Towards a Taxonomy of Distributed-Object Models

Arno Bakker

lhor Kuz

Maarten van Steen

Vrije Universiteit Amsterdam

Keywords: distributed objects, object models, taxonomy, distributed computing

Abstract

Different ideas about object-orientation and distrib-
uted computing have resulted in a large number of
distributed-object models. Use of the same termi-
nology with different meanings makes these models
hard to compare. What is currently missing is a
framework for describing object models which can
be used to compare and classify them. An attempt
at defining such a framework is presented in this pa-
per.

1 Introduction

Many researchers have recognized the potential ben-
efits of using the object-oriented paradigm in the
field of distributed computing. However, they have
different opinions on how the paradigm should be
used in this field. This lack of consensus is reflected
in the large number of models for distributed ob-
jects that exist today. The variety of models and
the differences in terminology used make it hard to
compare them, and to assess their suitability for a
particular application domain. What is needed is a
framework for describing distributed-object models,
enabling us to classify the different models and to
make in-depth comparisons. Such a framework does
not currently exist.

In this paper we present such a framework. Our
framework is a result of studying a small, but repre-
sentative set of object models and recording in which
areas those models show notable differences. We fo-
cused on aspects which are important in distributed
computing, such as distribution, communication, se-
curity and fault tolerance [7].

The framework presented here is a down-sized
version of a more complete framework which is still
under construction. For example, in this version
we do not address security. A future version of the
framework will be used to do a comprehensive com-
parison of distributed-object models and to create a
taxonomy of such models.

The framework is explained in Section 2. Clos-

ing remarks, related work and the issues not yet ad-
dressed in this version can be found in Section 3.

2 TheFramework

Our current framework describes a distributed-object
model in four parts. The first part focuses on the
basics of an object: the logical parts it consists of
(state, method, interfaces, ...), if there are multi-
ple kinds of objects, how objects are identified and
referenced, etc. The other three parts focus on as-
pects which are important in a distributed context,
notably distribution of (parts of) the object, object
interaction, and if and how the occurrence of par-
tial system failures is taken into account.

These last three aspects correspond to three re-
quirements for programming languages for distrib-
uted applications identified by Bal et al. [1]. These
requirements are: (1) the ability to assign different
parts of a program to be run on different different
processors, (2) the ability to communicate and syn-
chronize, and (3) the ability to detect and recover
from partial failure of the system.

By describing distribution, interaction, and fault
tolerance we are able to form an idea as to what ex-
tent, and how an object model fulfills these require-
ments. More importantly, we will be able to com-
pare the different approaches taken by the various
object models.

Each of the four parts (object basics, interaction,
distribution, fault tolerance) is further subdivided,
creating a framework which is hierarchically struc-
tured. In this paper instead of describing all facets
of the framework in detail we choose to concentrate
on the rationale behind its structure and contents.

2.1 Objects
2.1.1 Overview

The first part of the framework describes the ba-
sics of the objects in an object model. It consists
of three subparts: Object Characteristics and Struc-

ture, Naming and Interface. This division is shown
in Figure 1.

1. Characteristics and Structure
(a) Object Granularity
(b) Kinds of Objects
(c) Object Structure
(d) Activity Model
(e) Object Classes
(f) Object Composition
2. Naming
3. Interface
(a) Inheritance
(b) Polymorphism
(c) Typing

Figure 1: Object Basics

2.1.2 Object Characteristics and Structure

In some object models, objects typically encapsulate
whole applications, while in others an object rep-
resents smaller things such as records or lists. In
the extreme case, everything is considered an ob-
ject, even integers. The typical size of an object in
an object model is its granularity.

A common definition for an object is one in
which an object consists of state and methods for
accessing and modifying that state. The methods
can be grouped together to form one or more inter-
faces. In a number of object models objects have a
different structure, i.e. consist of different parts. For
example, in the object model of the Obliq language
[4] an object is perceived as a collection of named
fields. In Emerald [3] the parts of an object as seen
by the user are its name, its state, its methods, and
optionally a process.

The activity model refers to how processes or
threads are related to the objects in the object model.
In an object model in which objects are active,
threads are always bound to an object and an ob-
ject always has a thread of control bound to it. In a
passive model, processes and objects can exist and
be created independently. Some object models use
a hybrid model in which an object can be active or
passive.

Many distributed-object models support the con-
cept of a class. The definition of a what a class is
differs between models, however. A class can be the
definition of an object (as in C++) or it can be a fac-
tory for creating objects. Classes sometimes are ob-
jects themselves or are code repositories which are

shared by the objects created from them. Most mod-
els supporting the class concept also define a num-
ber of rules for them, for example that a class should
always be co-located with its instances. These are
important distinguishing parameters because in this
example the rule can have impact on an object’s mo-
bility [2].

2.1.3 Naming

Object models have different ways of identifying and
referencing objects. Objects may be identified by
a symbolic name or have some universally unique
identifier (UUID). Object models may allow differ-
ent symbolic names to be assigned to the same ob-
ject or require that there is a one-to-one mapping
between objects and hames. In other models, object
identifiers are not universally unique, but are only
valid in a particular context.

2.1.4 Interface

The interfaces of an object define the possible in-
teractions with that object. In some models objects
have exactly one interface, while others permit mul-
tiple interfaces per object.

Most object models allow objects to inherit, i.e.
receive properties or characteristics of other objects
[16]. There are two kinds of inheritance: interface
inheritance and implementation inheritance. Object
models supporting the first type of inheritance al-
low an object’s interface or interfaces to be defined
in terms of interfaces of other objects. In models
supporting the second type, we can use the imple-
mentation of existing objects to implement new ob-
jects. There are object models that allow inheritance
from more than one object (multiple inheritance)
and models that allow inheritance at run-time, i.e.
dynamic inheritance.

Object models greatly differ in the way they sup-
port type. This makes it an area in which clear dis-
tinctions can be made between object models. Typ-
ing is important in a distributed system. Strongly
typed interfaces can help ensure consistency of com-
munication and also document some of the behav-
iour of the object [15] (see also Section 2.2.4).

22

2.2.1 Overview

I nteraction

The second part of the framework provides a de-
scription of how objects interact in a distributed-
object model. In particular, it concentrates on im-
portant aspects of method invocation, the different

types of interaction (other than method invocations),
the description of object behaviour, and the way con-
currency and synchronization are handled. Distin-
guishing these aspects has shown to be important in
order to classify the various models. This part of the
framework is summarized in Figure 2.

1. Method Invocations
(a) Static / Dynamic Invocation
(b) Parameter Passing
(c) Dynamic Binding

2. Other Types of Interactions

3. Behaviour

4. Concurrency

(a) Concurrent Access to a Single Object

(b) Serializing Concurrent Actions To Multiple
Objects

5. Synchronization

(a) Synchronizing Actions on a Single Object

(b) Synchronizing Actions Involving Multiple Ob-
jects

Figure 2: Interaction

2.2.2 Method Invocations

In some object models method invocations are view-
ed as messages to other objects that have to be ex-
plicitly accepted; in others the programmer sees them
as direct invocations on the object.

A method usually has a number of parameters
and a return value. The collection of permitted data-
types for these parameters differs from model to
model. For example, most systems do not allow
pointers as parameters since they are valid only in
the current address space. Object models also differ
in the way parameters are passed (e.g., by value, by
reference or by copy-restore) and the set of parame-
ter passing modes (e.g., i n, out , i nout).

Parameter passing modes in particular are inter-
esting in a distributed context. For example, in the
object model used in the Spring operating system
[13] the programmer can specify the “direction” in
which a parameter is going. When a method is in-
voked on an object with another object as a con-
sume parameter, the latter object is moved to the
location of the called object. Using parameter pass-
ing modes such as consune, produce, copy,
etc., the programmer can provide more information
about the distribution behaviour of the application.
This information can be used by the underlying sys-
tem to do optimizations (at run- or compile-time).

Dynamic binding, i.e. determining at run-time
which method should be executed is a feature of
many object-oriented languages. Distributed-object
models use this mechanism for various things. To
see why it is important to discuss dynamic binding,
consider the following example. Dynamic binding is
an integral part of the Distributed Smalltalk model
[2]. To determine which method code should be
executed, the system has to traverse the class hier-
archy to find the parent class that implements the
method. If the class hierarchy is distributed over the
system? the look-up process can become rather ex-
pensive since it might have to cross the network sev-
eral times. Alternatively, the class hierarchy (or ac-
tually the classes on the path up in the hierarchy) has
to be replicated on the local machine, which might
become a substantial waste of resources when deal-
ing with a large number of classes.

2.2.3 Other Types of Interactions

Method invocations are not the only way of inter-
acting with objects. There are other types of in-
teractions which some object models support and
which others do not. Events are particularly impor-
tant in system management applications where they
are used to signal that a certain condition has arisen,
for example, that a host has gone down. Especially
object models designed to build such applications
have extensive support for events. Other models
support interprocess (or interobject) byte streams,
which are useful when writing distributed multime-
dia applications.

2.2.4 Behaviour

Most object models allow the programmer to spec-
ify the behaviour of the object. Often, it can be spec-
ified only as comments to the definition of the ob-
ject’s methods, but in a number of models it is a for-
mal part of the object definition. Making behaviour
an explicit part of an object definition is important.
To illustrate, consider a producer and a consumer
using a shared buffer object to communicate. Using
some formal notation we can specify the behaviour
of the buffer object, i.e. a producer can only add to
the buffer when it is not full and a consumer can
only remove items when it is non empty. This defi-
nition of the behaviour of the object can be used by
the compiler and run-time system to control access
to the object. When the buffer is full it will not allow
the producer to call the add method on the buffer.

IClasses are also objects in Smalltalk and can therefore be
distributed.

The programmer is therefore relieved from includ-
ing explicit access control code in the bodies of the
buffer methods [17].

By making object behaviour explicit, the system
can make decisions about when to execute a method
and when not to. This does not only make program-
ming easier, it also creates safer communications be-
cause methods are never executed when they are not
supposed to be.

Another reason why making behaviour explicit
is important, is that formally specified behaviour of
an object is documentation, making the application
in which the object is used easier to understand.

2.2.5 Concurrency

Concurrency and object-oriented programming do
not go well together: the mechanisms for handling
concurrency interfere with the object-oriented fea-
tures of the object-oriented programming language
[12]. This makes it an interesting part of the frame-
work because it shows us the different approaches
and solutions the distributed-object model designers
have taken, and in what way these approaches and
solutions affect the object-oriented-Ness of the ob-
ject model. These different approaches and solu-
tions are again a discriminating factor.

We divide the discussion on concurrency in our
framework into two parts: concurrent access to a
single object and concurrent operations that involve
more than one object. Papathomas [12] designed a
classification scheme for concurrent object-orient-
ed programming languages based on the way they
handle concurrency. We use this scheme to classify
distributed-object models.

Orthogonal / Non-Orthogonal An object model
is orthogonal if objects in that model have
no special support for concurrent operations.
A common property of non-orthogonal ob-
ject models is that an object’s state is pro-
tected from concurrent execution of the ob-
ject’s methods.

Uniform / Non-Uniform A non-orthogonal object
model is non-uniform if it supports two kinds
of objects: Objects of which the execution
of methods is serialized and objects whose
method execution is not.

Integrated / Non-Integrated A uniform object
model is integrated if threads of control are
always associated with objects and are created
only as a result of the creation of objects.

This division will need to be further refined. For
example, there are severals ways to serialize the ex-
ecution of methods. Some models simply disallow
concurrent execution of methods, while others sup-
port transactional mechanisms. Such differences will
be incorporated into our framework as well.

2.3 Distribution

The third part of the framework focuses on distribu-
tion of objects or parts of objects in the distributed-
object model. The way distribution is handled is
probably the most important aspect of a distributed-
object model. Distribution greatly affects perfor-
mance and availability. The particular approach an
object model has taken can also tell us something
about its scalability.

The third part of the framework is summarized
in Figure 3.

1. Unit of Distribution (What)
2. Act of Distribution (Who & When)

(a) Mobility
3. Expression of Distribution (How and Where)

(a) Level/grain of Location Transparency

Figure 3: Distribution

2.3.1 Unit of Distribution (What)

The unit of distribution refers to what is being dis-
tributed in a particular object model. In most object
models one distributes the state of the object. If the
state is distributed as a whole, the state is the unit
of distribution. If it is distributed in parts, the unit
of distribution is a part. In other object models one
distributes objects. Objects can also be distributed in
whole or in parts. Note that distributing an object as
a whole is not the same as distributing its state. For
example, in Clouds [5] one distributes objects. The
state is brought to the object’s location when needed
(using a Distributed Shared Memory system).

An example of a model in which parts of objects
are distributed is the Fragmented Objects model [8].
In that model an object consists of multiple frag-
ments which are individually distributed over the sys-
tem. In this model the unit of distribution is the ob-
ject fragment.

Objects and state may be replicated, again in
whole or in part, in some models. Those models of-
ten also support fragmented replicas (multiple frag-
ments constitute one “full” replica) and replicated

fragments. In those cases the unit of distribution is a
fragment.

2.3.2 Act of Distribution (Who & When)

The assignment of location to a unit of distribution
(i.e. distributing that unit) can take place at several
moments in time. It can be done at compile-time,
at startup-time or during run-time. The assignment
can furthermore be permanent, i.e. one which can-
not be changed afterwards, or one which is mutable.
Assigning units to a particular location or changing
the location of a unit is done either by the system or
by the programmer.

We can classify object models according to when
and by whom location assignment is done and wheth-
er or not that assignment can change. The models in
which it can be changed can be further classified on
the basis of two transparencies which they may or
may not provide. If an object (or other unit of dis-
tribution) can change location without other objects
noticing it, the object model is said to be relocation
transparent. When the object or unit itself does not
notice the change of location, the object model is
said to be migration transparent [6].

2.3.3 Expression of Distribution (How & Where)

Once we know what the unit of distribution is and
by whom and when distribution takes place, we can
look at how and where the distribution is expressed.
Object models take different approaches here.

Being able to express the distribution of units
over the distributed system implies that there is some
way to express location in the object model. At first
glance this might seem to conflict with the desire to
have a location-transparent distributed-object mod-
el, but it does not. For example, the programmer
may be able to program the application without tak-
ing location into account, because the distribution of
the objects in the distributed-object model is speci-
fied in a separate distribution map which is read by
the system when the application is started.

A distinction can be made between the level of
location transparency a model provides to the pro-
grammer. We distinguish four levels or grains of
location transparency:

¢ totally transparent

e partially transparent (e.g., there is a distinc-
tion between local and remote objects, but the
remote location is not known)

¢ logically transparent (e.g., object X is on vir-
tual node N, co-locate object Y with X)

e not transparent (e.g., locations of resources
are explicitly used)

This, in effect gives us the answer to the question
how location is specified, if visible at the program-
ming level. A second question we wish to answer is
how we can obtain the location of a particular unit of
distribution, if it can be explicitly manipulated. This
will help us discriminate between the various object
models.

2.4 Failureand Fault Tolerance

The fourth and final part of this version of the frame-
work is focused on how the occurrence of system
failures is incorporated into the object model. Ex-
amples of system failures are processor crashes, net-
work failures, temporary lack of resources, etc. This
part is summarized in Figure 4.

1. Failure Transparency

2. Failure Semantics

3. Failure Detection / Notification

4. Mechanisms for Working in the Presence of Failures
(a) Atomic Transactions
(b) Persistent Objects
(c) Replication

Figure 4: Fault Tolerance

2.4.1 Failure Semantics, Detection and Notifi-
cation

Some object models assume that the system that im-
plements the model can handle all faults in a way
transparent to the programmer. In other models, fail-
ures are explicitly taken into account in the model.
In the latter case we are interested in what an ob-
ject model guarantees when a failure occurs. For ex-
ample, the OMG (CORBA) object model [11] guar-
antees exactly once semantics for successful meth-
od invocations and at-most once semantics if an er-
ror occurred and the call raised an exception. A
distributed-object model could also make guaran-
tees about, for example, the availability of objects.

Another important and distinctive aspect is how
failures are detected by or signaled to the program-
mer. As mentioned above, the OMG object model
uses exceptions, but other object models support dif-
ferent mechanisms.

Object models often provide mechanisms which
the programmer can use to increase the reliability
and availability of the distributed applications. The

three most common mechanisms are: Atomic Trans-
actions, Persistent Objects and Replication.

3 Closing Remarks

We presented our framework for distributed-object
models. Developing a universal framework for com-
paring and classifying object models is not an easy
exercise. Small aspects, specific to an object model
(such as dynamic binding and parameter passing
modes) can have great impact on their performance
in a distributed environment. Recognizing all these
aspects will require a lot of time and effort. Until
now we have tried to discover those aspects empiri-
cally. In the future we will take a more theoretical,
top-down approach.

The version of our framework presented here is
not complete. First of all, a number of important as-
pects of distributed-object models have not yet been
addressed, such as security, object management (how
are objects defined, created, destroyed, etc.), pro-
gramming language support (from what language
or languages can we access and implement objects),
and object versioning (an important aspect in a wide-
area context).

Furthermore, this version contains a number of
classifications which need to be worked on. An ex-
ample of this is the classification of object models
based on when and by whom distribution of (parts
of) objects is specified (see Section 2.3.2). Draw-
ing a graph of the possible combinations proves to
be non-trivial, because there are subtle but distinct
differences between combinations that might seem
equivalent at first glance.

Related Wor k

Earlier work in this area was done by Bal et al. [1].
They developed a similar type of framework for clas-
sifying programming languages for distributed com-
puter systems. Some interesting work on a meta-
model for describing distributed-object models us-
ing a restricted set of concepts was done by Manola
[10]. He was furthermore involved in developing the
ANSI Object Models Features Matrix [9], used to
compare object models with the intention of finding
ways to make them interoperate.

A joint XOpen/NM taskforce used a common
language to compare object models [14]. This is in
particular interesting because different uses of the
same terminology is one of the things that make dis-
tributed-object models hard to compare.

References

[1]

[2]

[3]

[4]

[5]

[6]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

BAL, H., STEINER, J., AND TANENBAUM, A. Program-
ming Languages for Distributed Computing Systems. ACM
Computing Surveys 21, 3 (Sept. 1989), 261-322.

BENNETT, J. K. The Design and Implementation of Dis-
tributed Smalltalk. In Proceedings OOPSLA (Orlando, Fl.,
Oct. 1987), ACM, pp. 318-330.

BLACK, A., HUTCHINSON, N., JUuL, E., AND LEVY, H.
Object Structure in the Emerald System. In OOPSLA ’86
Conference Proceedings (Sept. 1986), N. Meyrowitz, Ed.,
ACM. published as SIGPLAN Notices 21(11), Nov. 1986.

CARDELLI, L. Oblig, A Language with Distributed Scope.
Research report 122, Systems Research Center, Digital
Equipment Corporation., June 1994.

DASGUPTA, P., ANANTHANARAYANAN, R., MENON, S.,
MOHINDRA, A., AND CHEN, R. Distributed Programming
with Objects and Threads in the Clouds System. Tech. Rep.
GIT-CC-91/26, Georgia Institute of Technology, Atlanta,
GA, 1991.

I1SO. Open Distributed Processing - Reference Model - Part
3: Architecture. International Standard / ITU-T Recom-
mendation 10746-3 / X.903, ISO/IEC, 1995.

Kuz, I. A Framework for Describing Distributed Ob-
ject Models. Master’s thesis, Department of Mathemat-
ics and Computer Science, Vrije Universiteit Amsterdam,
Sept. 1996.

MAKPANGOU, GOURHANT, LE NARZUL, AND SHAPIRO.
Structuring distributed applications as fragmented objects.
Rapport de Recherche 1404, INRIA, Jan. 1991.

MANOLA, F. X3H7 Object
Matrix. ANSI, Feb. 1995.
http://info.gte.com/ftp/doc/activities/x3h7.html.

MANOLA, F., AND HEILER, S. A “RISC” Object Model
for Object Systems Interoperation: Concepts and Applica-
tions. Tech. Rep. TR-0231-08-93-165, GTE Laboratories
Inc., Aug. 1993.

OBJECT MANAGEMENT GROUP. The Common Object Re-
quest Broker: Architecture and Specification. Revision 2.0.
Object Management Group Publications, July 1995.

Features
URL:

PAPATHOMAS, M. Concurrency Issues in Object-
Oriented Programming Languages. In Object Oriented
Development, D. Tsichritzis, Ed. Centre Universitaire
d’Informatique, University of Geneva, July 1989, pp. 207-
245.

RADIA, S., HAMILTON, G., KESSLER, P., AND POw-
ELL, M. The Spring Object Model. In Proceedings of
the USENIX Conference on Object-Oriented Technologies
(COOTS) (Monterey, California., June 1995).

RuTT, T. Comparison of the OSI management, OMG
and Internet management Object Models. Report, Joint
XOpen/NM Forum Inter-Domain Management (JIDM)
Taskforce, Mar. 1994.

SCHMIDT, D., AND VINOSKI, S. Object Interconnections:
Introduction to Distributed Object Computing (Column 1-
8). SIGS C++ Report (1995-1996).

TAIVALSAARI, A. On the Notion of Inheritance.
Computing Surveys 28, 3 (Sept. 1996), 438-479.

VAN DEN Bos, J., AND LAFFA, C. PROCOL: A con-
current object-oriented language with protocols, delegation
and constraints. In Acta Informatica (Mar. 1991), no. 28,
pp. 511-538.

ACM

