
Replicated Web Objects: Design and Implementation

Ihor Kuz , Anne-Marie Kermarrec , Maarten van Steen , Henk J. Sips

Delft University of Technology, Delft, the Netherlands
IRISA, Rennes Cedex, France

Vrije Universiteit, Amsterdam, the Netherlands
i.kuz@cs.tudelft.nl, Anne-Marie.Kermarrec@irisa.fr, steen@cs.vu.nl, h.j.sips@cs.tudelft.nl

Keywords: distributed systems, object replication, object coherence, World-Wide Web, worldwide scalable sys-
tems

Abstract

The Web currently suffers from a number of scala-
bility problems. While general caching techniques
can be used to help some, the vast number of differ-
ent resources now available requires an alternative ap-
proach. In particular, we need to develop resource-
specific strategies. Such an approach is not supported
in the current Web infrastructure. Also, the current
Web is limited in flexibility with regards to integration
of new resources and services. This is partly caused by
the rigid nature of the HTTP protocol.

We introduce Web objects as a way to address these
problems. Web objects are worldwide scalable dis-
tributed shared objects that represent Web resources.
Each such object provides at least a common interface
and encapsulates and implements its own distribution
policy. In this paper we concentrate on the design of
these Web objects as well as their implementation in
Java.

1 Introduction

As the Web gains popularity, scalability problems are
becoming more and more apparent, the largest of these
being the problem of performance. Web servers are
often unreachable due to an overload of requests for
pages. Likewise, we are faced with long downloading
times caused by bandwidth limitations and unreliable
links combined with a growing number of users and
steadily increasing size of resources such as images,
audio, and video.

Traditional scaling techniques, such as caching and
replication [13], have been applied as solutions to
these problems. Unfortunately, inherent to these tech-
niques are consistency problems; modifications to one
copy of a cached or replicated Web page makes that
copy different from all the others. Currently, a sim-
ple consistency protocol is used for caches and there is

no standardized protocol for replicas. Neither of these
are optimal situations so new schemes are being de-
veloped and researched.

The drawback to most proposed solutions is that
they generally assume that a single consistency model
is required and that this model is appropriate for all re-
sources. With the large variety of Web pages already
existing, and the increasing alternative applications of
Web technology, it is clear that such a one-size-fits-all
approach will eventually fail. Instead, different poli-
cies that take Web usage into account will need to co-
exist in order for caching and replication to be effec-
tive. As an example, caching or replicating a seldom-
accessed home page will hardly be effective, whereas
for a popular page it might be. As far as different
consistency models are concerned, consider a popular
Web page that is maintained concurrently by several
people at different sites. Such a page would best be
physically distr ibuted across those sites. At the same
time, its readers may want updates to be immediately
pushed to their respective local copies. As a last ex-
ample, an online magazine, would most likely benefit
from a master/slave strategy by which a master copy is
pushed to mirror sites, but where clients pull in copies
from those mirrors on demand.

Another problem faced by the Web is its limited
flexibility with regards to the introduction of new re-
sources and services. Although nonstandard resources
have been integrated into the Web, the means by which
this is done usually requires a unique solution for each
new type of resource. Creating such solutions is not
always an easy task, and it is rarely elegant.

In order to address these problems we introduce
Web objects: an object-based infrastructure for the
Web. Web objects are distributed objects that repre-
sent Web resources. A Web object encapsulates not
only the functionality of the Web resource but also the
implementations of policies for replicating and dis-
tributing the resource. By encapsulating all Web re-



sources in Web objects we can provide a standard
interface to these resources, allowing new resources
to easily be integrated into the Web. Because each
Web object implements its own distribution policy,
the caching and replication policies can be devised on
a per-object basis. This approach opens the way to-
wards worldwide scalability as we can now take dis-
tribution requirements and possibilities of individual
resources into account.

In this paper we concentrate on the design of Web
objects, as well as its prototype implementation in
Java. Our main contribution is that we show how ex-
isting Web technology can be deployed to construct
better solutions to scalability problems. In addition,
we introduce a novel distributed-object model that can
be applied to more than just the World-Wide Web.

The paper is organized as follows. In Section 2
we present our notion of Web objects, concentrating
on functional issues rather than distribution aspects.
The latter are discussed in Section 3. In Section 4 we
present a Java implementation of Web objects and its
interface to existing Web browsers. Related work is
discussed in Section 5.

2 Web Objects

As mentioned above, scalability of the World-Wide
Web can be solved only by taking the distribution re-
quirements of individual pages into account. Instead
of considering only Web pages, our starting point is
formed by what we call Web objects. In our model,
a Web object represents any kind of resource that can
be accessed through the World-Wide Web. Examples
of such resources include HTML files, files containing
images, CGI scripts, applets, etc. At present, these re-
sources can usually be natively handled by browsers
and servers. However, we expect new resources to
evolve as well. For example, applications are emerg-
ing that allow users to make reservations for theaters,
hotels, etc. Also, collaborative applications such as
shared whiteboards are becoming increasingly avail-
able through the Web. Most browsers and servers do
not have the capabilities to directly deal with these
new resources.

Web objects can encapsulate any kind of resource.
However, it is necessary that applications can access
every kind of Web object in a standard way. The ap-
proach we follow is to define interfaces for Web ob-
jects. An interface consists of a set of methods offered
by a Web object. In this section, we concentrate on
what interfaces Web objects offer to their clients, ig-
noring distribution aspects and concentrating only on
functionality.

2.1 Common Web Object Interface

The success of the Web is partly due to the fact that
many different kinds of resources can be transferred
and presented to clients in a uniform way. Web objects
are no different in this respect. In particular, there is
a common (Web object) interface that is offered by
each Web object, as shown in Figure 1.

Method Meaning

Put Change the content of the Web object
by writing data in the Web object’s na-
tive format to it

Get Get the content of the Web object in its
native format

Size Return the size (in number of bytes) of
the Web object’s content

Get HTML Get the content of the Web object in
HTML format that can be interpreted by
a browser

HTML Size Return the size (in number of bytes)
of the Web object’s content when it is
viewed as an HTML file

Clear Clear the content of the Web object

Figure 1: The common interface that is implemented by
each Web object.

The common Web object interface includes meth-
ods for reading, writing, and clearing the content of
the Web object. Each type of Web resource has a spe-
cific format for representing its content. For exam-
ple, an image will usually be represented as binary
data (a pixmap, GIF file, etc.), whereas a text file or a
Postscript file will be represented as plain ASCII text.
We call this format a resource’s native format. The Get
and Put methods allow a Web object’s content to be
retrieved or set in this format. We also offer a method
(Get HTML) to acquire an HTML representation of the
Web object. For an image or Postscript Web object
this might be a simple description of the actual con-
tents, whereas for plain text this might be the text en-
hanced with some HTML tags. The Web object itself
is ultimately responsible for deciding how to represent
its content in HTML.

2.2 Common Management Interface

Each Web object has at least three attributes associated
with it: one that tells when the Web object’s state was
last modified, a resource type, and a name. The com-
mon (Web object) management interface, shown in
Figure 2, contains the methods that are used to read
and write these attributes.

The management interface can be extended for dif-
ferent classes of Web objects. For example, Web ob-
jects providing persistent state offer additional meth-
ods for storing and retrieving state.



Method Meaning

LastMod Returns the time the Web object was
last modified

SetType Sets the type of resource this Web ob-
ject represents

GetType Returns the type of resource the Web
object represents

SetName Associates a name (string) with the Web
object

GetName Returns the Web object’s associated
name

Figure 2: Methods in the common management interface of
each Web object.

2.3 Object-specific Interfaces

Besides the common interfaces, Web objects can have
one or more specific interfaces depending on the type
of resource they represent. To give an impression of
what an object-specific interface would look like, con-
sider a Web object representing a general Web page.
Such a Web page object includes the HTML code,
any inline images, sounds, films, applets, etc.

When using a Web page object a client may want
to access the Web page object’s entire state (i.e., all
the resources contained in it), or it might want to ac-
cess only certain parts of it. For example, a Web
browser needs to access each of the resources individ-
ually, whereas a client copying the Web page object to
another location would prefer to access the whole state
at once.

As such, the interface provided by a Web page ob-
ject has methods which allow each of the resources to
be accessed separately. There are, for example, meth-
ods which allow clients to access the HTML text of
the page, to add images, to get a list of all images, etc.
Reading or modifying the entire state of the Web page
object can be done through its common Web object in-
terface, which we showed in Figure 1

A Web page object provides persistent state, lead-
ing to an extension of the management interface with
a Store and ReadFrom method. In our prototype im-
plementation, the entire state of a Web page object is
stored in an archive file local to the client.

3 Web Objects and Distribu-
tion

So far, we have concentrated only on the functionality
of Web objects and have ignored distribution issues.
Ideally, a client is not aware of the distributed nature
of a Web object. For example, it should be transparent
where the Web object resides, whether it is replicated,
or that it can migrate between locations.

3.1 Remote Method Invocation

An approach currently followed by most object-based
distributed systems is to allow clients transparent ac-
cess to an object through remote method invocations.
In such cases, a proxy is installed at the client that of-
fers the same interface as the actual object. When a
client invokes a method, the proxy sends a message
to the object’s current location containing the iden-
tification of the method and its marshalled parame-
ters. A server process is responsible for unpacking the
message, invoking the method, and sending a reply
message containing the method’s return values back to
the proxy. The proxy subsequently unpacks the reply
message and passes the results of the method invoca-
tion to the client.

Remote method invocation basically deploys the
same technique as RPCs [2], and has recently been in-
troduced in Java [20]. Combined with object serializa-
tion, it forms a powerful technique for transparently
invoking remote objects, even in the face of object mi-
gration and persistence, as demonstrated by the Voy-
ager toolkit [14].

However, remote method invocations alone are not
enough to handle complex distribution issues such as
caching and replication. Moreover, the requirements
for distribution are highly dependent on the nature of
the object as we discussed in the introduction. In other
words, distribution policies for Web objects are ob-
ject specific. However, we should take care not to mix
the implementation of the functionality of a Web ob-
ject, with the implementation of its distribution policy.
In particular, it should be possible to change a Web
object’s distribution policy without affecting what the
Web object does.

3.2 Separating Concerns

We adopt an approach by which a Web object is parti-
tioned into several subobjects, as shown in Figure 3.

In this approach, the semantics of the Web object
is represented by a semantics object. A semantics ob-
ject is a user-defined object that contains an implemen-
tation of the functionality of the Web object. In prac-
tice, the semantics object is constructed from primi-
tive objects and facilities offered by a programming
language such as Java or C++. For example, the se-
mantics object of a Web page object may consist of
several Java objects, each one implementing part of
the actual Web page. As such, we could have a Java
object encapsulating the page’s text body as HTML
code, another Java object implementing an applet, and
yet another one offering facilities for displaying an im-
age. The important issue is that the semantics object is
constructed without considering distribution aspects.
The latter are handled by the replication and commu-
nication object.



Figure 3: The organization of a (local) Web object.

The function of the replication object is to handle
replication and caching of the state of the Web object,
as represented by the semantics object. In our model,
the semantics object may be copied to multiple ma-
chines. It is the responsibility of the replication object
to keep these copies consistent. Exactly which con-
sistency protocol is used depends on the Web object.
We do not enforce a general distribution policy for all
Web objects. Although distribution policies may dif-
fer between Web objects, replication objects all have
the same interface, which is shown in Figure 4.

Method Meaning

Start Called to start an invocation on the se-
mantics object

Send Send marshalled parameters to the other
replicas

Finish Called when the invocation has finished

Figure 4: The basic methods provided by the replication ob-
ject to support active replication.

Basically, each replication object need merely pro-
vide three methods. When a client wants to invoke a
method at the semantics object, it first requires permis-
sion from the replication object. The Start method is
used for this purpose. Invocation of Start allows the
replication object to globally order the invocation re-
quest, and if necessary, acquire locks and such. After
Start has returned, the client is, in principle, allowed
to do the local invocation at the semantics object. The
invocation requested by the client is forwarded to the
other replicas by invoking Send. The parameters of
the semantics object’s method are marshalled, and to-
gether with an identifier of that method are passed to
Send. This is similar to dynamic invocation mech-

anisms as supported by, for example, CORBA [15].
Once all is done, the caller invokes Finish allowing the
replication object to synchronize the replicas, and pos-
sibly releasing locks as well. Further details can be
found in [9]

This approach strongly resembles meta-level pro-
tocols as used in reflective object-oriented program-
ming [11]. The replication object provides a standard
interface to handle active replication, but policy de-
tails are entirely hidden behind that interface.

The communication object is used by the replica-
tion object for all network communication needs. It
offers a standard interface and implements point-to-
point as well as group communication.

The control object manages invocations, calling the
semantic and replication objects at the right times.
This control object isolates the semantics object from
the replication object. It is responsible for marshalling
and unmarshalling invocation requests, and invoking
methods at the semantics object when instructed to do
so by the replication object.

3.3 Towards Truly Distributed Web
Objects

Having just split a Web object into separate subob-
jects, it is important that clients still view this col-
lection of subobjects as one single entity. This is
achieved by ensuring that clients can access a Web
object only through its control object. In this way
clients have only one access point to the Web object
and therefore see it as a single object.

This approach is sufficient for nondistributed ob-
jects. However, we also want this single-object view
to persist even when parts of the Web object are repli-
cated or distributed. For example, the fact that the
state of the Web object is replicated by having copies
of the semantics object reside at multiple locations,
should be hidden from clients. How those copies are
kept consistent, for example when an invocation re-
quest is actually executed, should also be hidden. In
other words, the Web object must offer the client dis-
tribution transparency.

Achieving such transparency is relatively simple:
the Web object is no longer considered to consist of
only the local copy at a specific client, but is taken
to be the collection of all those local copies. In other
words, the complete management of replicas is now
also part of a Web object. When a client binds to a Web
object, the Web object can decide to install a replica
of the semantics object at the client. Alternatively, the
client may get only a proxy implementation of the Web
object’s interfaces. Such differences are hidden from
the client: they are part of the overall implementation
of the Web object.

This approach is, in fact, the one adopted in the
Globe architecture [8, 18]. Central to Globe are dis-



tributed shared objects which fully encapsulate their
own distribution policy, and which can be physically
distributed across multiple machines. Web objects
as we have described here, are a special instance of
Globe’s distributed shared objects.

4 Implementing Web Objects

This section presents the Java 1.1 implementation of
Web objects as described in the previous sections.
The reason for choosing Java as the programming lan-
guage was the possibility of integrating Web objects
with current Web browsers that offer Java support.
Another reason was the portability of the resulting bi-
naries, which will allow us to experiment with dynam-
ically loading Web objects and subobjects.

Web objects are based on the Globe architecture,
thus their implementation relies heavily on that of
Globe. For this reason, we first describe the Globe
Java run-time and development environment before
paying specific attention to the implementation of Web
objects.

4.1 Basic Globe Implementation

Globe, like CORBA and many other distributed object
architectures, is based on the use of interfaces. One of
its main development components is an Interface Def-
inition Language (IDL). The Globe IDL is used by de-
velopers to define the interfaces that will be exported
and used by Globe objects. We have defined a map-
ping from the Globe IDL to Java.1

A developer starts with defining, in Globe’s IDL,
the interfaces for a class of Globe’s distributed shared
objects. After that, an Object Definition Language
(ODL) is used to describe how a Globe distributed
shared object will actually implement and export its
interfaces. This may be done in a general program-
ming language such as Java, or a special-purpose
ODL. Since we have not yet developed such an ODL,
Globe distributed shared objects are currently defined
directly in Java.

The run-time environment itself needs basic ser-
vices such as memory management, thread manage-
ment, I/O, persistence, etc. In Globe, these are to be
implemented as library services or basic objects (e.g.
stream objects for I/O or thread objects). For our Java
implementation, we have used native Java objects and
services whenever possible.

Finally, to implement Web objects, the Globe en-
vironment must provide implementations of the repli-
cation, communication and control subobjects. These
are currently available in the form of simple Java ob-
jects contained in libraries.

1The Globe IDL is different enough from other IDLs to warrant
a different mapping than that used by existing systems.

Because the interaction of Globe distributed shared
objects is based on interfaces, the use and mapping of
these interfaces is important. In Globe, interfaces are
represented by actual structures that clients can store
or pass around (as parameters or return values). These
representations of interfaces (which we will refer to
as Globe interfaces) are used to perform the actual
invocation of methods. A Globe interface provides
clients with access to (part of) the methods exported
by a Globe distributed shared object. Each Globe in-
terface is mapped to a Java class representing that in-
terface. In other words, we use a separate Java class
for each Globe interface. Such a Java class contains
the methods belonging to the Globe interface, and im-
plements them by forwarding method invocations to
Globe objects containing the actual implementations.
Clients can thus invoke a Globe distributed shared ob-
ject directly through a Java object.

Figure 5 shows a situation where a Java client has
received a Globe interface for a Web object and calls a
method from this interface. The Java object represent-
ing the Globe interface calls the same method on the
control object (also a Java object) of the local imple-
mentation of the Web object. The control object then
calls methods on the replication and semantics objects
(which are also Java objects) as necessary.

Figure 5: A Java client accessing a Web object through an
interface object

4.2 Web Objects

The main activity in creating a Web object is imple-
menting a semantics object. Once the semantics ob-
ject has been written, a control object is generated
from the description of the semantics object. This con-
trol object accepts all the method calls from the client
and uses the replication object’s knowledge of the dis-
tribution policy to decide whether to call the semantics
object directly, or to marshal parameters and to let the
replication object take care of the call.

The replication object uses the communication ob-
ject to send and receive messages. The communica-
tion object implements point-to-point communication
using TCP/IP from Java’s networking API. It can also



do blocking sends, or nonblocking sends and explicit
receives. The replication object uses the control ob-
ject to call methods of the semantics object. The repli-
cation object need not know which method is to be
called, it just passes information on to the control ob-
ject. The control object uses Java’s reflection API [16]
to unmarshal any parameters and to subsequently call
the appropriate method of the semantics object.

We have implemented several replication objects,
based on different replication coherence requirements
of Web objects. Details on the algorithms and policies
are described in [10].

It is important that Web objects are integrated into
the current Web infrastructure in such a way that they
can be accessed using currently available Web tools
such as Web browsers, spiders, etc. There are three
approaches to integrating Web objects into the cur-
rent Web. The first approach involves a gateway, the
goal of which is to allow standard Web clients (e.g.,
browsers) to access Web objects. The gateway is a
process that runs on a server machine and accepts reg-
ular HTTP requests for a Web object. When a re-
quest comes in, the gateway locates the desired object,
binds to it (i.e., acquires a Globe interface for it), and
retrieves data from it. If necessary, this data is con-
verted into an appropriate format (e.g. to HTML) and
an HTTP reply containing the data is sent back to the
client. With this approach, clients are completely un-
aware of the actual implementation of Web objects.

The second approach involves a custom extensible
browser that is aware of Web objects and knows how
to find and communicate with them. The browser is
directly responsible for locating the appropriate Web
object, binding to it, and receiving data from it. The
browser will also have to be able to deal with the Web
object’s data, possibly using plug-in extensions when
necessary.

The third approach is a hybrid one that combines
elements from the previous two approaches using the
Java support present in most major Web browsers. As
in the first approach, a gateway is used to access Web
objects. However, instead of returning the data di-
rectly to the browser, the gateway returns a custom
Java applet. This applet will contact and bind to the
Web object via the gateway, and represent the Web
object in the client’s browser. Such an applet can be
omitted in certain cases, such as for HTML Web ob-
jects. This is the approach we have chosen for our pro-
totype implementation.

5 Related Work

We have presented Web objects as a solution to the
Web’s scalability problems. Web objects are however
not the only solution devised to solve this problem.
Currently a number of replication and caching tech-
niques are in standard use in the Web. Popular Web

sites (or parts thereof) are often replicated by creating
mirror sites. Consistency is usually achieved through
manually updating the mirror sites based on changes
to the master site. Sometimes these changes are auto-
mated by the Web site maintainers. However, the tech-
niques used are ad-hoc and have not been standard-
ized.

Three forms of caching are currently in use. Client
caching is done by browsers with a separate local
cache for each user. The use af a separate cache
for each user results in inefficient use of cache space
as there are often many redundant entries among the
users. Caching proxies [12] offer a solution to this
by keeping site-wide caches. For large sites (compa-
nies, universities, etc.) only single copies of resources
need to be cached allowing more efficient use of cache
space. This solution still suffers from the fact that ev-
ery accessed document is added to the cache, and that
coherence is not tuned to individual documents. Fi-
nally, server caches are pr ovided as a solution to the
problem of degrading server performance. By caching
recently accessed pages in main memory, servers can
speed up access to popular resources, thus increasing
their performance. However, at very popular sites the
problem of server performance is often coupled with
that of bandwidth, so this offers only a partial solution.

A number of Web problems are partially addressed
in the new HTTP version (1.1) [6]. It contains im-
proved use of network resources and a large and ex-
tendible set of parameters to facilitate the sending of
caching information between client and server. This
allows current caching techniques to make wiser de-
cisions, but the basic drawbacks remain.

Due to the limitations of the current caching and
replication approaches much work has been done to
change current Web caching. Wessels [19] proposes
to allow servers to grant or deny a client permis-
sion to cache a resource. Push-caching [7] allows
popular resources to be optimally distributed to other
servers based on knowledge of the resource’s access
patterns. Harvest caches [4], which provide a hierar-
chical cache, are currently gaining popularity in the
Web. The Bayou [17] project, though not directly re-
lated to the Web, has looked at the problem of replica
and cache coherence, and we have based a number
of our coherence models on some of their work [10].
Caching goes Replication [1] looks at caching as repli-
cation where updates are pushed to the client rather
than the current situation where the client decides
when to update the cache.

Due to the limited and noninteractive nature of
HTTP, much attention has been focused on the com-
bination of object technology and the Web. Currently
much work is being done in integrating CORBA [15]
and similar distributed object technologies and the
Web. Especially the combination of Java and CORBA
is receiving much attention [5]. These approaches do



not tackle the problem of scalability in the Web, and
do not provide solutions for caching, replication and
consistency. An approach with similar aims as ours is
that adopted by the W3Objects system [3]. A num-
ber of fundamental differences are that this system
aims at providing a highly visible caching mechanism,
whereas we aim for maximum transparency. Also,
W3Objects do not address coherence models for their
objects as we do. An interesting development in the
combination of object-based techniques and the Web
is the proposed HTTP-NG [21] protocol, the goal of
which is to present a new object-based protocol for the
Web.

There are still a number of open issues concern-
ing Web objects and their development. First of all,
we must come up with an acceptable naming scheme
for Web objects. Dynamic loading of (sub) objects is
also a desirable feature. The current implementation
of Web objects is in Java. However, our goal is to al-
low Web objects to be implemented in other languages
(e.g. C++, C, etc.) and allow these Web objects to be
able to interact with each other. Other issues such as
security must also be looked into.

References

[1] M. Baentsch, L. Baum, G. Molter, S. Rothkugel,
and P. Sturm. “Enhancing the Web’s Infrastruc-
ture: From Caching to Replication.” IEEE Inter-
net Comput., 1(2):18–27, Mar. 1997.

[2] A. Birrell and B. Nelson. “Implementing Re-
mote Procedure Calls.” ACM Trans. Comp.
Syst., 2(1):39–59, Feb. 1984.

[3] S. Caughey, D. Ingham, and M. Little. “Flexible
Open Caching for the Web.” In Proc. Sixth Int’l
WWW Conf., Santa Clara, CA, Apr. 1997.

[4] A. Chankhunthod, P. Danzig, C. Neerdaels,
M. Schwartz, and K. Worrell. “A Hierarchical
Internet Object Cache.” Technical Report CU-
CS-766-95, Department of Computer Science,
University of Colorado – Boulder, Mar. 1995.

[5] E. Evans and D. Rogers. “Using Java Applets
and CORBA for Multi-User Distributed Appli-
cations.” IEEE Internet Comput., 1(3):43–55,
May 1997.

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and
T. Berners-Lee. “Hypertext Transfer Protocol –
HTTP/1.1.” RFC 2068, Jan. 1997.

[7] J. Gwertzman and M. Seltzer. “The Case for
Geographical Push-Caching.” In Proc. Fifth
HOTOS, Orcas Island, WA, May 1996. IEEE.

[8] P. Homburg, M. van Steen, and A. Tanenbaum.
“An Architecture for A Scalable Wide Area Dis-
tributed System.” In Proc. Seventh SIGOPS Eu-
ropean Workshop, pp. 75–82, Connemara, Ire-
land, Sept. 1996. ACM.

[9] P. Homburg, M. van Steen, and A. Tanenbaum.
“Unifying Internet Services using Distributed
Shared Objects.” Technical Report IR-409,
Vrije Universiteit, Department of Mathematics
and Computer Science, Oct. 1996.

[10] A. Kermarrec, I. Kuz, M. van Steen, and
A. Tanenbaum. “A Framework for Consistent,
Replicated Web Objects.” Technical Report
IR-431, Vrije Universiteit, Department of
Mathematics and Computer Science, Sept.
1997.

[11] G. Kiczales. “Towards a New Model of Abstrac-
tion in the Engineering of Software.” In Proc.
International Workshop on New Models for Soft-
ware Architecture (IMSA): Reflection and Meta-
Level Architecture, Tokyo, Nov. 1992.

[12] A. Luotonen and K. Altis. “World-Wide Web
Proxies.” Comp. Netw. ISDN Syst., 27(2):1845–
1855, 1994.

[13] B. Neuman. “Scale in Distributed Systems.”
In T. Casavant and M. Singhal, (eds.), Read-
ings in Distributed Computing Systems, pp. 463–
489. IEEE Computer Society Press, Los Alami-
tos, CA., 1994.

[14] ObjectSpace Inc. Voyager User Guide, July
1997.

[15] OMG. “The Common Object Request Broker:
Architecture and Specification, revision 2.1.”
OMG Document Technical Report 97.09.01,
Object Management Group, Aug. 1997.

[16] Sun Microsystems, Mountain View, Calif. Java
Core Reflection API and Specification, Feb.
1997.

[17] D. B. Terry, A. J. Demers, K. Petersen, M. J.
Spreitzer, M. M. Theimer, and B. B. Welsh.
“Session Guarantees for Weakly Consistent
Replicated Data.” In Proc. Third Int’l Conf. on
Parallel and Distributed Information Systems,
pp. 140–149, Austin, TX, Sept. 1994. IEEE.

[18] M. van Steen, P. Homburg, and A. Tanenbaum.
“The Architectural Design of Globe: A Wide-
Area Distributed System.” Technical Report IR-
422, Vrije Universiteit, Department of Mathe-
matics and Computer Science, Mar. 1997.

[19] D. Wessels. “Intelligent Caching for World-
Wide Web Objects.” In Proc. INET ’95, Hon-
olulu, Hawaii, June 1995. Internet Society.

[20] A. Wollrath, R. Riggs, and J. Waldo. “A Dis-
tributed Object Model for the Java System.”
Computing Systems, 9(4):265–290, Fall 1996.

[21] WWW Consortium. “HTTP-
NG Architectural Overview.”
http://www.w3.org/Protocols/HTTP-NG/http-
ng-arch.html.


