
A Formal Approach to Constructing Secure Air
Vehicle Software ?

Darren Cofer1, Andrew Gacek1, John Backes1, Michael W. Whalen2,
Lee Pike3, Adam Foltzer3, Michal Podhradsky3, Gerwin Klein4, Ihor Kuz4,

June Andronick4, Gernot Heiser4, and Douglas Stuart5

1 Rockwell Collins Advanced Technology Center
2 University of Minnesota, Dept. of Computer Science

3 Galois, Inc.
4 Data61, CSIRO and University of New South Wales

5 Boeing Research and Technology

Abstract. Current approaches to cybersecurity for vehicle software rely
on patching systems after a vulnerability is discovered. What is needed
is a clean-slate, mathematically-based approach for building secure soft-
ware. Our team has developed new tools based on formal methods for
building software for unmanned air vehicles (UAVs) that is provably se-
cure against many classes of cyber-attack.

1 Introduction

Embedded systems form a ubiquitous and networked computing substrate that
underlies much of society. Modern aircraft and automobiles are complex safety-
critical systems in which software is integral to the vehicle control and function-
ality. Like other embedded systems, vehicles are now networked for a variety
of reasons, including the ability to conveniently access diagnostic information,
perform software updates, provide innovative features, lower costs, and improve
ease of use.

However, researchers (and hackers) have shown that all kinds of networked
embedded systems are vulnerable to remote cyber-attack. Researchers at Uni-
versity of Washington and University of California San Diego have demonstrated
the ability to completely control an unmodified automobile from a remote lo-
cation [1]. Security researchers Charlie Miller and Chris Valasek have recently
extended this work. Other researchers [2], [3] have been probing for vulnerabil-
ities in the communication and avionics systems of commercial aircraft, though
with questionable success. The consequences of a successful cyber-attack against
these systems include loss of life or denial of military capabilities, above and be-
yond the compromise of classified information.

The traditional approach to cybersecurity is reactive, responding to cyber-
attacks after they occur by identifying a vulnerability and developing a software

? This work was funded by DARPA contract FA8750-12-9-0179.



patch to eliminate that specific vulnerability. This is a cycle that repeats it-
self with each newfound vulnerability. Even virus-scanning software cannot keep
up with the pace of newly created malware, and in fact, often introduces new
vulnerabilities that can be exploited. The situation is even worse for embedded
software because it is often difficult to patch due to logical issues or certification
constraints.

The High-Assurance Cyber Military Systems (HACMS) research program
was established to create technology for the construction of cyber-physical sys-
tems that would be resilient against cyber-attacks. The program focused on
vehicle control systems because of their complexity, criticality, and significance
for the military and civilian worlds. The goal of our research was to break the
cycle of “patch and pray” by preventing security vulnerabilities from being in-
troduced during the development process. Achieving this goal requires a funda-
mentally different approach from what the software community has pursued to
date. We have adopted a clean-slate, formal methods-based approach to enable
semi-automated code synthesis from executable, composable, formal specifica-
tions which are subject to analytic verification.

To assess the security of the software produced, we worked with a Red Team
of professional penetration testers who evaluated our software and attempted to
identiy vulnerabilities. The Red Team had access to all design documentation,
models, analysis results, source code and binaries. Throughout the project we
engaged the Red Team as “friendly adversaries” who would assess systems and
identify any issues discovered so that our systems could be improved in the next
development iteration.

Our project in the HACMS program, Secure Mathematically-Assured Compo-
sition of Control Models (SMACCM), brings together four main concepts based
on formal methods: (1) modeling the system architecture and formal verification
of its key security and safety properties, (2) synthesis of software components us-
ing languages that guarantee important security properties, (3) use of a formally
verified microkernel to guarantee enforcement of communication and separation
constraints specified in the architecture, and (4) automatically building the final
system from the verified architecture model and component specifications.

To show that this approach is both practical and effective, we applied it to two
unmanned air vehicles (UAVs). We first developed the technologies on a modified
commercial quadcopter called the SMACCMcopter. We then applied the same
technologies to Boeing’s Unmanned Little Bird (ULB), a full-sized optionally-
piloted helicopter capable of autonomous flight. Successful flight demonstrations
and security evaluations by the Red Team show that our approach can be used
to build real systems that are resilient against cyber-attacks.

2 Requirements

To define meaningful security requirements, we started from two assumptions
about the system and potential attackers. First, we assume that an authorized
user has the authority to issue any command to the UAV, including commands

2



that would crash or otherwise destroy it. It would be a mistake to a priori limit
what a legitimate user may choose to do with a military UAV, so we must assume
that all commands sent by an authorized user are legitimate. Thus, the primary
focus of our attention is on whether messages (and their associated commands)
are well-formed, and whether the encryption that we are using is sufficient to
distinguished well-formed from malformed messages. If an attacker can co-opt
an authorized user’s identity, no straightforward mitigation is possible.

The second assumption relates to the wireless communication. Because we
cannot limit access to the radio spectrum, attackers will always be able to launch
a denial-of-service (DoS) attack, by either jamming the physical link or over-
whelming the UAV receiver with well-formed messages (even if they fail autho-
rization). This means it is not possible to provide absolute guarantees about
reception and execution of commands from authorized users. However, we can
require the UAV to reject any commands lacking authorization. We can also
require the UAV to execute commands from authorized users in a timely fash-
ion, assuming no DoS attack on the radio link. In addition, when a DoS attack
is detected, our requirements can specify what actions the UAV should take to
keep itself safe or avoid compromising its mission (if possible).

To construct requirements, we focused on a variety of known concrete at-
tacks drawn from the Common Attack Pattern Enumeration and Classification
list (http://capec.mitre.org). First, we ensured generic security principles such
as user identification and authorization, secure network access and communica-
tion, secure storage, content security, and availability. From those principles, we
created system-level security requirements for our UAVs. For example:

– The UAV executes only well-formed commands from the ground station.
– If an air-ground communication link fails, the UAV will execute its no-

communication behavior.

We also approached the problem bottom-up, eliminating common weaknesses
known to be important to many attacks, such as those related to authentication
and authorization, system partitioning, maintenance, boot and configuration,
overflow or underflow, encryption, and memory safety. The Common Weakness
Enumeration website (http://cwe.mitre.org) maintains a large list of such weak-
nesses.

3 Approach

In this section we present an overview of the four main technologies developed
in the project and how they have been integrated into a development process
to produce systems that are functionally correct and free from security vul-
nerabilities. Each technology provides the basis for one of four key elements of
architecture-driven assurance.

The architecture model is correct: The architecture model specifies the
overall organization of the system and defines the interfaces for each sub-
system and component, how they interact, and what data they share. We

3



verify both structural or behavioral properties of the model to demonstrate
security. Behavioral properties are specified as formal assume-guarantee con-
tracts.

The components are correct: We must also establish that the components
specified in the architecture have been implemented correctly. This means
that they must satisfy their requirements as specified in behavioral contracts
and that they must be free from vulnerabilities that could be exploited by
cyber-attackers.

The system execution semantics matches the model: The architecture
model makes both explicit and implicit statements about how the system
should execute: execution times and periods for tasks, bindings for threads
and processes to CPUs, connections between components and their routing
on communication busses. In addition, if there are not connections defined
between components, then no data should flow between these components.

The system implementation corresponds to the model: We must also
have confidence that the system implementation preserves the properties
that have been established for the architecture model and components. We
automatically generate all of the code and configuration data needed to build
the system directly from the architecture and component models.

3.1 Analyzable Architecture

Developers must have high confidence that the system they eventually build ac-
curately reflects the characteristics of the system design that they reason about.
Our tools accomplish this by:

– Allowing developers to model the system that they intend to build in a
language with clear syntax and semantics

– Analyzing this model to verify that it meets user defined specifications
– Generating the software that runs on the target platform directly from this

model

The Architecture Analysis and Design Language (AADL) has been devel-
oped to capture the important design concepts in real-time distributed embedded
systems [4]. The AADL language can capture both the hardware and software
architecture in a hierarchical format. It provides hardware component models
including processors, buses, memories, and I/O devices, and software component
models including threads, processes, and subprograms. Interfaces for these com-
ponents and data flows between components can also be defined. The language
offers a high degree of flexibility in terms of architecture and component detail.
This supports incremental development where the architecture is refined to in-
creasing levels of detail and where components can be refined with additional
details over time.

In AADL, the architectural model includes component interfaces, intercon-
nections, and execution characteristics, but not their implementations. Compo-
nent implementations are described separately using model-based specification

4



languages or traditional programming languages which are included by reference
in the architecture model. This separation of implementation and architecture
is an important factor in achieving scalability for the analysis tools that we have
developed.

We have developed two different analysis tools to reason about AADL mod-
els. The Assume-Guarantee Reasoning Environment (AGREE) is a composi-
tional verification tool that proves behavioral properties about AADL models
using modern Satisfiability Modulo Theories (SMT)-based model checkers. The
second tool, Resolute, generates assurance cases from information embedded in
the AADL models. Resolute allows us to construct arguments about properties
that are more difficult to formalize, and to integrate heterogeneous sources of
evidence about the system.

The Assume Guarantee Reasoning Environment AGREE is used to rea-
son about past-time temporal logic behavioral contracts in AADL architectural
components [5]. These contracts consists of assumptions about the component
environment and guarantees about how the component state evolves over time
. A contract specifies precisely the information that is needed to reason about
the components interaction with other parts of the system. Furthermore, the
contract mechanism supports a hierarchical decomposition of the verification
process that follows the natural hierarchy in the system model.

Given a top-level component that is composed of several subcomponents,
AGREE attempts to prove that the top-level component contract holds, given
the top-level contract assumptions and assuming that the contracts of its sub-
components are true. The reasoning is performed using a state-of-the-art induc-
tive model checker called jKind [6]. This decomposition can be performed for
any number of architectural layers, allowing compositional reasoning across a
large-scale system architecture. The proof rests on “leaf-level” contracts over
individual threads or processes, which must be discharged by other means (such
as model checking or coverage-based testing). If AGREE is unable to produce a
proof, then it produces a counterexample that illustrates a scenario in which the
system-level contract guarantee does not hold, given the system-level assump-
tions and subcomponent contracts.

As an example, we used AGREE to verify the correct implementation in
the ULB of a distributed protocol (STANAG 4586) for controlling interactions
among multiple ground stations and UAVs. STANAG 4586 defines messages that
request various levels of control over the UAV, such as setting new waypoints or
controlling an onboard camera. These messages require different authoriy, called
levels of interoperability (LOI), to interact with the vehicle. It is crucial that
the vehicle not act upon messages sent by a ground station with an inadequate
LOI. Likewise it is important that a UAV only grant an LOI to a ground station
that is appropriate based on the current state of the vehicle and the permissions
decided upon at the beginning of the mission. We used AGREE tool to model
and verify these properties.

5



Resolute Traditional assurance cases are informal arguments for the correctness
of a system. Each claim in the argument is supported by other sub-arguments
or evidence, resulting in a tree shape. Resolute formalizes and extends this no-
tion. First, the dependency of each argument on its sub-arguments and evidence
is formalized into rules. Second, these rules can be parameterized by the ar-
chitecture of the system (e.g. iterating over all components). Finally, Resolute
instantiates these rules for a particular architecture using a Datalog-style proof
search algorithm [7]. Resolute assurance cases are automatically updated as the
architecture evolves, and they never fall out of sync with architecture.

Consider an assurance case for the claim “The UAV executes only unmodified
commands from the ground station.” We can decompose this claim into two
arguments: one about the correctness of our encryption algorithm and one about
the data-flows between the Decrypt component and the eventual execution of
commands. The latter property is particular interesting for Resolute since it
relies on the currect architecture of the system. We formalize it with a recursive
rule which describes when a component receives properly decrypted messages.
Resolute traverses the the architecture to track how messages move through the
system and compute the validity of the claim.

3.2 Correct Components

The next aspect of our approach requires that software components specified in
the architecture model, such as threads or functions, be correctly implemented. C
or C++ are still the most common languages for embedded system development
given the low-level control they provide in terms of memory usage and timing
behavior. Unfortunately, these languages provide little support for creating high
assurance software. Used on their own, they are not memory safe and difficult
to analyze.

To address this problem, our team developed an embedded domain-specific
language (EDSL) called Ivory. This language was used to re-implement all of
the flight control functions in the SMACCMcopter research vehicle and critical
control and communication functions in the ULB.

Ivory [8] follows in the footsteps of other “safe C” programming languages,
like Cyclone, BitC, and Rust—languages that avoid many of the pitfalls of C,
particularly related to memory safety and undefined behavior, while being suit-
able for writing low-level code (e.g., device drivers), and having minimal run-
time systems. Our main motivation for not using those languages is our desire
for an EDSL providing convenient, Turing-complete, type-safe macro-language
(Haskell) to improve productivity.

Ivory is particularly designed for safety-critical embedded programming. Such
a language should guarantee memory safety, prevent most undefined behaviors,
and provide integrated testing and verification tools. Typical C coding conven-
tions for safe embedded systems, such as those in use at NASA’s Jet Propulsion
Laboratory [9], are enforced by Ivory’s type system. In line with these conven-
tions, Ivory has been built with some limitations to simplify generating safe C
programs. Ivory does not support heap-based dynamic memory allocation (but

6



global variables can be defined). Arrays are fixed-length. There is no pointer
arithmetic. Pointers are non-nullable. Union types are not supported. Unsafe
casts are not supported: casts must be to a strictly more expressive type (e.g.,
from an unsigned 8-bit integer to an unsigned 16-bit integer) or a default value
must be provided for when the cast is not valid. The most common unsafe C
cast is not possible: no void-pointer type exists in Ivory.

In practice, Ivory has proven to be a tremendously productive language, both
in spite of and due to these restrictions and limitations. Ivory programmers get
the full power of using Haskell as a macro system, while being reassured by the
type system that their programs are safe. For example, the extended Kalman
filters used for state estimation on the SMACCMcopter were generated from
a high-level description of the algorithm in terms of linear algebra operations,
but produced safe C code nearly identical to hand-unrolled loops. Meanwhile,
the very lowest levels of detail in SMACCMcopter’s board support package were
developed using distinct types for register flags and addresses, eliminating the
mismatches that are common when dealing with bit masks and hardware ad-
dresses directly.

3.3 Execution Semantics and Operating System

Once we are satisfied that the architecture has been correctly specified and the
software components correctly implemented, the correct execution of the com-
ponents, isolation between components, and enforced communication between
components must be guaranteed. This is ensured by the the underlying operat-
ing system (OS).

Each of our UAVs includes two computers: A flight control computer for hard
real-time control tasks, and a mission computer for communicating with the
outside world (the ground station, in particular) and hosting onboard payloads
such as a video camera. These computers have very different requirements and
run different operating systems.

The OS used on the mission computers of both of our UAVs is the seL4 micro-
kernel. The seL4 microkernel builds on the strengths of the L4 microkernel archi-
tecture, such as small size, high performance, and policy freedom, and extends it
with a built-in capability model, which provides a mechanism to enforce security
guarantees at the operating system and application levels. The seL4 microker-
nel has undergone extensive formal verification, from full functional correctness
down to binary level, to strong high-level security properties including confiden-
tiality and integrity [10]. This means that seL4’s executable implementation is
formally proved correct relative to its specification using mathematical machine-
checked proofs in the Isabelle/HOL theorem prover [11]. Its security properties,
also proved in Isabelle/HOL, imply that isolation is enforced; i.e. that seL4 does
enforce the controlled communication defined in the component configuration of
the architectural specification. The isolation and controlled communication en-
forcement is the key to showing that the AADL architecture model is properly
implemented.

7



On the flight control computers, the focus is on ensuring timely execution
and scheduling of flight tasks, leading to use of a real-time operating system
(RTOS). On the SMACCMcopter we have used eChronos, a formally verified
RTOS developed by Data61 that runs on highly resource-constrained hardware.

On the ULB we have used the VxWorks RTOS. Use of this commercial RTOS
was necessary because of the particular flight computer hardward in the ULB.
While not optimal, use of an RTOS without the assurance provided by formal
verification was deemed acceptable since the flight computer is isolated from
contact with the outside world by the mission computer running seL4.

3.4 Trusted Build

Finally, we must ensure that the guarantees designed in to the architectural
models, software components, and OS are preserved in the actual system imple-
mentation. To ensure conformance, we built tools to automatically generate the
system image directly from the architectural model, software components, and
OS code. For both vehicles, the AADL architecture model was detailed enough
to support generation of “glue code” and all configuration information needed to
construct a system image that could be loaded directly onto the target platform.

We developed the Trusted Build (TB) tool to generate system images from
AADL models. From AADL models, TB can generate the OS configuration
information, process/thread priorities and scheduling information, and all pro-
cess/thread communication primitives. In fact, it is also possible to automati-
cally generate communication primitives between operating systems, as happens
with virtual machines. TB allowed single-source models to target the VxWorks,
eChronos, seL4, or Linux operating systems, depending on the needs of the
specific platform. The final system images generated for both vehicles were gen-
erated directly from the AADL architecture descriptions using TB. While the
majority of the TB tool was not formally verified, the communications primitives
used for IPC in seL4 were verified using Isabelle/HOL.

4 Application and Demonstration

We demonstrated our approach on two different UAVs: the SMACCMcopter
quadcopter, and the Boeing Unmanned Little Bird helicopter (1). This section
describes our experiences with both platforms.

4.1 SMACCMcopter Demonstration

The SMACCMcopter was developed as an open experimentation platform that
would be available for use by researchers without restriction. It is based on com-
mercially available hardware components and open source software. It mimics
the architecture and features of the ULB in a number of ways, and has been a
practical way to develop, refine, and test new technologies.

8



Fig. 1. Demonstration Aircraft: SMACCMcopter and Unmanned Little Bird

The airframe for the SMACCMcopter is the IRIS+ quadcopter produced by
3D Robotics. The IRIS+ uses a Pixhawk flight control computer which runs
the hard real-time control software and includes integrated sensors for vehicle
acceleration and attitude. A separate mission computer has been mounted on
top of the IRIS+ body. The mission computer is based on an ARM Cortex-
A15 CPU and communicates with the flight control computer over a CAN bus.
It hosts functions for encryption/decryption, the CAN interface to the flight
computer, and ground station communication. To demonstrate mixed-security
architectures involving commercial software, the camera software represents an
untrusted component that runs in a Linux virtual machine (VM) hosted by seL4.
It receives video data from the camera, detects and computes bounding boxes
for objects of a specified color, and sends video data to the ground station.

All of the SMACCMcopter software was written using the approach described
in Section 3. The secure Ivory software components, secure seL4 operating sys-
tem, and verified AADL software architecture result in a quadcopter design in
which most common security vulnerabilities have been eliminated. A simplified
diagram of the architecture is shown in Figure 2.

Fig. 2. Simplified software architecture for SMACCMcopter showing verified OS (blue),
trusted components (green), and untrusted components (orange)

9



During the course of the HACMS program, we conducted flight tests to
demonstrate the effectiveness of our approach and tools applied to the SMAC-
CMcopter. The demonstration consisted of two scenarios illustrating the dif-
ference between an unsecure, unverified version of the SMACCMcopter software
and the final secure, verified version of the software. In each scenario, the SMAC-
CMcopter was flown and commanded by the ground control station while a sep-
arate team of “attackers” launched cyber-attacks on the vehicle, attempting to
take over its telemetry and flight control. In the first scenario, the cyber-attack
was shown to be successful, resulting in the attackers gaining complete control
of the vehicle. In the second scenario, the formally verified SMACCMcopter was
able resist the same attacks and complete its mission unhindered. A video of this
demonstration is available at [12].

4.2 Unmanned Little Bird Demonstration

The ULB is an optionally-piloted helicopter based on the H-6, a 32 foot long,
4700 pound rotorcraft. The ULB adds an autonomous capability to the basic
H-6. Though the ULB is capable of fully autonomous flight, for flight testing it
carries a safety pilot who can disable and override the autonomous functionality.

Like the SMACCMcopter, the ULB avionics includes a flight control com-
puter (FCC) for real-time tasks and a mission computer (called the Vehicle
Specific Module, or VSM) for communication with the ground station and man-
aging a video camera payload. The original ULB VSM was implemented in 87K
lines of C++ source code, with an executable size of approximately 80 MB, run-
ning on Gentoo Linux on an x86 processor. The original ULB FCC was written
in 20K lines of C code, with a 2MB executable, using a monolithic cyclic execu-
tive running at 50 Hz on a PowerPC platform. During the HACMS program the
Boeing ULB program ported the FCC software to VxWorks, which increased the
code size to approximately 40K lines. The ULB implements the STANAG 4586
protocol for communication between ground stations and UAVs. The protocol
permits any compliant ground station to control any compliant UAV.

Over the course of the three phases of the HACMS program, new technologies
were progressively applied to the ULB to create a high-assurance cyber military
system. In Phase 1, the VSM architecture was modeled in AADL, and seL4 was
added as a hypervisor to host the baseline VMS on its baseline Linux operating
system as a guest operating system. In Phase 2, the Ivory language was used to
re-implement a portion of the VSM software, along with new authentication and
LOI components. A more detailed AADL model of the VSM software architec-
ture was developed and used with the Trusted Build tool to generate code for
the VSM. In Phase 3, the FCC software architecture was modeled using AADL,
and the outer loop control and input/output components of the FCC were im-
plemented in Ivory. In this case the existing VxWorks RTOS was retained as
the operating system. The resulting final ULB HACMS architecture is shown in
Figure 3.

Several ULB flight tests were conducted to demonstrate that the vehicle
with updated cybersecure software retained all of its original functionality. As

10



Fig. 3. ULB Final Architecture showing verified OS and trusted components (blue)
and unmodified/untrusted components (red)

11



with the SMACCMcopter, we flew several sorties that included targeted cyber-
attacks. In the first attack, a compromised maintenance device was connected
to the USB socket on the ULB that normally hosts a USB drive used for the
data logging. This device injected a virus which attempts to move from the data
logging software to the other VSM software, ultimately causing the payload
camera to be inoperative. In the second attack, a simulated supply chain attack
originating in the camera software attempts to change ULB waypoints and cause
it to violate (simulated) airspace restrictions. In the final upgraded version of
the ULB software both of these attacks were thwarted.

The technologies described here were applied to the ULB by Boeing engi-
neers (with some support from the technology researchers). Significantly, this
included engineers from Boeing Defense Systems, as well as those from Boe-
ing Research and Technology. Together, this represents non-trivial evidence that
these technologies are effective in improving system cybersecurity, can do so for
real aircraft without compromising the required real-time performance, and are
usable by the developers of military systems.

5 Conclusion

Over the course of the HACMS program, a number of formal methods technolo-
gies were developed and applied, first to the SMACCMcopter research vehicle,
and then to the Boeing Unmanned Little Bird helicopter.

In the beginning of the program, the Red Team performed baseline assess-
ments of both our “stock” Pixhawk-based hobby quadcopter and the original
ULB software. In both baselines, the Red Team had little difficulty in attacking
the vehicles. The quadcopter was trivially compromised in several ways (e.g. hi-
jack of unencrypted communications, message flooding, and several other issues)
and the ULB was compromised within an hour due to configuration and memory
issues involving third-party components. Over the three phases of the project,
our new technologies and software assumed more and more of the of control of
the vehicles until, in Phase 3, they formed the entirety of the SMACCMcopter
and the majority of the ULB.

These technologies were successfully demonstrated on both aircraft in flight,
including the successful defeat of attacks using a variety of common attack vec-
tors. The SMACCMcopter withstood attacks via a remote data link, while the
ULB withstood attacks via a compromised USB device and compromised third-
party software for an onboard payload.

After each phase, the Red Team performed a security assessment of the up-
graded portions of the vehicle software and performed penetration testing. After
Phase 1, their evaluation and penetration testing focused on remote attacks on
the vehicles. In later phases this expanded to include attacks launched from non-
critical components onboard the vehicles themselves. The Red team assessments
did not find any exploitable vulnerabilities in the re-engineered portions of either
aircraft.

12



At the end of the project, Red Team final report concluded: HACMS tech-
nologies have made revolutionary advances in the resilience available to devel-
opers of autonomous vehicles. The final vehicles delivered under the HACMS
program, even as research prototypes, proved to be resilient against most forms
of attack to a degree rarely seen even in hardened, fielded systems. Of all the final,
formally verified components assessed under the final phase of the program, no
memory corruption failures, mathematical operation faults, or security isolation
compromises were identified.

In this project we have demonstrated the use of formal methods to dramat-
ically improve the cybersecurity of the embedded software in two aircraft. In
addition to security assessments, these aircraft underwent flight testing to show
that their real-time performance had not been impacted. Furthermore, all of
the modification and re-engineering of the ULB software was conducted by Boe-
ing engineers. Thus, the formal methods technologies presented here are both
practical and effective in enhancing the cybersecurity of real aircraft.

All of the models, software, and tools developed as part of this
project are open source and available in the SMACCM github repository
(https://github.com/smaccm/smaccm).

References

1. Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and
Tadayoshi Kohno. Comprehensive experimental analyses of automotive attack
surfaces. In 20th USENIX Security Symposium, San Francisco, CA, USA, August
8-12, 2011, Proceedings, 2011.

2. Hugo Teso. Aircraft hacking: Practical aero series, 2013.
https://conference.hitb.org/hitbsecconf2013ams/hugo-teso/ (accessed 4-28-2017).

3. Kim Zetter. Feds say that banned researcher commandeered a plane, 2015.
https://www.wired.com/2015/05/feds-say-banned-researcher-commandeered-
plane/ (accessed 4-28-2017).

4. P. Feiler and D. Gluch. Model-Based Engineering with AADL: An Introduction to
the SAE Architecture Analysis & Design Language. Addison-Wesley Professional,
1st edition, 2012.

5. Michael W. Whalen, Andrew Gacek, Darren D. Cofer, Anitha Murugesan, Mats
Per Erik Heimdahl, and Sanjai Rayadurgam. Your ”what” is my ”how”: Iteration
and hierarchy in system design. IEEE Software, 30(2):54–60, 2013.

6. Andrew Gacek. JKind - a Java implementation of the KIND model checker.
https://github.com/agacek, 2015.

7. A. Gacek et. al. Resolute: An assurance case language for architecture models. In
HILT 2014, pages 19–28, New York, NY, USA, 2014. ACM.

8. P. Hickey et. al. Building embedded systems with embedded DSLs (experience
report). In Intl. Conference on Functional Programming (ICFP). ACM, 2014.

9. JPL. JPL institutional coding standard for the C programming language. Technical
Report JPL DOCID D-60411, Jet Propulsion Laboratory, 2009. Available at http:
//lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf.

10. G. Klein et. al. Comprehensive formal verification of an OS microkernel. ACM
Transactions on Computer Systems, 32(1):2:1–2:70, February 2014.

13



11. T. Nipkow et. al. Isabelle/HOL — A Proof Assistant for Higher-Order Logic,
volume 2283 of LNCS. Springer, Heidelberg, 2002.

12. Darren Cofer, Andrew Gacek, John Backes, and Konrad Slind.
Video: High-assurnce cyber military systems (hacms), 2017.
https://insights.rockwellcollins.com/2017/07/06/video-high-assurance-cyber-
military-systems-hacms/ (accessed 3-2-2018).

14


