
Adapting Distributed Shared Memory Applications in Diverse Environments

Daniel Potts and Ihor Kuz

National ICT Australia∗ and University of New South Wales

Sydney Australia

{danielp,ikuz}@cse.unsw.edu.au

Abstract

A problem with running distributed shared memory ap-

plications in heterogeneous environments is that making op-

timal use of available resources often requires significant

changes to the application. In this paper we present a

model, dubbed the view model, that provides an abstrac-

tion of shared data and separates the concerns of program-

ming model, consistency, and communication. Separating

these concerns makes it possible for applications to eas-

ily be adapted to different execution environments, allowing

them to take full advantages of resources such as high speed

interconnects and hardware-based memory coherence, and

to be optimised for specific network topologies. Further-

more, it allows different data consistency protocol imple-

mentations to be used without requiring changes to the ap-

plication code itself. We also present an implementation

of the view model and provide experimental results showing

how the view architecture can be used to improve the perfor-

mance of a distributed shared memory application running

in a heterogeneous multi-cluster environment.

1. Introduction

Grids, multi-clusters, NUMA systems, and ad-hoc col-

lections of distributed computing devices all present diverse

environments in which distributed computing applications

can be run. Due to the diversity of features provided by

these environments a distributed application that is to per-

form well must be specifically designed and optimised for

the environment in which it is deployed. Such optimisations

generally affect the application’s communication structure,

its consistency protocols, and its communication protocols.

Since applications are optimised in environment spe-

cific ways, reusing an application in different environments

∗National ICT Australia is funded by the Australian Government’s De-

partment of Communications, Information Technology, and the Arts and

the Australian Research Council through Backing Australia’s Ability and

the ICT Research Centre of Excellence programs.

poses some problems. First of all, when an application’s

execution environment does not match the environment that

it was developed for, problems with performance and poor

resource utilisation arise. For example, an application de-

signed to run on a cache-coherent NUMA (ccNUMA) ma-

chine may not run efficiently in a cluster environment due

to the application’s inability to compensate for added la-

tency penalties resulting from the cluster’s slower intercon-

nects [10]. To avoid this, applications must be optimised

for every new environment that they run in. Given the large

differences between environments, most distributed appli-

cations need significant and time-consuming modifications

if they are to achieve reasonable performance.

The second problem concerns the execution of dis-

tributed applications in non-uniform environments, that is,

environments that consist of other sub-environments each

with significantly different characteristics. Take, for ex-

ample, a two-cluster system where one cluster consists of

nodes connected by a high speed interconnect (such as

Myrinet) while the other cluster consists of nodes connected

by Ethernet. To achieve good performance an application

running in this environment should be aware of the available

interconnects and take full advantage of them [1, 9]. Thus,

when communicating within the Myrinet cluster, a Myrinet

specific protocol rather than TCP/IP over Ethernet should

be used. Furthermore, the application should be partitioned

in such a way that it takes advantage of the high speed in-

terconnects while avoiding communication over the slower

interconnects.

In both of these cases the main problem is that applica-

tions, and in particular their consistency protocols, require

modifications that are highly tailored to the environment in

which they run. Any significant change in the environment

requires a change in the application. We present a solution

to this problem in the form of a model (which we call the

view model) that allows an application’s consistency proto-

col, communication protocol, and communication structure

to be modified without requiring significant (if any) changes

to the application itself.

We provide an overview of the view model in Section 2.

A discussion of the model’s properties and how these can

be used to adapt applications to their environments follows

in Section 3. An implementation of the view model is pre-

sented in Section 4 and in Section 5 we present experimen-

tal results that demonstrate that use of the view model can

lead to performance and resource utilisation improvements.

Work related to this project is briefly discussed in Section 6

followed by an overview of the current status and future

work in Section 7 and conclusions in Section 8.

2. The View Model

The view model provides a shared data space abstraction

based on the concept of views. A view represents a region

of a shared data space. Examples of such shared data spaces

include tuple spaces, shared memory, and name spaces such

as those found in unix file-systems.

Shared data spaces consist of data elements. The format

and structure of a data element is data space dependent. For

example, a tuple space represents data in the form of tuples.

An important characteristic of a shared data space is that it

provides a way to reference, or name, its data elements. For

example, in a tuple space, tuples are referenced by a key.

Besides the shared data space, a view also specifies the

data sharing behaviour of that space. A view’s data sharing

behaviour determines how a view interacts with its environ-

ment, how it reacts to any external interaction, and how it

manages shared data. More specifically, this includes be-

havioural characteristics such as replication of data, con-

sistency of data, the timeliness of interactions, and the for-

mat and structure of interactions. For example, a behaviour

specification may determine that a view provides a release

consistent memory model with an eager update policy.

A view’s data sharing behaviour specification partially

determines that view’s data sharing protocols. Data shar-

ing protocols address the data consistency, communication

and storage aspects of the behaviour specification. Hence,

the implementation of a behaviour specification requires the

selection of one or more data sharing protocols to correctly

model the different aspects of the specification. For ex-

ample, a view behaviour specification that includes eager-

update release consistency requires an eager-update release

consistency protocol and a suitable communication protocol

in order to build a complete model of the specification. The

selection of a communication protocol generally depends

on the runtime environment. For example, for a cluster with

an Ethernet interconnect, a TCP/IP communication protocol

would be appropriate. Several suitable data sharing proto-

cols matching a behaviour specification may be provided by

a system. This allows the system to select a protocol based

on environmental parameters and constraints.

In our model a distributed application accesses and mod-

ifies shared data through a view. The different threads of a

C2C1 C3 C4

View 1 View 2

Address
space

Figure 1. Several views representing regions

of a traditional address space. Each view

may provide different data sharing behaviour

for the region they represent.

View 1 View 2

CX C3 C4C2C1

Address
space

Figure 2. Overlapping views. Each view may

provide different data sharing behaviour for

the overlapping region.

distributed application act as the view’s data producers and

consumers and are known as view clients. Each view client

is normally associated with a single view. View clients are

independent of view details. A view’s behaviour specifica-

tion does, however, place restrictions on the interactions be-

tween the view and its view clients. This means that, a view

client must always be compatible with a view’s behaviour

specification.

Several views may be present within a single data space

with each view representing a separate region of that space.

This is illustrated in Figure 1 where the shared data space

is a traditional address space. In this example, view 1 and

view 2 represent separate regions of the address space, pos-

sibly providing different data sharing behaviour within each

region. View 1 has two view clients named C1 and C2

which are able to access data in the region covered by view

1. Likewise, view 2’s view clients are named C3 and C4

and access data in the region provided by view 2.

Clients within the same view see updates to shared data

whenever the view’s specified data sharing protocol makes

them available. Hence, an update to data made by client C1

will be available to client C2 only when view 1’s specified

data sharing protocol makes it visible to its clients.

Two or more views may also overlap, that is they may

represent the same region of data while providing differ-

ent data sharing semantics to their view clients. These are

known as overlapping views.

Figure 2 illustrates data sharing interactions between two

overlapping views. When two views overlap the effect of a

modification in one view on the other view is a result of

the interaction between the views’ corresponding data shar-

ing protocols. This interaction is best explained through

the introduction of a conceptual view client (client CX, in

Figure 2). This view client is a client of both views. When

client C1 performs a modification through view 1, client CX

will be informed of the change according to view 1’s data

sharing behaviour. Once client CX is informed of a modifi-

cation from view 1, it performs that modification in view 2.

The other clients of view 2 (C3 and C4) will be informed of

the change according to view 2’s data sharing behaviour.

In Figure 2 the overlapping views represent regions of

the same data space. It is also possible for views to rep-

resent the same data in different data spaces with mapped

views. Mapped views share data by converting it using a

mapping function which is implemented by a view mapping

client. This mapping function may provide translation of

data representation from one data space to another, and may

interpret interactions between views in a manner that suits

the mapped views. The view clients in each view are able to

access the same data elements, but with different data space

representations and view behaviour specifications.

The inherent differences between some data space rep-

resentations make it difficult and unnatural to provide a

generic solution to map a data element in one data space

to another. Hence, a specialised mapping view client must

be implemented to suit the specific sharing requirements of

any distributed applications that wish to share or interact

using different data spaces.

3. View Model Properties

The view model is similar to middleware in that it sep-

arates applications from the programming model API and

implementation. Unlike traditional middleware, which gen-

erally provides a single layer of abstraction between the ap-

plication and implementation, the view model defines four

different layers and the interfaces between them. This is

illustrated in Figure 3. At the top level in this figure is a dis-

tributed application such as a matrix multiply. This applica-

tion is written according to a particular (view independent)

programming model API, such as OpenMP [5].

The next level provides an implementation of this API.

This is known as the programming model client level be-

cause it implements a specific view client. This level is im-

plemented in terms of a view abstraction interface, which

provides a programming model independent way for the

view client to invoke the view specific behaviour imple-

mented at the next level. This level does not implement the

actual programming model behaviour, it simply provides a

mapping from the programming model API to the view ab-

straction interface. The view abstraction interface will be

described in greater detail in Section 4.

Below the view abstraction interface, the behaviour im-

Programming model

client code

Behaviour

Implementation

Conceptual

Data Space

Application Instance
Programming model API

View abstraction interface

Data space interface

Figure 3. Conceptual separation of middle-

ware of the view model.

plementation level provides the view’s data sharing be-

haviour. This level includes implementations of consistency

protocols, communication protocols and other behaviour re-

lated functionality.

The final level of abstraction represents the data space

used by the behaviour implementation. The data space has

a defined data element structure and an interface for storing,

retrieving, and modifying shared data.

The structured layers and interfaces of the view model

give us the flexibility necessary to provide several interest-

ing properties. The most important of these is protocol se-

lection, which is the ability to change the behaviour imple-

mentation of a view in order to better suit an application’s

underlying runtime environment or data sharing character-

istics. The selection of a different protocol changes the view

behaviour implementation without requiring changes to any

of the interfaces or other layers. This is akin to replac-

ing the implementation of a traditional middleware system

without making changes to the application. However, the

view model approach is more precise in that it allows the

replacement of a single part of a programming model im-

plementation, such as the communication protocol, without

replacing other components.

The following example illustrates the benefits of proto-

col selection. Prior to run-time in a Grid environment, a

distributed application does not always know what kinds

of network interconnects will be available. The application

must rely on protocols that are known to work across the

whole execution environment. In this case it is safest to as-

sume a generic TCP/IP communication interface. However,

when the run-time environment includes specialised inter-

connects, such as shared memory or Infiniband, a generic

protocol will fail to make full use of the improved resources.

In such as case, allowing the application to change protocols

can lead to marked performance and efficiency improve-

ments.

Furthermore, on multi-processor machines with coher-

ent shared memory, the application should use the available

hardware support rather than rely on conventional software-

based protocols. As such, protocol selection mechanisms

provide a method for optimising and adapting a distributed

application to its runtime environment and resources.

Enterprise

nodes

ccNUMA

Infiniband
cluster

Ethernet
link

University

Wide−area
link

HLRC

over

Infiniband

view

ccNUMA

view

HLRC

over

TCP/IP

view

Figure 4. An example scenario where a pro-

gram runs in a Grid comprising of several dif-

ferent systems. On the left is the view struc-
ture for the wide-area network on the right.

In heterogeneous environments such as multi-clusters

and Grids, it is important to utilise the available underly-

ing resources and communication capabilities. Overlapping

views, combined with protocol selection, can be used in

these environments to select protocols that best suit each

of the distinguishable sub-environments.

For example, consider the scenario shown in Figure 4

where several clusters and nodes are spread out over a wide-

area network. In this scenario it is desirable to utilise the

available underlying resources of each cluster and to favour

local area communication over wide-area communication.

This can be achieved using the view model by encapsulating

each sub-environment within a view, with each view using

protocols best suited to its environment. For a distributed

shared memory (DSM) application running in this environ-

ment, a suitable view structure is shown in Figure 4. In this

figure, the Infiniband cluster utilises a view that provides

a software-based protocol implementation of home-based

lazy release consistency (HLRC) [8]. A view encapsulat-

ing the enterprise nodes selects HLRC over TCP/IP, and the

ccNUMA view uses a protocol implementation that com-

municates directly using hardware-supported shared mem-

ory. Access to shared data within the ccNUMA system re-

sults in external communication only when the data is deter-

mined to be inconsistent by the view behaviour implemen-

tation. Any subsequent access to the same data within the

ccNUMA system will occur directly over shared memory,

without any unnecessary software intervention.

Another important property of the view model is pro-

gramming model independence. The view model does not

enforce any specific programming model. Hence, tech-

niques using protocol selection and overlapping views can

be employed and reused regardless of the programming

model used by the application.

For example, the experiments presented in Section 5 use

the same optimisation techniques, including the use of over-

lapping views, that we use for applications written using

different programming models such as one-sided MPI. Fur-

thermore, the implementation of communication protocols

are reused between different programming models.

Programming model interoperability allows construction

and execution of distributed applications that use more than

one programming model. It allows interoperability be-

tween distributed applications that use different program-

ming models such as visualisation applications.

4. View Architecture – An Implementation

The view architecture is an implementation of the view

model. It defines a set of interfaces and operations that

can be performed between views and view clients. This

implementation also specifies a constraint. This constraint

restricts all data space operations to utilise a large, single

address space. That is, each datum is indexed by a unique

address. Many programming model implementations map

well to this model, hence, we choose to take this simple

approach. Note that this does not prevent the use of view

mapping clients which map to different data spaces which

is important for supporting the use of programming models

such as MPI or tuple spaces.

In our view architecture, the behaviour implementation

is provided within a view pager. The view pager imple-

ments programming model functionality and protocols for

managing consistency of a particular programming model.

For example, most shared memory consistency protocols fit

into this category, while the communication protocol used

by the consistency protocols does not.

A view pager interacts with other view pagers and view

clients when it needs to convey changes to consistency and

programming model state. All interaction occurs through

the view abstraction interface. The view pager does not

differentiate between different view clients or view pagers.

That is, it appears to communicate only with view clients

via the view abstraction interface.

To understand how communication occurs between view

client and pager, Figure 5 shows the interactions between

two address space (AS) clients that are running a DSM ap-

plication across two nodes. Each AS client behaves as a

user-level pager for shared memory regions. It catches page

faults within a view and maps data into the address space of

the application based on instructions from the view pager.

In this example, a page-fault occurs in AS client 1 for a

data page that will be requested from AS client 2. At step

(1), AS client 1 catches the page fault and converts it into a

view-interface operation known as an update request. This

operation is used to request access to data within a view.

At step (2), the view-interface operation is invoked on

the view pager. The view pager processes the operation ac-

cording to its implemented consistency protocol. The in-

vocation may be a remote procedure call (RPC) or a local

function call depending on the configuration of the soft-

Node 1 Node 2

1

2

View Interface

Pager Protocol

View Interface

3

View Interface

AS Client 1

memory region

View Interface

Comms

4

6

7

View Interface

Pager Protocol

View Interface

5

View Interface

AS Client 2

memory region

View Interface

CommsTCP/IP

Figure 5. The path of a page fault request be-

tween two clients interacting using views.

ware. AS Client 1 then waits until it receives a reply for

the corresponding data page.

At step (3) the view pager invokes a view interface opera-

tion directed at the target client. The view pager is not aware

that communication will occur over TCP/IP since it uses the

same view interface for local and remote clients. Hence at

step (4), a view client that implements TCP/IP communica-

tion converts the view interface operation and any payload

into a message suitable for sending over the network. The

destination node, node 2, receives the message and converts

it back into a view-interface operation. At step (5), the view

pager on node 2 receives the message as an update request

operation that appears to be from AS client 1.

At step (6), the view pager determines that it must invoke

the operation on the destination client. At step (7), AS client

2 processes the operation and returns the data via an update

propagate operation by invoking its view pager. Note that

for local view pager and client interactions the data payload

relies on zero-copy to avoid unnecessary copying.

When the update propagate arrives back at node 1’s view

pager, the view pager writes this operation’s payload into

the view data space. Depending on the current state of the

target (AS client 1), the view pager may invoke an explicit

update propagate operation or a cheaper synchronisation

operation to the target view client. As it is already blocking,

the operation is invoked immediately.

4.1. View Interface Operations

The view architecture implements the view abstraction

interface using a set of operations known as view interface

operations (VIOs). These operations are sent as messages

between view clients and their view pager. The VIOs are

divided into three core categories as shown in Table 1. First,

data coherence operations specify actions to be performed

on a region of data. Second, synchronisation operations

Table 1. View-interface operations.
update request requests updates for given region

update propagate propagate updates for given region

protection request request access for given region

protection propagate indication of new region access

token request request a synchronisation token

token response receive a synchronisation token

view create create a new view

view select select a view for use

view unselect release a view

control the flow of data and specify possible dependencies

between data and nodes that modify the data. Third, high-

level view manipulation operations allow for views to be

created, manipulated and destroyed.

All data coherence operations specify a SAS address to

index data on which the operation is performed. The SAS

provides a global name space for identifying the data or the

communication channel of a data stream. The treatment of

an address within the SAS depends on the programming

model and how addresses are interpreted. Conceptually a

message or piece of data may be read and written from a

given SAS address, independent of the programming model

which determines how this operation will behave. This pro-

vides the mechanism for referring to data elements between

view clients and their view pager.

The data coherence operations specify attributes other

than a SAS address including length of data, access flags

and optional protocol-specific state. Access flags allow the

passing of permissions for on-going access to a region of

data for programming models that require this feature.

Protocol-specific state may be used to convey additional

information about the operation to a view pager. For exam-

ple, view pagers that implement the same consistency pro-

tocol, such as HLRC, may include vector time-stamps as an

additional consistency hint with data transfers.

4.2. Shared Memory Client Example

The following example, illustrated by Figure 6, clar-

ifies the interactions between a view pager and a client

that implements a DSM or other load/store program-

ming model. Writing to memory (which, in this case

maps directly to the SAS) causes the client to issue an

update request specifying an attribute for ongoing

write access to that memory area. The view pager replies

with an update propagate granting that access. Any

future writes to memory at that address occur without gen-

erating a new VIO until access is later revoked. The view

pager implementation will behave like a typical DSM con-

sistency protocol by mapping each operation to a particular

consistency protocol action.

Other programming models may use and interpret VIOs

1

2 3

write

memory

req reply

address space
client

view pager

Figure 6. A distributed application client writ-

ing to shared memory triggers communica-

tion to a view pager via VIOs.

differently. For example, the previous approach is not ad-

equate for message passing models, which can not easily

represent data using a unique address in a SAS. Further-

more, message passing models do not have the concept of

granting access to a region until it is revoked. Instead they

rely on a flow of operations that represent a flow of mes-

sages. Hence, for a message passing model, the flow of

VIOs between clients and pager is more important than the

location in SAS that it occurs at. The SAS address is then

used to name a communication channel rather than a loca-

tion in memory.

As we mentioned earlier, interaction between views oc-

curs via a specialised view client. For overlapping views

the view client takes an incoming VIO from one view and

forwards it to the other view. As our implementation of

the view architectures uses SAS addressing for all data op-

erations we avoid having to change the representation of

data through our use of a SAS to represent data across all

views. Hence, our view client for this purpose acts as a sim-

ple proxy that does not need to translate the data addressing

method of one data space to that of the other.

Mapped views require a more complicated view client.

For example, a distributed application that uses both two-

sided MPI and shared memory models, must translate data

space operations via a specialised view mapping client.

Both programming models have different methods of refer-

ring to data elements. In this case, a view client that maps

VIOs from one programming model to another needs to in-

terpret how data elements are referred to in each model. In

general, this is dependent on the application in question. We

do not address mapped views further in this paper.

5. Evaluation

We evaluate the view model by running a distributed ap-

plication in different configuration scenarios.

5.1. Experiment Environment

These experiments were performed across a small multi-

cluster system that consists of two clusters of heterogeneous

Itanium nodes running Linux 2.6 kernels. The first clus-

ter consists of a single four-way SMP Itanium node. All

benchmarks started execution from this node. The sec-

ond cluster consists of a four-way ccNUMA Itanium2 node

and six two-way SMP Itanium nodes connected through a

1000Mbit Ethernet switch. The two clusters are on separate

networks connected by a 100Mbit Ethernet link. Internally

each node in this multi-cluster provides hardware coherent

shared memory between processors.

To demonstrate the benefits of the view model we com-

pare the performance speedup of a 1200 by 1200 matrix

multiplication in three different scenarios. Each scenario

provides a different view configuration. In choosing the

scenarios we focus on configurations that demonstrate the

use of views for environment adaption, using hierarchical

views and protocol selection.

The first scenario provides a traditional configuration

with a single client process running on each processor.

This configuration reflects a traditional DSM implementa-

tion where the underlying system implements a single con-

sistency protocol that utilises a single communication pro-

tocol between all nodes. In this scenario, there is a sin-

gle view that uses a strict consistency behaviour imple-

mentation where all communication between clients is over

TCP/IP. Strict consistency ensures that all writes are instan-

taneously visible to all processes and an absolute global

time order is maintained. This is implemented using a

single-writer, multi-reader, page-based protocol. This im-

plementation of strict consistency relies on a single home

pager that manages the state of all pages. Any request for

data that cannot be satisfied by a view client’s own view

pager, results in communication with the home pager.

In the second scenario we take advantage of views to

establish domains of locality. In this scenario we define a

domain of locality for each cluster by creating two separate

views. This is illustrated in Figure 7. Internally each view

implements a strict consistency protocol.

The final scenario shown in Figure 8 is similar to the

previous scenario in that it provides a domain of locality

for each cluster. However, in this scenario we also add an-

other view per node. This new view uses a shared memory

protocol implementation called multi-reader/multi-writer

(MRMW) and takes advantage of the hardware-based co-

herent communication available on each node. Hence com-

munication between clients within each node occurs over

shared memory, while communication between nodes of

each cluster and between clusters occurs using strict con-

sistency over TCP/IP. The views are connected into a hier-

archy that ensures coherent data access both within nodes

and between nodes.

The matrix multiply application uses rows of 1200 dou-

ble floating-point words for computation. Using a matrix

row of this size ensures that page-based false-sharing oc-

cluster 1
view clients

view

strict

cluster 2
view clients

view

strict

Figure 7. Multi-cluster view configuration for

locality.

view

strict

view clients

node

MRMW

view

cluster 2

MRMW

view

view

strict

view clients

cluster 1

node

Figure 8. Multi-cluster view configuration for

locality and protocol selection.

curs between nodes computing different adjacent rows. Be-

cause of this we expect to see significant neighbour com-

munication, which is useful for demonstrating the affects of

different view configurations.

We do not focus on optimising the matrix multiplication

algorithm, nor on optimising consistency protocols, nor do

we employ optimisation techniques such as multi-threaded

processes. These methods are orthogonal to the use of

views. The focus of these benchmarks is to demonstrate

the use of views to improve the performance and efficiency

of existing protocols in multi-cluster environments.

Speedup results for these experiments are shown in Fig-

ure 9. This figure shows the relative speed up of each con-

figuration as the number of client processes increases. We

allow only one client process per processor. In all experi-

ments, the first four client processes run on the first cluster.

As more client processes are added, we utilise more pro-

cessors from the second cluster. Communication between

clusters only occurs when more than four client processes

are present.

5.2. Traditional Performance

The traditional performance shown in Figure 9 shows the

matrix multiply reaching a maximum speedup of five times

the single client performance when eight client processes

are used. Adding more nodes causes performance to drop.

This has a number of causes. Firstly, the bandwidth between

clusters is limited to 100Mbps. This is quickly saturated

due to the communication characteristics of the strict con-

sistency protocol since the data used by each client process

is sent separately to each node. Furthermore, false sharing

generates excessive traffic since data pages are transfered

between all client processes that are attempting to update

the same page of data. This is illustrated in Figure 10 which

plots the amount of data coming into the first cluster from

the second cluster against the number of client processes.

The result for the traditional scenario shows a large amount

of traffic to due poor protocol behaviour as the number of

nodes increase. Specifically, as the contention for false-

shared pages increases, the amount of data transfered be-

tween nodes increases.

5.3. Two Cluster Domains

The performance of the two cluster domain scenario as

shown in Figure 9 demonstrates improvements in perfor-

mance and scalability with a relative speedup of over six

times the single client case. The speedup remains rea-

sonably constant as more clients are added but additional

clients not contribute to improved performance.

In this scenario performance is improved due to a signif-

icant reduction in communication between clusters. Since

each cluster is encapsulated into a view, communication of

the matrix data set into the second cluster occurs only once

rather then once-per-processor as in the traditional scenario.

Furthermore, there is also a reduction in strict consistency

protocol operations between clusters since many protocol

interactions, such as requesting data, can be satisfied locally

within the cluster.

The effect on the amount of inter-cluster traffic is clearly

illustrated in Figure 10. Communication remains low and

constant, demonstrating the effectiveness of views for en-

capsulating communication within clusters. This effect is

largely due to a significant reduction in neighbour commu-

nication. Neighbour communication between clients of the

second cluster now occurs without any communication into

the first cluster.

5.4. Two Cluster Domains with Intra-node
Views

The final view scenario shows greater performance

improvements by adapting communication within each

shared-memory node to utilise the available hardware co-

herent communication mechanisms. Figure 9 shows im-

provements in performance as more client processes are

added to the computation. We see a peak relative speedup

of eleven which is a significant improvement over the per-

formance of the traditional scenario.

This improvement is due to the use of an internal view

for communication between clients within each node, en-

suring that data is fetched only once for each node rather

than once for each processor. Since this results in a lower

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 5 10 15 20

S
p
e
e
d
u
p

Number of client processes

 Traditional
 2 cluster domains

 2 cluster & protocol selection

Figure 9. Speedup of matrix multiply for dif-

ferent view configurations.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20

T
ra

ff
ic

 (
M

b
y
te

s
)

Number of client processes

 Traditional
 2 cluster domains

 2 cluster & protocol selection

Figure 10. Inter-cluster receive network traffic
for matrix multiply.

amount of external communication, the effects of the poor

scalability of the underlying strict consistency protocol are

reduced. This also reflected in a further decreased network

utilisation as shown in Figure 10.

Furthermore, since the nodes communicate internally us-

ing shared memory, they are able to access shared data with-

out any software intervention. Software intervention is only

required when communication occurs outside the shared

memory resulting is less time spend handling synchronisa-

tion in software.

6. Related Work

Many distributed applications implement their own data

management mechanisms or utilise existing middleware

that provides appropriate abstractions. In particular, dis-

tributed data stores attempt to provide a common platform

for the efficient distribution of data. InterWeave [4] allows

the programmer to map shared segments into programs run-

ning on multiple heterogeneous machines. It provides three

levels of sharing to deal with different interconnect topolo-

gies: hardware-coherent multiprocessors, tightly-coupled

clusters using software-based lazy release consistency and

more coarsely grained version-based consistency for dis-

tributing shared segments. This partly addresses one of the

problems tackled in this paper: taking advantage of local

interconnects by using multiple consistency methods. How-

ever, it is not a general solution since it is specifically tai-

lored towards particular environments and makes restrictive

assumptions about consistency in data sharing.

Khazana [2] is a peer-to-peer data service that provides

a common infrastructure for managing distributed shared

data, allowing applications the flexibility of trading off con-

sistency for availability and performance. It provides this

using aggressive replication and customisable consistency

management. Unfortunately, khazana lacks the ability to

use a protocol specifically designed for optimal execution

within a particular environment or to meet specific applica-

tion requirements. Furthermore, it is not designed to allow

multiple environments, each using its own optimal internal

protocol, to interact consistently.

Some implementations of the message passing inter-

face (MPI) including MPICH-G2 and Interoperable MPI

(IMPI) [6], address issues of wide-area and heterogeneous

computing by optimising point-to-point communication,

particularly within specific environments such as clusters

via protocol selection techniques. However, between clus-

ters, TCP/IP communication is used which can be an ineffi-

cient use of the available interconnects.

Teamster [3] is a hybrid thread architecture that provides

a transparent DSM system. It has been extended to Grid

systems in Teamster-G by relying on a consistency protocol

that implements eager-update page-based consistency. This

protocol is suitable for wide-area access where latency is

not a critical function of the program. Unlike the view ar-

chitecture, it is not able to adapt to the specific environment

utilised by the distributed application.

Tempest [11] is a communication interface that defines a

set of mechanisms for implementing shared-memory poli-

cies. The tempest mechanisms include low-overhead mes-

saging, bulk data transfer and fine-grained memory man-

agement. Using these mechanisms, a program can use vari-

ous programming models ranging from message passing to

shared memory models. The view architecture differs from

Tempest in several ways. Firstly, the view architecture does

not attempt to define mechanisms for protocol implemen-

tation. Instead, it proposes an interface for encapsulating

protocols leaving the details of implementation up to the

programmer. Furthermore, the details of fine-grained ac-

cess or virtual memory management remain the task of the

view client, rather than restricting the implementation to a

particular programming model.

The concept of a view is also used in view-oriented par-

allel programming (VOPP) [7]. Our view model abstrac-

tion and VOPP are mostly orthogonal. The focus of VOPP

is to assist the application programmer to better organise

shared data in order to performance optimise the applica-

tion. It achieves this by requiring the user to group data

with similar attributes, such as frequency of access, into ob-

jects called views. Views become the granularity of access

and are accessed exclusively. This behaviour is provided by

the view-consistency protocol.

Our view model does not focus on techniques used in

VOPP such as data partitioning. Instead the role of a view

is to encapsulate and abstract a shared region of data so that

it is possible to use existing techniques that better adapt the

application its environment. As such, the view-consistency

protocol and VOPP primitives could be implemented in our

model as a view pager and programming model API, re-

spectively, while providing their intended benefits.

7. Current Status and Future Work

Currently our implementation of the view architecture

supports DSM and one-sided MPI programming model in-

terfaces. For the DSM models, there are hardware-based

protocol implementations suitable for ccNUMA and SMP

machines, and software-based protocols for communication

over TCP/IP or raw Ethernet. We plan to explore view im-

plementations of HLRC which has weaker consistency than

the current strict consistency implementation.

We are in the process of implementing a two-sided MPI

programming model interface on views. We plan to explore

the use of views for broadcast and performing collective

operations in heterogeneous environments. We also plan

to look at multi-model applications that simultaneously use

two-sided MPI and shared memory programming models.

We will also explore the use of views for other aspects of

distributed, multi-cluster and Grid computing, such as bulk

data transfer, fault tolerance and fault detection.

8. Conclusion

The view architecture is based on a flexible and gener-

alised model for controlling and adapting shared data to a

distributed application’s underlying environment. It relies

on a separation of concerns between the client application,

programming model, consistency and communication pro-

tocols, and sharing interactions. We believe that this ap-

proach is suitable for distributed application data sharing in

wide-area environments such as multi-clusters and Grids,

and, in particular, that it provides mechanisms for improv-

ing the performance of existing DSM applications and pro-

tocols in such environments.

This paper has demonstrated the performance advan-

tages of using the view architecture for a typical distributed

shared memory application. In particular, we have shown

a significant performance advantage in environments that

offer specialised interconnects such as ccNUMA and SMP

systems. Furthermore, we have also demonstrated the abil-

ity to optimise communication across heterogeneous envi-

ronments easily.

References

[1] H. Bal, A. Plaat, M. Bakker, P. Dozy, and R. Hofman. Op-

timizing parallel applications for wide-area clusters. In Pro-

ceedings of the 12th International Parallel Processing Sym-

posium, pages 784–790. IEEE Computer Society, 1998.
[2] J. Carter, A. Ranganathan, and S. Susarla. Khazana: An

Infrastructure for Building Distributed Services. In Pro-

ceedings of the 18th IEEE International Conference on Dis-

tributed Computing Systems, pages 562–571, Amsterdam,

The Netherlands, May 1998.
[3] J. B. Chang and C. K. Shieh. Teamster: a transparent dis-

tributed shared memory for cluster symmetric multiproces-

sors. In Proceedings of the 1st IEEE International Sympo-

sium on Cluster Computing and the Grid, pages 508–513,

2001.
[4] D. Chen, S. Dwarkadas, S. Parthasarathy, E. Pinheiro, and

M. L. Scott. InterWeave: A middleware system for dis-

tributed shared state. In Languages, Compilers, and Run-

Time Systems for Scalable Computers, pages 207–220, 2000.
[5] L. Dagum and R. Menon. OpenMP: An industry-standard

API for shared-memory programming. IEEE Computational

Science and Engineering, 5(1):46–55, 1998.
[6] W. L. George, J. G. Hagedorn, and J. E. Devaney. IMPI:

Making MPI interoperable. Journal of Research of the Na-

tional Institute of Standands and Technology, 105(3):343–

428, 2000.
[7] Z. Huang, M. K. Purvis, and P. Werstein. Performance evalu-

ation of view-oriented parallel programming. In Proceedings

of the 34th International Conference on Parallel Processing,

pages 251–258, 2005.
[8] L. Iftode. Home-based Shared Virtual Memory. PhD thesis,

Dept. of Computer Science, Princeton University, June 1998.
[9] N. T. Karohis, B. Toonen, and I. Foster. MPICH-G2: A

grid-enabled implementation of the message passing inter-

face. The Journal of Supercomputing, 63(5):551–563, 2003.
[10] A. Plaat, H. E. Bal, and R. F. H. Hofman. Sensitivity of

parallel applications to large differences in bandwidth and

latency in two-layer interconnects. Future Generation Com-

puter Systems, 17(6):769–782, 2001.
[11] S. K. Reinhardt, L. R. Larus, and D. A. Wood. Tempest

and Typhoon: User-level shared memory. In Proceedings of

the 21st International Symposium on Computer Architecture,

pages 325–336. IEEE, 1994.

