Hardware/Software Managed Scratchpad Memory for Embedded System

Andhi Janapsatyat, Sri Parameswarants, Aleksandar Ignjatovicit

1School of Computer Science and Engineering, The University of New South Wales
Sydney, NSW 2052, Australia
tNational Information and Communications Technology Australia (NICTA)
Sydney, NSW 2052, Australia

{andhij,sridevan,ignjat}@cse.unsw.edu.au

Abstract In this paper, we propose a methodology for energy re-
duction and performance improvement. The target system com-
prises of an instruction scratchpad memory instead of an instruc-
tion cache. Highly utilized code segments are copied into the
scratchpad memory, and are executed from the scratchpad. The
copying of code segments from main memory to the scratchpad
is performed during runtime. A custom hardware controller is
used to manage the copying process. The hardware controller
is activated by strategically placed custom instructions within
the executing program. These custom instructions inform the
hardware controller when to copy during program execution.
Novel heuristic algorithms are implemented to determine loca-
tions within the program to insert these custom instructions, as
well as to choose the best sets of code segments to be copied to
the scratchpad memory. For a set of realistic benchmarks, ex-
perimental results indicate the method uses 50.7% lower energy
(on average) and improves performance by 53.2% (onh average)
when compared to a traditional cache system which is identical
in size. Cache systems compared had sizes ranging from 256 to
16K bytes and associativities ranging from 1 to 32.

1. Intreduction

Designers of embedded systems constantly strive to improve per-
formance and reduce energy consumption. Low energy systems ex-
tend battery life, reduce cooling costs, and decrease weight. Im-
proved performance allows cheaper components to be utilized while
still meeting all necessary deadlines. Shutting down parts of the pro-
cessor [1], voltage scaling [2], specialized instructions [3), feature
size reduction [4], and additional cache levels [5], are some of the
techniques used to reduce energy in embedded systems,

One area which consumes substantial amounts of energy in a typical
processing machine is the instruction memory system. For example,
the StrongArm SA110 consumes 27% of its total power in instruction
cache alone [6]. Despite a complex tag-comparison system, cache is
widely used to improve performance, since cache (made of SRAM)
has faster access time compared to DRAM. For general purpose sys-
tems, usage of cache reduces total execution time and lowers energy
consumption.

Embedded systems differ from general-purpose systems by execut-
ing the same application or class of applications repeatedly. Knowl-
edge of an embedded application’s profile can be well understood
through extensive simulations. To reduce power in embedded sys-
tems, profile knowledge applied to a system with scratchpad mem-
ory (called SPM henceforth) instead of instruction cache, has been
shown to be useful [7].

A SPM, made of SRAM cells, is a memory array consisting of
only decoding and column circuitry logic [7]. The typical instruc-
tion memeory hierarchy consists of a main memory (constructed with
DRAM cells) and a SPM as shown in Figure 1{b). The content of
the SPM is updated through the bus connecting the DRAM to the

0-7803-8702-3/04/$20.00 ©2004 |IEEE.

i e e

l — Address Space N | I, Addross Spaco . I
b e

| Main Memory ! SPM Main Mamory l
: (DRAM) i {SRAM) (DRAM) |
| T ']

1 Cache I - : |
| (SRAM) | | |
| i |
e ==

(a) Cache Configuration {b) SPM Configuration
Figure 1: Instruction Memory Hierarchy and Address Space
Partitioning

1000
1 o 1661 |on11 o 1

Figure 2: Motivational Example

SPM, Traditional instruction memory hierarchy with cache (SRAM)
and main memory (DRAM)} is shown for comparison in Figure 1(a).
In the SPM configuration, it is possible for the CPU to access the
DRAM directly, unlike in cache architecture where the CPU has ac-
cess to DRAM only through the cache.

To use the SPM configuration effectively, the compiled code is ini-
tially loaded into DRAM. Whenever, a code segment which is re-
peatedly utilized is encountered (a special instruction inserted by the
compiler alerts the system of this encounter), that segment is copied
to the SPM, and the segment proceeds to be executed from the SPM.
Other segments which are run just a few times, or are run sporad-
ically, can be executed directly from the DRAM, reducing copying
costs,

The motivation for utilizing SPM instead of cache is shown in the
following example. We model an application fragment as a directed
graph (shown in Figure 2) where vertices are basic blocks and edges
are transitions from one basic block to another. A basic block is a
group of instructions, which are unconditionally and consecutively
executed. The weights on the edges give the number of transitions
from one block to another, found a priori through profiling (static
analysis).

For the graph given in Figure 2, it is known that execution of basic
blocks B & C will always follow basic block A. Hence, B & C can
always be loaded when loading A into SPM, eliminating the need for
tag comparisons. Instead of a tag-comparison, a special instruction to
load basic block A, B, and C into SPM can be inserted just before the
execution of basic block A. If the SPM was smal! and could only con-
tain blocks A & B, then C could be directly executed from DRAM.
Cache on the other hand would have thrashed (between block C and

370

whatever is presently in cache), resulting in slower execution time
and increased energy consumption.

In this paper we present a novel architecture, containing a spe-
cial hardware unit to manage dynamic copying of code segments
from main memory to SPM. We describe the architecture, and show
the use of a specially created instruction which triggers the copy-
ing from main memory to SPM. We further set forth heuristic algo-
rithms which rapidly evaluate which sets of code segments should
be copied to SPM, and where to place the specially created instruc-
tions for maximum impact. The whole system was evaluated using
benchmarks from mediabench and UTDSP,

The rest of this paper is organized as follows: section 2 describes
previous works on SPM and presents the contributions of our work;
section 3 introduces our strategy for using the scraichpad memory;
section 4 formally describes the problem; section 5 presents the al-
gorithm for partitioning the application code; section 6 provides the
experimental setup and the results; and section 7 concludes this doc-
ument,

2. Related Work and Contributions

Various schemes for managing SPM have been introduced, and can
be broadly divided into two schemes: static and dynamic. Both these
schemes are usually applied to the data section of a program, code
section of the program or both.

Static management refers to the partitioning of data or code prior
to execution, and storing the appropriate partitions in the SPM with
no transfers occurring between these memories during the execution
phase (occasionally the SPM is filled from the main memory at start
up}. Memory words are fetched directly from either of the memory
partitions to the processor. Dynamic management on the other hand
moves highly utilised memory words from the slow memory to the
SPM, before transferring to the processor, thereby allowing code or
data with a larger memory footprint than the SPM to utilise the SPM.
Effective partitioning of memory footprint for use in static SPM, and
dynamic SPM have been performed in the recent past.

In 1997, Panda et.al. [9] presented a scheme to statically manage
a SPM for use as data memory. They describe a partitioning prob-
lem for deciding whether data variables should be located in SPM
or DRAM (accessed via the data cache). Their algorithm maximizes
cache hit rate by allowing data variables to be executed from SPM.
Avissar et.al. [8] presented a different static scheme for utilizing
SPM as data memory. They presented an algorithm that can partition
the data variables as well as the data stack among different memory
units, such as SPM , DRAM, and ROM to maximize performance.

In 2001, Kandemir et.al. introduced dynamic management of SPM
for data memory [10]. Their memory architecture consisted of SPM
and DRAM accessed through cache. To transfer data from DRAM
into SPM, they created two new software data transfer calls; one to
read instructions from DRAM and another to write instructions into
SPM.

In 2003, Udayakumaran and Barua [12] improved upon [10] and
presented a more general scheme for dynamic management of SPM
as data memory. Udayakumaran's method analyzes the whole pro-
gram at once and aims to exploit locality throughout the whole pro-
gram instead of individual loop nest.

In 2002, Steinke et.al. [13] presented a case to statically manage
SPM for both instruction and data memories. In 2003, Angiolini
et.al. presented another SPM static management scheme for data
memeory and instruction memory. They presented a polynomial time
algorithm for partitioning data and instructions into DRAM and SPM
[11].

In [14], Steinke et al. presented a dynamic management scheme of
instruction memory utilizing a SPM and main memory. For each in-
struction to be copied into the SPM, they inserted a load and a store
instruction. The load instruction brought the instruction to be copied

word
 solect

"] Addr
Addr
CPU L
Core Data provm .
Data (2l (s hpad L
Mamary) L
o i :FDauln
- Addr
S g

Figure 3: SPM system architecture

from main memory to processor, and store instruction stored it back
into SPM. They created an algorithm to determine which segments
should be copied to SPM in order to obtain maximal energy savings.
The algorithm starts by analyzing the program to identify highly exe-
cuted program parts. It determines possible locations in the program
to insert load and store instructions. Finally, the best sections to be
loaded are ascertained and the load store instructions are actually in-
serted. The algorithm is based upon an Integer Linear Programming

(ILP) and solved using an ILP solver. They conducted experiments

with small applications (bubble sort, heap sort, ‘biquad’ from DSP

stone benchmark suit, etc.),

The work described in this paper dynamically copies code segments
(instructions only) of a program to SPM from main memory, and al-
lows execution from both the SPM and the main memory. The work
radically departs from the work in [14], by using a special hardware
controller to manage the copying of code from DRAM to the SPM.
This special hardware controller is activated by a single instruction
for each code segment to be copied, whereas the modei proposed in
[14], needed two extra instructions for every instruction to be copied.
In [14], the authors used an ILP formulation to search for segments
to be copied to the SPM. In contrast, we created a fast heuristic al-
gorithm to find the best segments of the program to be copied from
DRAM to SPM allowing the system to handle large realistic em-
bedded applications. Note that our system requires certain hardware
modification, while the system in [14] does not.

Our work improves upon the state of the art in the following ways:
¢ we present a novel architecture to perform dynamic management

of instruction code between SPM and main memory.

o for the first time the problem of partitioning instruction codes be-
tween SPM and DRAM is modelled as a graph problem.

* a novel graph partitioning algorithm to separate the instruction
code into segments(all segments are initialty in main memory and
those segments which are highly utilised are marked, so that they
can be copied into SPM and executed) to reduce overall encrgy
dissipation.

We evaluated the system by using realistic embedded applications

and show performance and energy comparisons with processors of

various cache sizes and differing associativities.

3. Our Approach

3.1 Strategy

We propose a methodology to utilize SPM through hardware and
software modification. To manage the SPM, a SPM controller and a
new instruction called SMI (Scratchpad Managing Instruction) is im-
plemented. Figure 3 shows the block diagram of the SPM controller,
SPM, DRAM, and the CPU. The SPM controller is responsible for
stalling the CPU when copying from DRAM to SPM, and to pro-
vide memory addresses of both DRAM and SPM during the copying
process, The SMI is used to activate the SPM controller. $MIs are
inserted within the program and is executed whenever the CPU en-
counters a SMI. ‘

371

h Partotiog
Abgarithm:
Procedure 1: |
Graph Partitioning|
' Procadume
S
(CPY Enargy ; i SPM {SRAM)
Procedurs 2:
Modal (Wattch) T y Energy Model
y Remaval of
spm convrauer] [Subgraph DRAM
Energy Model \ T il Enargy Model
Miacamy .

F Assemotyr |-
Machine code B

Figure 4: Methodology for Implementing the SPM

Figure 4 shows the steps for implementing the proposed methodol-
ogy. The methodology operates on the assembly/machine code level;
hence a C program (or any other language program) is first compiled
into assembly/machine code. Profiling and tracing (using modified
simplescalar/Pisa 3.0d [15]) is performed on the assembly/machine
code to obtain an accurate picture of the program behavier. This be-
havior is depicted as a graph.

An algorithm (see Section 5) utilizing the graph, and energy mod-
els of the various hardware blocks is implemented. The algorithm
is used to determing appropriate locations to insert SMIs within the
program, and to decide which basic blocks should be executed from
SPM, and which should be in DRAM.

In implementing the algorithm for insertion of the SMIs, the fol-
lowing assumptions are taken.

o Size of the SPM is known during compilation of program, This
is a reasonable assumption since the program is to execute in an
embedded application where the underlying hardware is known a
priori. This assumption is made to allow for greater cptimization.
However, if a number of processors with differing sizes of SPM
have to be serviced by the same binary source, it is possible to
ship several binaries, and the suitable one can be applied to the
particular embedded system.

» Program size is larger than the SPM size. This is a valid assump-
tion, for if it is not, then the whole program can be allocated to
SPM.

o Size of largest basic block is less than or equal to the SPM size.
This assumption is quite valid in embedded systems where basic
blocks are usnally small enough to fit into small SPMs. However,
if the basic block is too large for the SPM it can be broken up into
smaller granules such that each granule will fit into the SPM.

o Each instruction is always either executed from SPM or DRAM.
This ensures that it will never be necessary either to have dupli-
cates of ¢codes or to alter branch destinations during the execution
of a program.

e« Program trace is an accurate depiction of program execution, This
assumption is reasonable when a sufficiently large input space has
been applied. The amount of profiling needed to obtain a particu-
lar confidence interval is given in [16]).

» Higher level caches are not available for use. Once again, in an
embedded system, where frequently there is no cache at all, it is
unlikely that more than a single level of cache (in this approach

e ™

Speclal
Ir:;!ruﬁﬂ:n Basic Block
paran N Table {(BBT)
- W
Contrel | 1 S S
Loglc Address Of| Addresa of |
CPU DRAM seM_ %%
stall
Mamory
Contraller
Read/] word
\ Write] sslect ddr /

Figure 5: Architecture of the SPM controller

baq <dest>
SMI <BBT addr>
Jmp <SPM addr>

SMl <BBT addr>

dest: SMi<BBT addr>

jmp <SPM addr>
jmp <SPM addr>

(a) (b) ()
Figure 6: Condition for insertion of SMI into programs.

the L1 cache is replace by a SPM) is available for use. However,
having higher level caches does not reduce the effectiveness of the
approach.

The strategy for using the SPM is as follows: at the start of a pro-
gram, the first instruction is always fetched from DRAM. When a
SMI is fetched, the CPU will activate the SPM controller. The SPM
controller will then stall the CPU and starts copying instructions from
DRAM into SPM. After copying is complete, the SPM controller
will release the CPU, and the CPU will continue to fetch and execute
instructions from DRAM. Whenever a branching instruction leads
program execution to the SPM, it will then start to fetch instructions
from the SPM.

3.2 Hardware Implementation

In this approach the CPU is modified by the addition of a SPM-
controller, addition of a SMI, and the SPM. The systern does not
have a level-1 instruction cache. The micro-architecture of the SPM-
controller is shown in Figure 5 and includes the Basic Block Table
(BBT). The BBT stores the following static information: start ad-
dresses of the basic blocks to be read from within the DRAM; how
many instructions are to be copied; and the start addresses for stor-
ing the basic block into SPM. Content of the BBT is filled by the
algorithm shown in Figure 4.

3.3 Software Modification

The new instruction, SMI, is an instruction with a single operand.
The operand of the SMI represents the address of a BBT entry. For
a 32 bit instruction with 16 bit operand, it is possible to have up to
65536 entries in the BBT allowing 65536 unique SMIs to be inserted
into a program.

There are three conditions under which the code could be modified.
These are; before an unconditional branch; destination of a condi-
tional branch; and just after a conditional branch. The modifications
are elaborated in the following paragraphs.

Insert 2 SMI just before an unconditional branch (Figure 6(a)).
Instructions to be executed by the execution of the unconditional
branch can be copied into SPM using the SML The destination ad-
dress of the unconditicnal branch is to be altered so that it points to
the correct address within the SPM.

Add a SMI as destination of a conditional branch (Figure 6(b)).
In the case of a conditional branch (which tests to be true), a SMI is

372

Basle addu$3,30,57
Block adde$6,50,50
A tw $2,8(53)
addu $5,50.56
| 19
lgu $383,12
addiu $6,$5,12

addlu $2,§7.8

(2) ()

Figure 7: An example of identified basic block and its graph rep-
resentation,

added to copy the basic block to be executed. An extra jump instruc-
tion is added following the SMI to transfer program execution to the
SPM.

A SMI instruction is added just after a conditional branch in-
struction (Figure 6(¢)). In the case of a conditional branch (which
tests to be false), a SMI is inserted to copy the basic block to be ex-
ecuted following the branch instruction. An extra jump instruction
needs to be added to transfer program execution to the SPM.

An extra branch instruction may also need to be added at the end
of the basic block if execution flow is required to jump to another
location within memory. If there is an unconditional branch at the
end of the basic block, then the branch destination can be simply
altered, or modified as in 1. If there are conditional branches then we
may have to modify as per 2 or 3 depending upon whether they are
to be executed from DRAM or SPM.

The algorithm shown in Figure 4, outputs the modified software
including the addition of any extra branching instructions.

4. Problem Description

The problem can be formally described as follows, Given any pro-
gram, it can be represented as a graph. The vertex represents a basic
block. The edges represent the program execution path. Weight of
each vertex represents the number of instructions within a basic block
and the frequency of each edge represents the number of times this
execution path is taken,

For the code fragments given in Figure 7(a), the basic blocks are
identified as shown. The graph representation of the code fragment
is shown in Figure 7(b).

The problem is to find vertices within the graph (i.e. the basic
blocks of instructions) where one should insert the custom instruc-
tion, SMI. This instruction ensures that one or several subsequent
vertices are copied from DRAM to SPM. These insertions are done
in places that optimize energy consumption.

To locate strategic points within a program to insert SMIs, we trans-
form our problem into partitioning a graph into subgraphs where
each edge connecting subgraphs would be an optimal location to in-
sert a SMI. It is easy to see that the “Minimum Cut into Bounded
Sets Problem” [17] is P-time Turing reducible to our graph partition-
ing problem; thus our problem has no polynomial time algorithm,
and we must use a heuristic approximation algorithm.

5. Algorithm Description

We implemented an algorithm consisting of two procedures based
on various heuristics: Graph Partitioning Procedure and Removal of
Insignificant Subgraphs Procedure.

3.1 Graph Partitioning Procedure

Sort list of edges in ascending frequency.
Repeat until total weight of each subgraph is less than N. {
Eliminate set of edges that have frequency equal to the first edge in
the ordered list.
For each subgraph that is a connected component
calculate the total vertex weight; {
If the total weight of this subgraph is larger than N,{
Form a list of its edges preserving the ordering
from the initial list.

Figure 8: Graph partitioning procedure

Consider the following problem.
Assume that we are given:
1. a graph with a set of vertices V and a set of edges E,
2. for each vertex v € V we are given a vertex weight W{v) and for
each edge e € E an edge frequency Fle),
3. aconstant N. (size of SPM)
Find a partition of the graph, such thar each subgraph has a toral

vertex weight less than or equal to N, and the total frequency of the
edges connecting the subgraph is minimal.

A heuristic approximation algorithm for the above partitioning prob-
lem is implemented as shown on Figure 8.

Start by ordering the edges in ascending frequencies, i.e. such that
the edge at the top of the list is one of the edges with the minimal
frequency. We eliminate all the edges of the graph which have such a
minimal frequency. This usually induces a partition of the graph into
several subgraphs; the total weight of vertices for each of these sub-
graphs is calculated and compared with . We then apply the same
procedure to all subgraphs whose total vertex weight is larger than
N, and the procedure stops when all of the subgraphs have a total
vertex weight smaller or equal to N, Complexity of the graph parti-
tioning procedure is ®(e = log(e)), where e is the number of edges in
the graph.

If we identify the eliminated edges connecting the subgraphs as the
locations to insert the special instructions for copying from DRAM
to SPM, this would result in a quite sub-optimal solution, because
there would be subgraphs that are too small to be worthwhile to copy
and execute from SPM. For example, the graph partitioning proce-
dure can produce results such as the one shown in Figure 10, The
dotted lines indicate the partitions of the graph. It can be seen that
partition 2 resulted in basic block B as a subgraph and it will only
ever be executed once. Thus, it is not cost effective to first read it
from DRAM and copy it to SPM, since one can just read it and ex-
ecute it directly from DRAM. To search and remove these type of
subgraphs, another heuristic procedare is implemented.

5.2 Removal of Insignificant Subgraphs Proce-
dure

Such a heuristic procedure is shown in Figure 9. It starts by calcu-
lating the energy cost of executing each subgraph § from DRAM and
the energy cost of executing such subgraph from SPM. Energy cost
of executing § from DRAM Epgaa(S) is calculated using

Eprarm(S) = DRAM e % Z (W(v) * E F(e)) (n
ves eclE(v)

where DRAM,. is the energy cost of a single DRAM access per

instruction, and /E(v} is the set of all edges incoming into the vertex

v.

Equation 2 shows the energy cost Egpps (S) of executing instructions

within the subgraph § from SPM, including the cost of accessing the
DRAM once and copying to SPM.

373

For each subgraph S {
Calculate energy cost Eppam(S) of executing S from DRAM,
Calculate energy cost Espar(S) of executing S from SPM,
if Espmr(S) < Epram{S)
classify S to be executed from SPM,
else
classify § to be executed from DRAM.

For each edge e eliminated in the graph partitioning algorithm
if e is an incoming edge for a SPM subgraph § {
Do depth-first search to determine if every path
whose all intermediary subgraphs are DRAM subgraphs,
and which terminates with e must have its beginning
af the same SPM subgraph S;
if no, then insert SMI to the edge e.

Figure 9;: Removal of insignificant subgraph procedure
Partition 2 EPaﬂilion 1

]

)

1)
Subgraph 2 ! Subgraph 3
1

Figure 10; Subgraph Representaticn

Espu(5) = SPMacc+ Y (W(v)*)y F(e))+Es,,gc.-az(S) @

ves eclE(v)

SPM,. is the energy cost of a single SPM access per instruction.
Epeciai(S) is defined as

Especia[(s) = Z Fle)x (DRAMacc ¥ Z W(V)) +q* Epranch
eelE(S) ves
3

Egpeciar(S) is energy cost of executing the special instruction in-
cluding reading from DRAM and copying to SPM and energy cost
Eprancy, of adding a branch instruction if necessary. This happens if
the proper execution of the branching instruction should change the
flow from DRAM to SPM or vice versa. If such an extra branching
instruction is necessary, constant g is equal to 1, else g is 0.

We denote by /E(S) the set of all edges that are incoming into §
from other subgraphs; clearly such edges are among those which
were eliminated in the previous procedure.

The energy calculation is used to classify which subgraph is to
be executed from SPM and which subgraph to be executed from
DRAM; only subgraphs § with Espy(S) < Eprap(S) will be exe-
cuted from SPM. We call such a subgraph a SPM-subgraph.

The rest of the procedure inserts the SMI as follows. For every
SPM-subgraph, it will examine all incoming edges to this subgraph
that were eliminated in the graph partition procedure (subsection 5.1).
We determine if such an edge is included in a path either from an-
other $PM-subgraph, or from the start of the program, and only in
such cases a SMI is inserted. This means that if ail paths including
this edge emanate from the same SPM-subgraph, SMI need not be
inserted. The complexity of this procedure is @(V3), where V is the
number of vertices in the graph.

For example, in the graph shown in Figure 10, there are three sub-
graphs obtained from partition 1 and partition 2. Thus, partition 2
produced a subgraph consisting of the basic block B only. Assume

{ Parameters | Configuration
Issue Queue 16 entries
Load/Store Queue 16 entries
Fetch Queue 4 entries
Fetch/Decode Width | 4 inst. per cycle
Issue/Commit Width | 4 inst. per cycle
Function Units 41ALU, 1 IMULT, 2 FPALU, 1 FEMULT
L1 ICache 8way, 2 cycles
L1 DCache 312KB, 2way, 1 cycle
Memory 100 cycles for first chunk, 10 cycles the rest

Table 1: SimpleScalar configuration.

Size | Cache acc. [SPM acc. | ratio [] Cache acc. | SPM ace. | ratio
i(bytes) time(ns} | time{ns) energy(nj} | energy(nj)}

512 1.19 0.74 1.61 [{1.37 0.18 7.61
1024 [1.24 . 0.78 159 [[1.37 0.19 7.21
2048 [1.30 0.83 1.37 |[1.39 0.20 6.95
4096 11.31 0.88 1.49[1.42 0.23 6.17
8192 |1.34 1.05 1.28 § 1.49 .29 5.14
16384 | 1.64 1.21 T1.36 i 1.55 0.36 4.31

Table 2: Access time and energy consumption of static memory.

that the energy cost estimation using equation 1 and 2 classified basic
block B to be executed from DRAM. Consider the edge from B to
D. All paths containing the edge from B to DD also contain the edge
from A to B. Since A belongs to the same SPM subgraph as D, by
our procedure no SMI will be inserted in the edge from B to D.

By removing subgraphs that are not worthwhile to be executed from
SPM, and minimizing the number of edges requiring a special in-
struction, we are able to minimize the number of special instructions
to be added, and reduce any unnecessary replacement of instructions
already in the SPM.

6. Experimental Results
6.1 Setup

We simulated a number of benchmarks using simplescalar/PISA
3.0d simulation environment [15], to obtain memory access statis-
tics. Power figures for the CPU were calculated using Wattch [18]
(0.18um). CACTI 3.2 {19] was used as the energy model for the
cache memory. The energy model for the scratchpad memory was
extracted from CACTI as in [7]. The DRAM power figures were
taken from IBM embedded DRAM SA-27E [20]. The configuration
for the simulated CPU is as shown in Table L.

Table 2 shows the SPM access time, SPM access energy, cache ac-
cess time, and cache access energy [19] for an 8-way set associative
cache (8-way is only shown here as an example). It can be seen that
accessing SPM is approximately 1.5 times faster than a cache access
and uses approximately 6 times less energy compared to an 8-way
set associative caches.

The benchmarks were obtained from the mediabench suite [21]. To-
ta! number of instructions executed in each benchmarks is tabulated
in Table 3.

6.2 Hardware Cost

In cache, tag RAMCcells keep track of the entries in the cache while
in the SPM system proposed here, the tags are replaced by the BBT.
Each BBT entry needs to store one DRAM address, one SPM ad-
dress, and the number of instructions to be copied. Since the most
significant bits of the SPM address is known from the memory map
(as shown in Figure 1(b)), only the least significant bits of the SPM
address need to be stored within the BBT.

For example, given DRAM size of 2M bytes, SPM size of 1K bytes,
and instruction size of 8 bytes. There exists enough space to store up

374

Application total average average | % increase | ave. number of [ave. number | average average
instructions | rumber of | number of { in number of | insn, copied from | of insn exec. | insn, copy cache
executed | SMI added | SMI exec. | insn, exec. | DRAMto SPM | from SPM | rate (%) |miss rate (%)
adpcmenc 6689222 30.4 03392 0.95 741972 6470247 11.1 13.9
adpemdec | 12413917 29.7 84527 0.68 2704463 11565318 21.8 23.4
G72lenc 314532454 63.0 2514381 0.80 130722589 285502170 41.6 31.0
G721dec 302896836 58.0 1875956 0.62 87833725 273545063 29.0 30.6
pegwitkey [13483894 81.6 20230 0.15 506801 12889791 3.8 11.8
pegwitenc_ | 18941701 120.0 41143 0.12 1131996 26388136 6.0 26.7
pegwitdec | 33700290 113.1 20261 0.11 601407 14642705 1.8 272]
Table 3: Cost of adding and executing SMIs.,
18 <Cache systam Performancs - splnxy;mrommanu
& Enwrgy Estimation & Enargy Ealtnl!lnn

-
N -

a -
o

RAMcally sl (Kbits)
@

2048 4086
Cacha/SPM slze (Bytes)

B182 16384

Figure 11: Cache tag-RAM size compared to BBT size in bits.

to 256K instructions within the DRAM and 128 instructions within
the SPM. Thus, the number of instructions that need to be copied
ranges from 1-128 requiring 7 bits per entry, Each DRAM address
requires 18 bits per entry (to manage 256K instructions), and each
SPM address requires 7 bits per entry. In total each BBT entry re-
quires enough space to store 32 bits.

Figure 11 shows comparison between the number of bits in a cache
tag RAMcelils and the average size of the BBT for different size
cache/SPM with memory size of 2M bytes. The average size of the
BBT is calculated from all the benchmarks shown in Table 3. From
Figure 11, it can be seen that cache tag RAMcells grows exponen-
tially as the cache size grows, but the BBT size decreases as the SPM
grows. BBT size decreases as SPM size increases because with a
larger SPM, fewer SMIs are needed.

A SPM controller with BBT size of 128 entries (4096 Bits} was
implemented in Verilog. The SPM controller is a finite state ma-
chine that accesses the BBT and forwards the output of the BBT as
DRAM and SPM memory addresses. Power estimation of the SPM
controller was done using a commercial power estimation tool with
the following settings: ClockFreq. = 500MHz; Voltagel .8V ; using
a 0.18um technelogy. Power estimation showed that it consumed
2.94mW of power. This is in comparison with cache tag power of
159mW, obtained from CACTI [19], for a 0.181m 64 bytes of direct
map cache. The power would progressively increase for greater ways
of associativity. In addition, we also synthesised the SPM controller
using, Synplify Pro [22], for a Xilinx Virtex 800K gate FPGA. The
result shows that the SPM controller would occupy less than 1% of
the FPGA resource.

6.3 Special instructions execution cost

With traditional cache architecture, DRAM is accessed every time
a cache miss is encountered. In our SPM architecture, DRAM is ac-
cessed whenever a SMI is executed and whenever a code segment is
executed from DRAM.Table 3, provides the application name in col-
umn 1, nember of instructions executed for the application in column
2, average number of SMIs added in column 3, the average number of
SMIs executed in column 4, the percentage of executed instructions
which were SMIs in column 3, the average number of instructtons
which were copied from DRAM to SPM in column 6, average num-
ber of instructions which were executed from SPM in column 7, the

Cacha hit and miss
numbers ohtalin
from Simplescalar
simulation.

o Tace 7
progeam
slmpl--uur outputted trom
simulation || _Algorithm

Figure 12: Experimental Steps for Evaluating Performance and
Energy Improvement.

average instruction copy rate in column 8 {which is (column 6 / Col-
umn 2) * 100), and for comparison purposes, the average cache miss
rate is shown in column 9. Note that the average figures above refers
to all SPMs sized from 256 to 16K bytes, and cache figures are for
256 to 16K bytes with associativities ranging from 1 to 32. From
results shown in Table 3, it is seen that execution of SMI causes at
most 0.95% increase in the number of instruction to be executed. On
average 33 instructions are copied to the SPM every time a SMI is
executed. Once an instruction is copied, on average it executes 4.3
times from the SPM. -

6.4 Performance and Energy Saving

Performance of the memory architecture is evaluated by calculating
the total memory accesses for a complete program execution. Esti-
mation of memory access time is possible due to known SPM access
time, cache access time, DRAM access time, hit rates of cache and
number of times the SPM contents are changed. Figure 12 shows the
performance and energy estimation methodology.

The left shaded box 1n Figure 12 shows the steps to estimate the
cache access time, cachegccess time and the cache energy consump-
tion, cacheenergy. cachegccess zime 1s calculated using equation 4

cache aceess sime(n8) ={cachey; + cachenpmiss} * cacheyime (ns)+

4
cachemiss ¥ DRAM e (ns} “

where cachey,, is the total number of cache hits, cache ;s is the num-
ber of cache misses, cache;;m, is the access time to fetch one instruc-
tion from the cache, and DRAM,;,, is the amount of time spent to
access one DRAM instruction.

In the right shaded box in Figure 12, the performance and energy
estimation for the SPM architecture is shown. We estimate the total
memory access time for the SPM architecture using equation 5,

SPMaccerJime("s) =SPMae *SPMfime("s)+

SMloxe + COPYsize + DRAM[M,(HS)+ (5)
DRAM sy # DRAM o {ns)

where SPM,,. is the number of instructions executed from SPM,
SPM,;me is the amount of time needed to feich one instruction from
the SPM, SM{,;. is the total number of times all SMIs are executed,
COPYsize 15 the total number of instructions copied from DRAM to
SPM during program runtime, and DRAM,,, is the number of in-
struction executed from DRAM.

375

App SRAM Memory access time comparisons Energy consumption comparisons
Name Size [SPM Cache Associatvity(sec.) ave, % SPM Cache Associativity(Joule) ave. %
(bytes) | (sec.) 1 2 4] 16| savings {| (Joule) T 2 4 3 16 | savings
1K 1.280 [2.017 { 1.833 | 1.833 | 1.837 | 1.864 | 31.793 || 16.377 | 25.763 | 23.507 | 23.507 | 23.753 | 24.470 | 32.325
2K 1562 | L783 [1781 | L78T [1816 | 1.837 | 13201 || 19.783 1 22,782 | 22856 { 22856 | 23473 12413 | 14793
g72lenc AR 12367 | 1479 {13727 1572 [T72T T 1.832 - 44779 || 29727 18919 | 20.150 | 20,1907 22.273 | 24.056 | -40.719
8K 10.006]0.691 [0.607 | 0.607 [0.568 | 0.517 [84.005 T600 | 8880 | 7906 | 7906 | 7.595 | 7314 | 79.804
16K [0113 [03545 0.502 0502 [0317 [0.554 | 78.464 1.834 016 | 6568] 65687 69321 7.778 | 73692
1K 1.099 [1934 T1.755 T 1.755 [1744 [1.776 | 38.748]| 14.104 [24.830 | 22.514 [22.514 [22.552 | 23.315 [39.061
2K | 1.325 | 1701 | 1716 | 1.716 | 1.747 | 1718 | 23.493 || 16.809 [21.745 | 22026 | 22.026 | 22.589 | 23.340 | 24.774
g721dec 4K | 0842 | 1418 [14901490 | 1.596 | 1.738] 45571 || 10.834°7 18.141 | 19137 | 19.137 | 20.672 | 22.84T | 45.791
8K | 0.089 [0.744 [0.519 [0.519 | 0.452 | 0.492 | 83746 15087 9362 | 67791 6779 | 6104 | 6949 | 79.162
T6K | 0.109 | 0.455 | 0.484 [0.484 | 0.498 [0.534 | 718.211 I.778 7 6382 6327 6327 | 6677 | 1493 73735
TK [0.122 | 0.169 [0.167 | 0.167 | 0.170 | 0.170 | 27.484 || 1.600 | 2.161 | 2141 | 2141 | 2.200 | 2.242 | 26.525
K [OTIS | QI3 10152700521 0.155 7 0.157 | 24521 T5I5] 1964 1949] 1949 Z014 | 2.082 | 23.916
pegwitenc AK[0078 [0.15T [0.151) 0151 [0.132 1 0.158 | 23.508 15257 1020 1947 1947 | 1977 | 2088 | 22907
8K [0.050 [0.090 [0.085 | 0. ! 0087 42402] 0682 10571 1105 | 1.105 | I1.116 | 1.192 1 39.926
16K 1 0.014 | 0.056 [0,054 | 0.054 | 0.056 | Q.00 | 74233 | 0.233| 0717 | 0711 [01T | 0752 0838 | 68.723

Table 4: Table of results showing percentage memory access time improvement and percentage energy improvement.

Figure 15: Example of a condition where SPM capacity miss can
occur.

Application | SRAM size | Memory access Energy
Name (Bytes) time savings (%) | savings (%)
bubble sort 256 312 309
heap sort 256 26.8 26.7
quick sort 256 264 263
biquad 256 355 3l.6

Table 5: % memory access time savings and % energy savings of
a 256 bytes SPM coinpared to 256 bytes 4-way associative cache.

SPM memory access time is compared to cache memory access
time using the foliowing equation.

Toim provemeni =

100~ ((SPMaccess.rime (1S)/ CaChE aocess sime (ns)) % 100)

Table 4 shows the comparison between the SPM architecture and
cache architecture memory access time and energy consumption (re-
sults for the other benchmarks are not shown due to space constraint),
The bar graphs seen in Figure 13 show the percentage difference of
SPM memory access time compared to cache memory access time.
For example, given the memory access time for g72/enc applica-
tion with 1K bytes SPM compared to a 16-way associative 1K bytes
cache from Table 4; the bar graph in Figure 13(a) shows that the SPM
memory access time is 31.8% faster compared to the cache memory
access time. This was calculated using equation 6 (%oimprovemenr =
100 — (1.280/1.864) * 100). Calculation of the average % improvement
for all the benchmarks shows that SPM can achieve performance im-
provement of 51.6% on average over cache architecture,

Although shorter instruction memory access time does not always
imply a shorter execution time due to data memory access time and
the time required by the CPUJ to execute multi-cycle instructions, For
the purposes of evaluation, we minimized the effect of data memory
access on the execution time by setting a large data cache so that data
cache miss rates are less than 0.01%. Thus, the data cache has a very
small 1o negligible miss rate, hence minimal effect on the program
execution time.

G}

For multi-cycle instructions, it is not possible to accurately estimate
the execution time without the extra knowledge of which multi-cycle
instructions were executed. We perform comparisons between cache
execution time obtain from Simplescalar simulation to cache mem-
ory access time obtain from equation 4. We found that on average
9.5% error is seen between the two values with the maximum error
of 17%.

Some of the results show performance degradation for SPM com-
pared to cache (e.g. G72!enc result for a 4K bytes SPM size com-
pared to a 4K bytes cache). Investigation of the result found that it
is due to capacity miss condition that is unique to the SPM case and
does not occur when cache is used. Such a capacity miss condition
is shown in the following example (Figure 15). Assume vertices rep-
resent basic blocks, edges represent the execution paths, each vertex
has an equal number of instructions, and the SPM can only contain 4
vertices concurrently. By using SPM with a SMI inserted as shown
in the example, we have to choose 4 vertices to be loaded into SPM
and the remaining 2 vertices will execute from DRAM. If a cache had
been used, depending upon the path taken, the cache will contain the

correct 4 vertices currently executed and will cause very few cache
misses. We classify this condition as a SPM capacity miss.

Energy consumption comparison is shown in Table 4 and Figure 14.
The cache energy consumption is calculated using equation 7,

cm“he"""g)' =(cache,:,,—, + Ca‘-'hffmiss) * Eogchet @
cachemiss ¥ Eppan -+ cachegccess rime * Ecpy
where Epgayy is the energy cost per DRAM access and Ecpy is the
energy consumed by the CPU.
The SPM energy is calculated using equation 8,

SPMenergy =ESPM * SPMexe + EDRAM * DRA M&xe"‘

(8
K * Egppr +J * Epyanen + SPMaccess sime * Ecry

where Egpy is the energy cost per SPM access, Exyy, is the energy
cost per execution of the special instruction, X is the total number of
times all special instruction is executed, Ep 0 is the energy cost for
any additional branch instructions, and J is the total number of times
any additional branch instruction is executed.

Percentage difference between the SPM energy consumption and
the cache energy consumption is calculated using the following equa-
tion.

%energy.impravemem =100 ((SPMenErgy/CaChemgrgy) * 100) &)

Results of the percentage energy improvement is shown in Figure 14.
It was calculated that the SPM architecture can achieve on average
49.6% energy reduction compared to energy consumption of a cache
architecture,

376

nG721enc
0GT21dec
Rpegwitkey
dpegqwitenc

Nooa
Q

% savings
-1

padpetmenc|
oadpemdec!

20 wpegwitdec

40

1024 204 a192 16384

3 4096
Mamory Size {Bytes)
(a) SPM vs 16-way Cache

1024 2048
Mamory Size (Bytes}

(b) SPM vs dm Cache

256 512 4098 B1g2 16384

Figure 13: % savings of SPM memory access time over cache memory access time. (Legend shown in Figure 13(a) indicates orderings

of bar-graphs from left to right.)

1024 2048 LAl 16384

4098
Mamory Size (Bylas)

(a) SPM Energy vs 16-way Cache energy

56 512

1024
Memory Size (Bytes)

(b) SPM Energy vs dm Cache energy

2043 4096 8192 16384

Figure 14: % savings of SPM execution energy over cache execution energy. (Legend for this figure is as shown in Figure 13(a).)

In addition to the benchmarks shown in Table 4, Figure 13, and Fig-
ure 14, we also implemented various sert algorithms taken from [23]
and the biguad N sections from DSPstone benchmark suite. Results
of these benchmarks are shown in Table 5. These benchmarks are
similar to the ones used in [14]. From [14], the result for heap sort
for the same SRAM size shows 4.6% performance improvement and
3.5% energy savings; and result from quick sort [14] with 256 bytes
SRAM shows 10% performance improvement and 16% energy sav-
ings. Despite values in Table 5 showing our methodology achieves
higher energy savings and performance improvement compared to
methods in [14], the two results from [14] and Table 5 should not be
compared directly due to the different underlying architectures used.
Some of this energy savings are probably due to the differing data set
size, while the rest is due to the reduced SMIs inserted.

7. Conclusions

‘We have presented a method to lower energy consumption and im-
prove performance of embedded systems. The presented methodol-
ogy uses SPM to store highly utilized code segments. By using a
custom hardware SPM controller to dynamically manage the SPM,
we have successfully avoided the need to insert many instructions
into a program for managing the content of the SPM. Instead, we im-
plemented beuristic algorithms to strategically insert custom instruc-
tions, SMI, for activating the hardware SPM controller. Experimental
results show that our SPM scheme can lower energy consumption by
an average of 50.7% compared to traditional cache architecture, and
performance is improved by an average of 53.2%.

8. References

[1] K. Lahiti et al., “Communication Architecture Based Power Manage-
ment for Battery Efficient System Design,” DAC, 2002.

[2] I.Luoand N. K. Jha, “Power-profile Driven Variable Voltage Scaling for
Heterogeneous Distributed Real-time Embedded Systems,” VLSI De-
sign, 2003.

[3] F. Sun et al., “Custom-Instruction Synthesis for Extensible-Processor
Platforms,” TCAD, 2004,

[4] J. M. Rabaey, “Digital Integrated Circuits: A Design Perspective,” Pren-
fice Hall, 1996,

[5] 1. Kinetal., “The Filter Cache: An Epergy Efficient Memory Structure,”
IEEE Micro, 1997.

[6] J. Montanaro et al., “A 160MHz, 32b, 0.5W CMOS RISC microproces-
sor,” JSSC, vol.31(11), pp. 1703-1712, 1996.

[71 R. Banakar et.al, “Scratchpad Memory: A Design Alternative for
Cache On-chip Memory in Embedded Systems,” CODES, 2002,

[8] O, Avissar and R Barua, “An Optimal Memory Allocation Scheme
for Scratch-Pad-Based Embedded Systems,” ACM Trans. on Embedded
Computing Systems, vol, 1, pp. 6-26, 2002,

[9] P.R. Panda, “Efficient Utilization of Scratch-Pad Memory in Embedded

Processor Applications,” European Design and Test Conference, Fro-

ceedings of, 1997.

M. Kandemir and A. Choudhary, “Compiler-Directed Scratch Pad

Memory Hierarchy Design and Management,” DAC, 2002.

F. Angiolini et.al,, “Polynomial-Time Algorithm for On-Chip Scratch-

pad Memory Partitioning,” CASES, 2003.

S. Udayakumaran and R, Barua, “Compiler-Decided Dynamic Memory

Allocation for Scratch-Pac Based Embedded Systems,” CASES, 2003.

S. Steinke et.al., “Assigning Program and Data Objects to Scratchpad

for Energy Reduction,” DATE, 2002,

S. Steinke ct.al., “Reducing Energy Consumption by Dynamic Copying

of Instructions onto Onchip Memory,” IS3S, 2002.

D, Burger and T, M. Austin, “The SimpleScalar Tool Set, Version 2.0,”

TR-CS-1342, University of Wisconsin-madison, June 1997.

P. Bartlett et.al., “Profiling in the ASP Codesign Environment,” Jour-

nal of Systems Architecture, vol. 46, no. 14, pp. 1263-1274, Elsevier,

Netherlands, Dec, 2000.

M. R. Garey and D._ 8. Johnson, “Computers and Intractability,” W, H.

Freeman and Company, New York, 2000.

D. Brooks et.al., “Wattch: A Framework for Architectural-Level Power

Analysis and Optimizations,” /SCA, 2000.

P. Shivakumar and N. P. Jouppi, *“Cacti 3.0: An Integrated Cache Tim-

ing, Power, and Area Model,” Technical Report 2001/2, Compag Com-

puter Corporation, August, 2001. 2001.

IBM Microelectronics Division, “Embedded DRAM SA-27E”

http:/fibm.com/chips, 2002.

C. Lee etal, "MediaBench: A Tool for Evaluating Multimedia and

Communications Systems,” JEEE MICRO 30, 1997.

[22) Synplicity Inc, “Synplify Pro,” http:/Awww.synplicity.com, 2004,

[23] R. Sedgewick, “Algorithm In ;" Addison-Wesley, 3rd Edition, 1998,

{10]
[t1]
2]
[13]
[14]
[15]

[16]

[17]
(18]
[19]

120]
[21]

377

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

