication does not come for free. Each
replica of a software package, or, in general, a piece of
information, requires a certain amount of disk space and
also computing resources while it is begin transmitted.
Moreover, there is the management aspect: when repli-
cated data is changed, the different replicas have to be
made consistent again, and adding or removing replicas
to adapt to changes in access patterns is often not fully
automated.

For software packages the cost of replication is not a
problem. Most countries probably have their own repli-
cas of the complete collection of freely redistributable
software packages, distributed over a number of ma-
chines throughout the country. The cost of replication
does become a problem if we start looking at using the
GDN for distributing other types of information. The
amount of data that people want to make available to
the world is enormous (cf. the Web). Furthermore, the
change rates of this data can be much higher.

From this we conclude that for the Globe Distribution
Network to be efficient, we should selectively replicate
the information we are distributing, based on popularity
and update patterns and that the information’s replica-
tion scenario should adapt to changes in its popularity
and rate of change. We use the term replication scenario
to denote a specification of how (using what replication
protocol) and where (which machines should host repli-
cas) information or objects should be replicated.

We have found evidence to support this conclusion. We
analyzed the retrieval and update patterns of our depart-
ment’s Web pages and found that, if we assign a replica-
tion scenario to each Web page that reflects that page’s
individual usage and update patterns, we get significant
improvements in a number of areas compared to situa-
tions in which a single replication scenario is used for the
whole site. In particular, we found that less wide-area
network traffic was generated and the response time for
the end-user improved [Pierre et al., 1999]. Although
this is just one case study, it does suggest that perfor-
mance problems for large-scale data distribution systems
such as the Web and the GDN can be alleviated by intro-
ducing more flexible replication capabilities.

We believe that the ability to selectively replicate data
is something that is required by all large Internet ap-
plications. Therefore, this is an important part of the
Globe middleware. Globe is based on the concept of a
distributed shared object. The most important aspect of

the distributed shared object for the purposes of this pa-
per is that it allows different replication scenarios to be
assigned to each object. The distributed shared object
concept is discussed in detail in the next section.

All data stored in the GDN is stored in distributed shared
objects. For example, every software package is con-
tained in a package DSO. By assigning the right replica-
tion scenario, we can make efficient use of the available
servers and bandwidth.

3.2 Globe’s Distributed Shared Objects

The distributed shared object is the unifying concept in
the Globe system [van Steen et al., 1999]. It provides
a uniform representation of both information and ser-
vices and implementation flexibility by decoupling in-
terface and implementation. The fundamental idea be-
hind the design of the distributed shared object is that
it is physically distributed. Most current middleware,
such as CORBA [Object Management Group, 1999] and
DCOM [Eddon and Eddon, 1998], view a distributed
object as an object running on a single machine, possi-
bly with copies on other machines. This object (group)
is presented to remote clients as a local object by means
of proxies. In contrast, we view a distributed shared
object as a distributed entity, a conceptual object dis-
tributed over multiple machines with its local represen-
tatives (proxies and replicas) cooperating to make the
object’s functionality available to local clients. In other
words, a distributed shared object is a wrapper encom-
passing all the object’s proxies and replicas, rather than
a remotely accessible object implementation. This view
is illustrated in Figure 1(a).

Our view of what a distributed object is gives us flexibil-
ity with respect to replication, caching and distribution
of the object’s state. A distributed shared object encap-
sulates its own replication and distribution strategy. The
local representatives of an object take care of the repli-
cation and distribution of the DSO’s state and all nec-
essary communication. Only minimal (protocol inde-
pendent) support is required from the run-time system.
This means that the way the state of the object is repli-
cated can now be governed completely by object- and
application-specific requirements with respect to consis-
tency and nonfunctional aspects, such as security, and
is under no restriction from the supporting middleware
platform. However, we do not leave everything to the
application programmer. The structure of local represen-
tatives, described below, separates replication and com-
munication code. This means that a programmer can
write his or her own replication protocol based on ex-
isting communication protocols. Furthermore, we pro-



Network

A1 A2

A3 A4A5

Distributed
Object

Local
Representative

Address
Space

(a)

Replication
subobject

Semantics
subobject

Control
subobject

Communication
subobject

(b)

Figure 1: (a) A distributed shared object (DSO) dis-
tributed over four address spaces (A1-A4). In each ad-
dress space the DSO is represented by a local represen-
tative. Address space A5 does not currently contribute
to the distributed shared object. (b) A local representa-
tive is composed of a number of subobjects. The exact
composition depends on the role the local representative
plays in the distributed shared object.

vide the application programmer with implementations
of frequently used replication protocols.

3.3 Implementation of the Globe Object Model

In this section we describe how this object model can
actually be implemented. Logically, a DSO consists of
multiple local representatives. A local representative re-
sides in a single address space and communicates with
local representatives in other address spaces. Each lo-
cal representative is composed of several subobjects as
shown in Figure 1(b). A typical composition consists of
the following four subobjects.

Semantics subobject: This is a local object that imple-
ments (part of) the actual semantics of the distributed
object. As such, it encapsulates the functionality of the
distributed object. The semantics subobject consists of
user-defined primitive objects written in programming
languages such as Java, C, or C++. These primitive ob-
jects can be developed independent of any distribution
or replication issues. In the case of a package DSO this
subobject would implement all the DSO’s methods, such
as methods for adding files to a package, for listing the
files currently in a package and for retrieving the con-
tents of a file.

Communication subobject: This is generally a system-
provided subobject (i.e., taken from a library). It is
responsible for handling communication between parts
of the distributed object that reside in different address
spaces, usually on different machines. Depending on
what is needed from the other components, a communi-
cation subobject may offer primitives for point–to–point
communication, multicast facilities, or both.

Replication subobject: The global state of the dis-
tributed object is made up of the state of the semantics
subobjects in its local representatives. A DSO may have
semantics subobjects in multiple local representatives
for reasons of fault tolerance or performance. In partic-
ular, the replication subobject is responsible for keeping
the state of these replicas consistent according to some
(per-object) coherence strategy. Different distributed ob-
jects may have different replication subobjects, using
different replication algorithms. For example, one ob-
ject may actively replicate all the state at all the local
representatives while another may use lazy replication.
An important observation is that the replication subob-
ject has standard interfaces.

Control subobject: The control subobject takes care of
invocations from client processes, and controls the inter-
action between the semantics subobject and the replica-



tion subobject. This subobject is needed to bridge the
gap between the user-defined interfaces of the semantics
subobject, and the standard interfaces of the replication
subobject.

A key role, of course, is reserved for the replication sub-
object. Replication (and communication) subobjects are
unaware of the methods and state of the semantics sub-
object. Instead, both the replication subobject and the
communication subobject operate only on opaque invo-
cation messages in which method identifiers and param-
eters have been encoded. This independence allows us
to define standard interfaces for all replication and com-
munication subobjects. This approach is comparable
to techniques applied in reflective object-oriented pro-
gramming [Kiczales et al., 1991].

3.4 Binding to a Distributed Shared Object

To access a distributed shared object (i.e., to invoke its
methods), a client first needs to install a local represen-
tative of the object in its address space. The process of
installing a local representative in an address space is
called binding. Before we explain binding, however, we
first have to describe how naming is done in the Globe
middleware.

Each DSO in Globe is identified by a worldwide unique
object identifier (OID). This object identifier, or ob-
ject handle, never changes during the lifetime of the
object and, most importantly, is location independent.
The actual locations of the DSO, that is, where (net-
work address, port number) its local representatives are
located, and how (which replication and communica-
tion protocol) they can be contacted is maintained by
a special service, the Globe Location Service (GLS)
[van Steen et al., 1998]. Typically only local represen-
tatives acting as replicas are registered in the GLS. The
information that identifies the location of a local repre-
sentative and how to talk to it is called a contact address.
The set of contact addresses stored in the GLS for a spe-
cific DSO describes that object’s replication scenario.

Object identifiers are long strings of bits and thus unus-
able for humans. We therefore have an additional name
service which maps symbolic names to object identi-
fiers. This results in two-level naming scheme: symbolic
object names are mapped to object identifiers by the
Globe Name Service (GNS) which are, in turn, mapped
to one or more contact addresses for the object by the
Globe Location Service. The inner workings of the
Globe Location Service are described in the next section.
Our prototype of the Globe Name Service is discussed in
Section 5.

Directory Node

Domains

Figure 2: The Globe Location Service divides the In-
ternet into a hierarchy of domains, represented by rect-
angles in the figure. Associated with each domain is a
directory node, represented by a little box.

Binding to a DSO now works as follows. For brevity we
assume the client has already acquired an object iden-
tifier of the DSO whose methods it wants to invoke.
The client calls a special function in the run-time sys-
tem, named bind, and passes it the object identifier. The
run-time system takes the OID and asks the Globe Lo-
cation Service to map this OID to one or more contact
addresses. In general, the returned contact addresses will
identify the nearest replica of the DSO. Using the infor-
mation in the contact addresses, the local run-time sys-
tem then creates a new local representative in the client’s
address space and integrates this new representative into
the DSO. This involves loading the implementation of
the local representative (i.e., the appropriate set of sub-
objects) from a nearby implementation repository in a
way similar to remote class loading in Java.

3.5 The Globe Location Service

To efficiently map object identifiers to contact addresses
on a worldwide scale, we organize the Internet into a hi-
erarchy of domains. The domains at the bottom of the
hierarchy represent moderately-sized networks, such as
a university’s campus network or the office network of a
corporation’s branch in a certain city. The next level in
the hierarchy is formed by combining these leaf domains
into larger domains (e.g. representing the city’s MAN).
This procedure is applied recursively until the root do-
main which encompasses the whole Internet. Note that
domains in this hierarchy do not necessarily correspond
to DNS domains.

With each domain in the hierarchy we associate a direc-
tory node, as shown in Figure 2. Each directory node



keeps track of the locations of the distributed shared ob-
jects in its associated domain, as follows. For each DSO
that has local representatives in the node’s domain, a
directory node stores either the actual contact address
(network address and protocol information for contact-
ing the representative) or a set of forwarding pointers.
A forwarding pointer points to a child directory node
and indicates that a contact address can be found some-
where in the subtree rooted at that child node. Because
a DSO may consist of multiple replicas located in differ-
ent child domains, a directory node may store more than
one forwarding pointer per DSO. Normally, the contact
addresses are stored in the leaf directory nodes. How-
ever, storing the addresses at intermediate nodes may,
in the case of highly mobile objects, leads to consider-
ably more efficient look-up operations, as we explained
in [van Steen et al., 1998]. This design has some (ap-
parently) radical consequences. For each DSO on the
Internet, there is a tree of forwarding pointers from the
root node to the directory nodes that contain the actual
contact addresses. Before we explain that this, in fact,
does not create a single point of failure or bottleneck,
we first look at how object identifiers are resolved.

During binding, the (run-time system of a) client sends a
look-up request to the directory node of the leaf domain
the client is located in. The leaf node checks if it has a
contact address for that DSO in its tables (i.e., it checks
if the DSO has a representative in this (leaf) domain).
If not, it forwards the request to its parent node, which,
in turn, checks its tables. This process is repeated until
either a contact address for the object is found or a for-
ward pointer is discovered. In the latter case, the look-up
operation continues down into the subtree pointed to by
the forwarding pointer and follows the tree of forward-
ing pointers to the node in that subtree that stores the
actual contact address. If multiple forwarding pointers
are found, one is chosen at random.

The advantage of this design is, that if a distributed
shared object has a representative near to the client, the
Globe Location Service will find that representative us-
ing only “local” communication. In other words, the cost
of a look up increases proportional to the distance be-
tween client and nearest representative.

The apparent problem with this design is that the root
node, or in general, the higher-level nodes in the hi-
erarchy have to store a lot of forwarding pointers and
handle a lot of requests (if representatives of the DSO
are not located near their prospective clients). Our so-
lution to this problem is to partition a directory node
into one or more directory subnodes. Each subnode
is made responsible for a specific part of the object-

identifier space via a special hashing technique and can
run on a separate machine. For further details we refer
to [Ballintijn and van Steen, 1999a].

4 The GDN Architecture

Having explained the distributed shared object concept,
we can now describe the basic architecture of the GDN
application. The core of the application is a set of Globe
Object Servers (GOSs), running on machines all over
the world. A Globe Object Server is an application-
independent daemon for hosting replicas of any kind of
distributed shared object. Globe Object Servers allow
replicas to save their state during a reboot and recon-
struct themselves afterwards. The set of GOSs hosts the
replicas of the DSOs containing the software packages.

To access the contents of a package DSO, a user would
normally have to start up a tool that binds to the dis-
tributed shared object and allows the user to invoke
methods on that package DSO. The disadvantage of this
approach is that users have to run a dedicated client to
access the GDN. We want to make the threshold for
users to access the GDN as low as possible, and have
therefore decided to make the GDN accessible through
standard Web browsers. Furthermore, being able to ac-
cess the GDN via a Web browser allows use to easily
integrate it with the World Wide Web.

As such the GDN also consists of a number of modi-
fied HTTPDs running on machines all around the world.
In our first versions they will be colocated with the
Globe Object Servers. These modified, or GDN-enabled
HTTPDs work as follows. We use URLs that have em-
bedded in them the name of a package DSO. The GDN-
HTTPD extracts this object name and binds to the DSO.
The HTTPD then invokes the appropriate method(s) on
the package DSO’s newly created local representative.
For example, it could call listContents() to obtain the list
of files contained in the package, which is subsequently
reformatted into HTML and sent back to the requesting
browser. If the URL designates a particular file in the
package, the HTTPD calls the getFileContents() method
and sends back the returned content. The local repre-
sentative that is installed in the GDN-HTTPD during
binding may act as a replica for the DSO, in which case
downloading a software package is fast.

Users communicate with only one GDN-HTTPD, in par-
ticular, with the one nearest to them. This HTTPD is
the user’s access point to the GDN. We currently re-
quire users to manually select this HTTPD, using a list
published on a central web site. Once connected to the



GRP

HTTP

GRP

GRP
HTTP GOS

GOSHTTPD

Proxy HTTPDBrowser

ModTool

Browser

Figure 3: The architecture of the GDN application. Ovals represent sites, rounded boxes represent programs running
at those sites, arrows and thick lines represent communication. GRP stands for Globe Replication Protocol. ModTool
is the moderator tool. Omitted from this figure are the programs belonging to the Globe Location and Name Services.

GDN, however, the storage location of software pack-
ages becomes transparent. The GDN will transparently
find the nearest replicas using the Globe Location Ser-
vice.

Using standard Web browsers is fine, but we would also
like people to use the GDN directly. To this extent
we allow people to run GDN-HTTPDs on their own
machines. We refer to these GDN-HTTPDs as GDN-
enabled proxy servers, or GDN-proxy servers for short.
The last element in the architecture are the moderator
tools. A GDN moderator (see Section 2) can add, up-
date and delete package DSOs from the GDN, using a
special tool. Figure 3 shows the complete architecture
of the GDN.

5 Naming Packages

Most software packages have unique names and people
should, of course, be able to retrieve and update pack-
ages from the GDN using that name as a key. In addi-
tion, we would like the GDN to support some form of
attribute-based search, such that people can look for a
software package with some specific functionality.

We introduce a hierarchical name space in which the
first part of the name gives some information about
what a software package does. For example, the
Gimp graphics package would be named something like
/apps/graphics/Gimp to indicate that it is a package for
manipulating graphics. A package is allowed to have
more than one name so we can have multiple classifica-
tions. Having a hierarchical name space also allows us
to name DSOs other than packages in a separate name
subspace in the future. The exact structure of the name
space (/apps, /os, /middleware, ...) is outside the scope

of this paper.

As described above, the assignment of human-readable
names to distributed shared objects is handled by the
Globe Name Service (GNS). The GNS found in the cur-
rent Globe middleware is a prototype version based on
the Domain Name System [Mockapetris, 1987]. The
reason for using DNS is that we wanted to build a rea-
sonable name service in a short period of time, so we
took an existing system that was suitable for our pur-
poses.

DNS maps symbolic names to other types of data and
scales to large numbers of users. DNS works under
the assumption that the mapping of names to addresses
does not change very frequently. This allows the DNS
to cache entries at client-side resolvers and to replicate
parts of the database on multiple machines. Combined
with distributing the mapping of names to addresses
across hosts this results in a scalable system. We can
make that same assumption: we expect our name-to-
object-identifier mappings to be stable, because of the
two-level naming scheme of Globe.

The DNS-based version of the Globe Name Service
works as follows. Globe object names have a one-to-one
mapping to valid DNS names. These DNS names point
to a TXT DNS Resource Record that contains the en-
coded object identifier for the DSO. To map a Globe ob-
ject name, say /nl/vu/cs/globe/somePackage, to a Globe
object identifier, the object name is first translated to a
DNS name, in this case somePackage.globe.cs.vu.nl.
This DNS name is then resolved using the normal DNS
name resolution mechanism and returns a TXT record
from which the object identifier is extracted.

An advantage of this approach is that there is a global



name space for objects (the DNS name space) and any-
one in control of a DNS domain can create their own
subspace in this name space which is immediately ac-
cessible to anyone in the world. There are also disad-
vantages. Firstly, DNS places restrictions on name syn-
tax (i.e., which characters can be used in a name and
how long the individual parts of a name can be) which
have been lifted in modern name systems. Secondly,
DNS domain names are always part of object names,
which is not always desirable. Thirdly, the current DNS
is insecure because it is vulnerable to spoofing attacks
[Vixie, 1995]. We come back to this issue in Section 6.

For the Globe Distribution Network, we intend to work
around the second disadvantage. We do not want users
to see the DNS domain, we want them to be able to use
names such as /apps/graphics/Gimp. To achieve this we
use only a single DNS leaf domain to register the names
of package DSOs. This means that we can omit the DNS
domain name part from the package DSO’s name, given
that we also modify the GDN software to always prefix
this DNS domain name before it is passed to the Globe
Name Service. We refer to this DNS leaf domain as the
GDN Zone.

We expect that this will not cause problems for the first
two versions of the GDN. For these versions, we con-
trol the addition and naming of package DSOs to the
GDN and we can distribute the load by creating multi-
ple authoritative name servers. The number of updates
to our zone can be kept low by batching them. For
later versions we hope to replace the DNS-based pro-
totype with a GNS based on distributed shared objects
[Ballintijn and van Steen, 1999b].

6 Security

6.1 Security Requirements

An important aspect of any new Internet application is
security. We discuss security of the Globe Distribution
Network in three parts. First, we identify the security re-
quirements for the GDN. We start by identifying the re-
quirements at a high level of abstraction and then trans-
late them into more specific requirements. Second, we
describe the security situation, that is, the assumptions
we make about the machines on which the GDN will run
and their network environment. Finally, we describe the
concrete measures we take to satisfy the identified se-
curity requirements given the environment in which the
GDN will operate.

An important security requirement is that the GDN ap-

plication is protected against unauthorized use. It should
not be possible to use the GDN for the unlawful distri-
bution of commercial software, copyrighted music and
such. In the beginning, the GDN will be used primarily
for distributing software packages which results in two
additional security requirements: attackers should not be
able to violate the integrity of the software being dis-
tributed and users of the GDN should be assured of the
origin of the software. Another requirement is availabil-
ity. Like the Web and FTP, the GDN application should
be highly available and measures should be taken to fend
off attacks intended to stop the application from operat-
ing. Other factors threatening availability are host and
network failures. How these failures are handled in the
GDN, and more general, in the Globe middleware is still
an open research issue, but replication is, of course, one
technique. These high-level requirements can be trans-
lated into more specific requirements, as follows.

Unauthorized Use

Only a GDN moderator should be able to add pack-
ages, names, etc. to the GDN. This (a) prevents people
from filling the GDN with junk packages (i.e., denial of
service through resource allocation) and (b) it prevents
the GDN from being used for the illegal distribution of
copyrighted data. We can further split this up into a num-
ber of subrequirements.

Adding and Removing Packages Only a moderator
should be able to add and removing packages to the
GDN. Adding a package DSO consists of a number of
steps, which are executed by the moderator tool (see
Section 4). The creation of a new package DSO starts
with the definition, by the moderator, of the package’s
replication scenario. Recall that the replication scenario
of a DSO describes how (using what replication proto-
col) and where (which machine(s) should host replicas)
a DSO should be replicated. The moderator tool will
present the moderator with the choice of available repli-
cation protocols and the set of available Globe Object
Servers.

When the replication scenario has been defined, the
moderator tool starts sending commands to the chosen
Globe Object Servers. It starts by sending a “create first
replica” command to one (randomly chosen) GOS in the
scenario. This Globe Object Server constructs a local
representative for that DSO in its address space, and reg-
isters a contact address for this local representative in the
Globe Location Service. As part of the registration, an
object identifier is allocated for the DSO by the GLS.
This object identifier is returned to the moderator tool.
The other GOSs are then sent “bind to DSO � OID � ,



create replica” commands. The replicas they create are
also registered with the GLS.

The final step in creating a package DSO is register-
ing a name for it in the Globe Name Service. To this
extent the moderator tool calls a library routine which
communicates with the GNS. In particular, this library
routine contacts the so-called GNS Naming Authority for
the GDN Zone. This is the daemon that sends DNS UP-
DATE messages [Vixie et al., 1997] to the name servers
responsible for the GDN Zone, in response to add and
remove requests from clients.

Looking at this procedure, we can derive three security
subrequirements:

1. A Globe Object Server should accept only com-
mands sent by a GDN moderator.

2. The Globe Location Service should accept only ob-
ject registrations (and deregistrations) from Globe
Object Servers which are officially part of the
GDN.

3. A GDN Naming Authority should accept only up-
dates from moderator tools operated by official
GDN moderators.

Modifying Packages Without loss of generality, we
can say that to ensure the integrity of the data inside a
package DSO, Globe Object Servers and GDN-enabled
HTTPDs (i.e., the processes potentially hosting replicas
of the DSO) should not accept state-modifying method
invocations and state update messages from unautho-
rized senders. Authorized senders are: (1) a modera-
tor tool operated by an official GDN moderator and (2)
Globe Object Servers that are part of the GDN (e.g. a
Globe Object Server acting as master replica in a mas-
ter/slave replication protocol). This is, of course, not a
sufficient condition. We should also protect servers from
direct tampering through break ins on the machines they
are hosted on.

Availability

People should not be able to crash our critical servers,
nor render them inoperable using bogus protocol mes-
sages. The critical servers in the GDN are:

� Location Service directory nodes and auxiliary
GLS daemons

� Object Servers

� GDN-enabled HTTPDs

� DNS servers and auxiliary daemons used by the
DNS-based GNS

6.2 Operating Environment

We assume the following security situation. The differ-
ent parts of the GDN application run on machines dis-
tributed all over the Internet, however, the critical parts
of the application, such as the Globe Object Servers, the
Location Service’s nodes and moderator tools run only
on secure machines. By secure we mean that only au-
thorized personnel can install software on them, log in,
etc. We call these machines the GDN hosts. For the first
versions of the GDN we assume that the networks con-
necting the GDN hosts cannot be tapped by attackers.
These networks are not, however, firewalled, so anyone
on the Internet can send network packets to these hosts.

We consider the parts of the application that are running
on users’ machines to be insecure. These are the GDN-
enabled proxy servers and the users’ browsers (see Sec-
tion 4). Furthermore, we assume the connections be-
tween the GDN hosts and the users’ machines are not
secure. The last aspect of the security situation is that the
source code of both the GDN application and Globe are
publicly available, which makes staging an attack sim-
pler.

6.3 Security Measures

As the security framework for Globe is still under devel-
opment and will not be incorporated into Globe before
the end of 2000, we will not be able to use it in the first
versions of the GDN. Instead we will develop a more
limited, GDN-specific security model for these versions.

Because the first (June 2000) version will run in a
controlled environment we will not actually implement
any security measures until the second version. To
secure this version we replace all communication be-
tween GDN parties by integrity-protected and authen-
ticated communication. In particular, all TCP connec-
tions between GDN parties are replaced by connections
secured via the TLS protocol [Dierks and Allen, 1999]
and its predecessor, the Secure Sockets Layer (SSL)
[Freier et al., 1996]).

TLS offers one-way or two-way authenticated commu-
nication channels which are encrypted and protected
against content modification. The idea is that GDN hosts
use two-way authenticated channels for internal commu-
nication, and server-side authentication for all commu-
nication with software running on users’ machines (i.e.,
browsers or GDN-proxy servers). This situation is illus-



2

1

4 Proxy

GOSBrowser

Browser GOSHTTPD

HTTPD

ModTool
3 3

Figure 4: We secure the GDN using a transport-layer security library. Communication between GDN hosts, marked
(3) in the figure, is fully authenticated. Communication between GDN hosts and browsers running on users’ machines
(marked (1) in the figure) is authenticated one way: the GDN host authenticates itself to the users’ machines. This is
also the case for communication between GDN hosts and GDN-enabled proxy servers on users’ machines ((2) in the
figure). If desired, a user could configure a GDN-enabled proxy server to also authenticate itself to the local browsers
((4) in the figure), but we consider this a local administrative matter.

trated in Figure 4.

By making sure that sensitive requests, such as state-
modifying method invocations, are executed only when
sent from authenticated hosts (i.e., GDN hosts) attackers
are not able to compromise the integrity of the data con-
tained in the GDN. This also protects software packages
downloaded via browsers from malicious modifications.

For the GDN to work we will, however, still have to ac-
cept network traffic from unauthenticated hosts (in par-
ticular, from users’ machines). This means that attackers
are potentially able to crash the GDN, that is, compro-
mise availability by sending malformed packets which
cause the GDN to crash. We intend to counter these type
of attacks by good programming, avoiding buffer flows,
etc. We will not take extra measures against denial of
service through flooding.

A disadvantage of this scheme is, of course, that we are
paying for something we do not need: confidentiality.
TLS and SSL provide confidentiality as well as authen-
tication and integrity protection. We are interested only
in the latter two. If performance is affected too nega-
tively by the superfluous encryption and decryption we
will have to rethink our security scheme.

This solution seems to be quite feasible in practical
terms. To implement this security scheme we need to
rewrite our communication layers to use TLS or SSL.
This should not require too much effort since we have
cleanly separated communication from functional layers
in all our software (e.g. see Section 3.3) and TLS/SSL
builds on the BSD socket interface. Availability of a

TLS/SSL library for Java, the language in which all our
software is written is a potential issue. Fortunately, Sun
has recently published the Java Secure Sockets Exten-
sion (JSSE) [Sun Microsystems, Inc., 1999] that imple-
ments TLS and SSL.

The JSSE package can be legally exported from the US.
The only potential problem is usage restrictions in the
countries where the GDN hosts are located. At this point
in time we have no knowledge about what machines will
be available to us, therefore we cannot asses how serious
a problem this is.

The one case where the TLS scheme cannot be used is
the Globe Location Service. For efficiency reasons this
is based on UDP. We have yet to determine if it is accept-
able to temporarily replace it with TCP, or that we should
implement a specific security scheme for the GLS.

Another special case is the DNS-based Globe Name Ser-
vice. The problem is that this TLS/SSL scheme can be
used to secure only the connection between the GDN
Naming Authority, that is, the daemon which sends DNS
UPDATE messages and the moderator tools that request
these changes. We cannot protect the DNS itself using
this method, for obvious reasons.

The effects of DNS spoofing on the GNS, and the GDN
in general, are limited, however. Basically, attackers
can only prevent resolution of object names to object
identifiers or cause an object name to resolve to an in-
valid object identifier or to one belonging to another ob-
ject. Denial of service attacks on other parts of the GDN
can be prevented if we use IP-addresses instead of DNS



names for internal GDN configuration. Our use of TLS
and BIND’s TSIG security feature (the GNS is build on
BIND8 [Internet Software Consortium, 2000]) will pre-
vent abuse or modification of the GDN’s contents.

7 Availability and Current Status

The source code of the GDN and Globe will be made
available through the Globe WWW site located at

http://www.cs.vu.nl/globe/

The current (March 2000) status of the GDN is as fol-
lows. We are writing the control and semantics object
for the package DSOs and will then start working on the
moderator tool and the GDN-HTTPD. For the latter we
can build heavily on an earlier prototype. The current
status of the Globe middleware can be described best by
looking at what steps are necessary to create a new kind
of distributed shared object and to get an application us-
ing an instance of that kind of DSO up and running.

The application programmer starts by defining the inter-
faces of the DSO1 in Globe’s interface definition lan-
guage (IDL). Using our IDL compiler these interfaces
are translated into Java. Using these translated defini-
tions the application programmer writes two subobjects:
the semantics subobject that implements the actual func-
tionality of this kind of DSO and the control subobject
(see Section 3.3). Control subobjects should be gener-
ated automatically in the future.

These implementations are copied to all machines that
need to run local representatives of DSOs of this kind
and placed in the local implementation repository (cur-
rently a directory in the local file system). The last step
in writing a Globe application is to write the clients that
use the DSO. The Globe part of these clients is easy to
implement. The programmer should initialize the run-
time system and ask it to bind to a given object iden-
tifier, after which the client can access the DSO via its
local representative.

To actually run the application the application program-
mer first has to start and configure the name and location
services. Our current Java implementation of the Globe
Location Service supports the basic look-up, insert and
delete operations and, in addition, persistent storage of
the state of a directory node (location information and
forwarding pointers). We are in the process of adding
a simple crash recovery mechanism to this implemen-
tation. The source code of the Java-based GLS cannot

1Globe uses a model in which an object can have multiple inter-
faces, as in Microsoft’s COM.

be released due to contractual agreements until January
2001. Releases of Globe prior to that time will contain
the GLS in byte-code form.

The DNS-based prototype of the Globe Name
Service is implemented on top of BIND8
[Internet Software Consortium, 2000]. It is fully
functional, meaning that a user can add, resolve,
change, and delete object names and directories via
routines in the Globe run-time system. These routines
communicate with the GNS Naming Authorities and
through it, with the name servers for the domain the
updates are made in.

Once the application programmer has the services up
and running, he or she starts up a number of Globe
Object Servers and instructs them to create an instance
of the DSO with a particular replication scenario. The
application is now ready to be used. There are cur-
rently two replication protocols an application program-
mer can choose from: client/(single) server and mas-
ter/slave. The Globe Object Server and supporting tools
are currently being implemented and should be part of
the first public Globe release.

8 Conclusions

The goal of the Globe project is to design and build
a middleware platform that facilitates the development
of Internet applications. These application are charac-
terized by the complex nonfunctional aspects their pro-
grammers have to take into account: potentially huge
numbers of users, high communication delays, host and
network failures. An important technique for dealing
with these aspects is replication of data and function-
ality, making it an important topic in the Globe middle-
ware. We think that Globe’s distributed shared object
concept, combined with a worldwide location service for
tracking the whereabouts of these distributed objects can
offer the flexibility with respect to replication that Inter-
net applications require.

The first version of our middleware platform is nearly
complete. To demonstrate the validity of our design and
ideas we are building a prototype application. This ap-
plication, the Globe Distribution Network, or GDN, is a
distributed application for the efficient, world-wide, dis-
tribution of data. This data initially consists of publicly
redistributable software packages. Although compara-
ble in function to the World Wide Web, the GDN has
one important advantage, namely the builtin support for
replication that it inherits from the Globe middleware.



Current GDN functionality is simple: software packages
can be added, retrieved and removed from the Network.
Two possible functional additions we are considering are
a more powerful mechanism for attribute-based search
and version-management facilities. In the nonfunctional
arena, fault tolerance is a topic that needs to be ad-
dressed. The naming of software packages is currently
done by a prototype object name service that builds on
the Domain Name System. Furthermore, we currently
use the Transport Layer Security (TLS) protocol to sat-
isfy the GDN’s security requirements. We intend to re-
place these two parts with properly designed name and
security services in the future.

The GDN will be usable as an Internet application in
December 2000. The source code of the GDN and of
the Globe middleware will be released under the BSD
license during the course of 2000.

Acknowledgments

The Globe team would like to thank Stichting NLnet and
Océ for their support in the development of Globe and
the Globe Distribution Network.

References

[Ballintijn and van Steen, 1999a] G. Ballintijn and
M. van Steen. Exploiting Location Awareness
for Scalable Location-Independent Object IDs. In
Proceedings Fifth Annual ASCI Conference, pages
321–328, Heijen, The Netherlands, 1999. Advanced
School for Computing and Imaging.

[Ballintijn and van Steen, 1999b] G. Ballintijn and
M. van Steen. Scalable Naming in Global Mid-
dleware. Technical Report IR-464, Department
of Mathematics and Computer Science, Vrije
Universiteit Amsterdam, October 1999.

[Dierks and Allen, 1999] T. Dierks and C. Allen. RFC
2246: The TLS Protocol Version 1.0, January 1999.

[Digital Island, Ltd., 2000] Digital Island, Ltd. Foot-
print. http://www.digisle.net/services/cd/footprint.
shtml, March 2000.

[Eddon and Eddon, 1998] Guy Eddon and Henry Ed-
don. Inside Distributed COM. Microsoft Press, Red-
mond, WA, 1998.

[Freier et al., 1996] A. Freier, P. Karlton, and P. Kocher.
The SSL Protocol Version 3.0, November 1996.
Netscape Communications, Inc., Mountain View,
CA.

[Howard et al., 1998] J.H. Howard, M.L. Kazar, S.G.
Menees, D.A. Nichols, M. Satyanarayanan, R.N.
Sidebotham, and M.J West. Scale and Performance
in a Distributed File System. ACM Transactions on
Computer Systems, 6(1):51–81, February 1998.

[Internet Software Consortium, 2000] Internet Soft-
ware Consortium. BIND. http://www.isc.org/
products/BIND/, March 2000.

[Kiczales et al., 1991] G. Kiczales, J. Rivières, and
D. Bobrow. The Art of the Metaobject Protocol. MIT
Press, Cambridge, MA, 1991.

[Mockapetris, 1987] P. Mockapetris. RFC 1034: Do-
main Names – Concepts and Facilities, November
1987.

[Object Management Group, 1999] Object Manage-
ment Group. The Common Object Request Broker:
Architecture and Specification. Revision 2.3.1. OMG
Document formal/99-10-07, Object Management
Group, Framingham, MA, October 1999.

[Pierre et al., 1999] G. Pierre, I. Kuz, M. van Steen, and
A.S. Tanenbaum. Differentiated Strategies for Repli-
cating Web Documents. Technical Report IR-467,
Department of Mathematics and Computer Science,
Vrije Universiteit Amsterdam, November 1999.

[Satyanarayanan et al., 1990] M. Satyanarayanan, J.J.
Kistler, P. Kumar, M.E. Okasaki, E.H. Siegel, and
D.C. Steere. Coda: A Highly Available File Sys-
tem for a Distributed Workstation Environment. IEEE
Transactions on Computers, 39(4), April 1990.

[Sun Microsystems, Inc., 1999] Sun Microsys-
tems, Inc. Java Secure Socket Extension.
http://java.sun.com/products/jsse/, August 1999.

[van Steen et al., 1998] M. van Steen, F.J. Hauck, and
A.S. Tanenbaum. Locating Objects in Wide-Area
Systems. IEEE Communications Magazine, pages
104–109, January 1998.

[van Steen et al., 1999] M. van Steen, P. Homburg, and
A.S. Tanenbaum. Globe: A Wide-Area Distributed
System. IEEE Concurrency, pages 70–78, January
1999.

[Vixie et al., 1997] P. Vixie, S. Thomson, Y. Rekhter,
and J. Bound. RFC 2136: Dynamic Updates in the
Domain Name System (DNS UPDATE), April 1997.

[Vixie, 1995] Paul A. Vixie. DNS and BIND Security
Issues. In Proceedings of the Fifth USENIX UNIX
Security Symposium, Salt Lake City, Utah, June 1995.


